/*
|
* Copyright (C) 2017 The Android Open Source Project
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
//#define LOG_NDEBUG 0
|
#undef LOG_TAG
|
#define LOG_TAG "BufferLayer"
|
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
|
|
#include "BufferLayer.h"
|
|
#include <compositionengine/CompositionEngine.h>
|
#include <compositionengine/Display.h>
|
#include <compositionengine/Layer.h>
|
#include <compositionengine/LayerCreationArgs.h>
|
#include <compositionengine/OutputLayer.h>
|
#include <compositionengine/impl/LayerCompositionState.h>
|
#include <compositionengine/impl/OutputLayerCompositionState.h>
|
#include <cutils/compiler.h>
|
#include <cutils/native_handle.h>
|
#include <cutils/properties.h>
|
#include <gui/BufferItem.h>
|
#include <gui/BufferQueue.h>
|
#include <gui/LayerDebugInfo.h>
|
#include <gui/Surface.h>
|
#include <renderengine/RenderEngine.h>
|
#include <ui/DebugUtils.h>
|
#include <utils/Errors.h>
|
#include <utils/Log.h>
|
#include <utils/NativeHandle.h>
|
#include <utils/StopWatch.h>
|
#include <utils/Trace.h>
|
|
#include <cmath>
|
#include <cstdlib>
|
#include <mutex>
|
#include <sstream>
|
|
#include "Colorizer.h"
|
#include "DisplayDevice.h"
|
#include "LayerRejecter.h"
|
#include "TimeStats/TimeStats.h"
|
|
#include <hardware/graphics-sunxi.h>
|
|
namespace android {
|
|
BufferLayer::BufferLayer(const LayerCreationArgs& args)
|
: Layer(args),
|
mTextureName(args.flinger->getNewTexture()),
|
mCompositionLayer{mFlinger->getCompositionEngine().createLayer(
|
compositionengine::LayerCreationArgs{this})} {
|
ALOGV("Creating Layer %s", args.name.string());
|
|
mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied);
|
|
mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow;
|
mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp;
|
}
|
|
BufferLayer::~BufferLayer() {
|
mFlinger->deleteTextureAsync(mTextureName);
|
mFlinger->mTimeStats->onDestroy(getSequence());
|
}
|
|
void BufferLayer::useSurfaceDamage() {
|
if (mFlinger->mForceFullDamage) {
|
surfaceDamageRegion = Region::INVALID_REGION;
|
} else {
|
surfaceDamageRegion = getDrawingSurfaceDamage();
|
}
|
}
|
|
void BufferLayer::useEmptyDamage() {
|
surfaceDamageRegion.clear();
|
}
|
|
bool BufferLayer::isOpaque(const Layer::State& s) const {
|
// if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
|
// layer's opaque flag.
|
if ((mSidebandStream == nullptr) && (mActiveBuffer == nullptr)) {
|
return false;
|
}
|
|
// if the layer has the opaque flag, then we're always opaque,
|
// otherwise we use the current buffer's format.
|
return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat());
|
}
|
|
bool BufferLayer::isVisible() const {
|
bool visible = !(isHiddenByPolicy()) && getAlpha() > 0.0f &&
|
(mActiveBuffer != nullptr || mSidebandStream != nullptr);
|
mFlinger->mScheduler->setLayerVisibility(mSchedulerLayerHandle, visible);
|
|
return visible;
|
}
|
|
bool BufferLayer::isFixedSize() const {
|
return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
|
}
|
|
bool BufferLayer::usesSourceCrop() const {
|
return true;
|
}
|
|
static constexpr mat4 inverseOrientation(uint32_t transform) {
|
const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
|
const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1);
|
const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
|
mat4 tr;
|
|
if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
|
tr = tr * rot90;
|
}
|
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
|
tr = tr * flipH;
|
}
|
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
|
tr = tr * flipV;
|
}
|
return inverse(tr);
|
}
|
|
bool BufferLayer::isSkipRenderEngine() const {
|
const sp<GraphicBuffer>& activeBuffer(mActiveBuffer);
|
static int isHomlet = -1;
|
if (isHomlet < 0) {
|
char value[PROPERTY_VALUE_MAX];
|
property_get("ro.product.product.platform", value, "0");
|
ALOGD("isSkipRenderEngine platform=%s", value);
|
if (strcmp("homlet", value))
|
isHomlet = 0;
|
else
|
isHomlet = 1;
|
}
|
if (isHomlet != 1) {
|
return false;
|
}
|
if (activeBuffer != 0) {
|
int usage = activeBuffer->getUsage();
|
int format = activeBuffer->getPixelFormat();
|
|
// Skip GPU composition for afbc buffer and vendor specific format buffer.
|
return (usage & GRALLOC_USAGE_AFBC_MODE)
|
|| (format == HAL_PIXEL_FORMAT_AW_MB420)
|
|| (format == HAL_PIXEL_FORMAT_AW_MB411)
|
|| (format == HAL_PIXEL_FORMAT_AW_MB422)
|
|| (format == HAL_PIXEL_FORMAT_AW_I420_10bit)
|
|| (format == HAL_PIXEL_FORMAT_AW_P010_VU)
|
|| (format == HAL_PIXEL_FORMAT_AW_P210_VU);
|
}
|
else
|
return false;
|
}
|
|
bool BufferLayer::prepareClientLayer(const RenderArea& renderArea, const Region& clip,
|
bool useIdentityTransform, Region& clearRegion,
|
const bool supportProtectedContent,
|
renderengine::LayerSettings& layer) {
|
ATRACE_CALL();
|
Layer::prepareClientLayer(renderArea, clip, useIdentityTransform, clearRegion,
|
supportProtectedContent, layer);
|
if (CC_UNLIKELY(mActiveBuffer == 0)) {
|
// the texture has not been created yet, this Layer has
|
// in fact never been drawn into. This happens frequently with
|
// SurfaceView because the WindowManager can't know when the client
|
// has drawn the first time.
|
|
// If there is nothing under us, we paint the screen in black, otherwise
|
// we just skip this update.
|
|
// figure out if there is something below us
|
Region under;
|
bool finished = false;
|
mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) {
|
if (finished || layer == static_cast<BufferLayer const*>(this)) {
|
finished = true;
|
return;
|
}
|
under.orSelf(layer->visibleRegion);
|
});
|
// if not everything below us is covered, we plug the holes!
|
Region holes(clip.subtract(under));
|
if (!holes.isEmpty()) {
|
clearRegion.orSelf(holes);
|
}
|
return false;
|
}
|
bool blackOutLayer =
|
(isProtected() && !supportProtectedContent) || (isSecure() && !renderArea.isSecure())
|
|| isSkipRenderEngine();
|
|
const State& s(getDrawingState());
|
if (!blackOutLayer) {
|
layer.source.buffer.buffer = mActiveBuffer;
|
layer.source.buffer.isOpaque = isOpaque(s);
|
layer.source.buffer.fence = mActiveBufferFence;
|
layer.source.buffer.textureName = mTextureName;
|
layer.source.buffer.usePremultipliedAlpha = getPremultipledAlpha();
|
layer.source.buffer.isY410BT2020 = isHdrY410();
|
// TODO: we could be more subtle with isFixedSize()
|
const bool useFiltering = needsFiltering(renderArea.getDisplayDevice()) ||
|
renderArea.needsFiltering() || isFixedSize();
|
|
// Query the texture matrix given our current filtering mode.
|
float textureMatrix[16];
|
setFilteringEnabled(useFiltering);
|
getDrawingTransformMatrix(textureMatrix);
|
|
if (getTransformToDisplayInverse()) {
|
/*
|
* the code below applies the primary display's inverse transform to
|
* the texture transform
|
*/
|
uint32_t transform = DisplayDevice::getPrimaryDisplayOrientationTransform();
|
mat4 tr = inverseOrientation(transform);
|
|
/**
|
* TODO(b/36727915): This is basically a hack.
|
*
|
* Ensure that regardless of the parent transformation,
|
* this buffer is always transformed from native display
|
* orientation to display orientation. For example, in the case
|
* of a camera where the buffer remains in native orientation,
|
* we want the pixels to always be upright.
|
*/
|
sp<Layer> p = mDrawingParent.promote();
|
if (p != nullptr) {
|
const auto parentTransform = p->getTransform();
|
tr = tr * inverseOrientation(parentTransform.getOrientation());
|
}
|
|
// and finally apply it to the original texture matrix
|
const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
|
memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
|
}
|
|
const Rect win{getBounds()};
|
float bufferWidth = getBufferSize(s).getWidth();
|
float bufferHeight = getBufferSize(s).getHeight();
|
|
// BufferStateLayers can have a "buffer size" of [0, 0, -1, -1] when no display frame has
|
// been set and there is no parent layer bounds. In that case, the scale is meaningless so
|
// ignore them.
|
if (!getBufferSize(s).isValid()) {
|
bufferWidth = float(win.right) - float(win.left);
|
bufferHeight = float(win.bottom) - float(win.top);
|
}
|
|
const float scaleHeight = (float(win.bottom) - float(win.top)) / bufferHeight;
|
const float scaleWidth = (float(win.right) - float(win.left)) / bufferWidth;
|
const float translateY = float(win.top) / bufferHeight;
|
const float translateX = float(win.left) / bufferWidth;
|
|
// Flip y-coordinates because GLConsumer expects OpenGL convention.
|
mat4 tr = mat4::translate(vec4(.5, .5, 0, 1)) * mat4::scale(vec4(1, -1, 1, 1)) *
|
mat4::translate(vec4(-.5, -.5, 0, 1)) *
|
mat4::translate(vec4(translateX, translateY, 0, 1)) *
|
mat4::scale(vec4(scaleWidth, scaleHeight, 1.0, 1.0));
|
|
layer.source.buffer.useTextureFiltering = useFiltering;
|
layer.source.buffer.textureTransform = mat4(static_cast<const float*>(textureMatrix)) * tr;
|
} else {
|
// If layer is blacked out, force alpha to 1 so that we draw a black color
|
// layer.
|
layer.source.buffer.buffer = nullptr;
|
layer.alpha = 1.0;
|
}
|
|
return true;
|
}
|
|
bool BufferLayer::isHdrY410() const {
|
// pixel format is HDR Y410 masquerading as RGBA_1010102
|
return (mCurrentDataSpace == ui::Dataspace::BT2020_ITU_PQ &&
|
getDrawingApi() == NATIVE_WINDOW_API_MEDIA &&
|
mActiveBuffer->getPixelFormat() == HAL_PIXEL_FORMAT_RGBA_1010102);
|
}
|
|
void BufferLayer::setPerFrameData(const sp<const DisplayDevice>& displayDevice,
|
const ui::Transform& transform, const Rect& viewport,
|
int32_t supportedPerFrameMetadata,
|
const ui::Dataspace targetDataspace) {
|
RETURN_IF_NO_HWC_LAYER(displayDevice);
|
|
// Apply this display's projection's viewport to the visible region
|
// before giving it to the HWC HAL.
|
Region visible = transform.transform(visibleRegion.intersect(viewport));
|
|
const auto outputLayer = findOutputLayerForDisplay(displayDevice);
|
LOG_FATAL_IF(!outputLayer || !outputLayer->getState().hwc);
|
|
auto& hwcLayer = (*outputLayer->getState().hwc).hwcLayer;
|
auto error = hwcLayer->setVisibleRegion(visible);
|
if (error != HWC2::Error::None) {
|
ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(),
|
to_string(error).c_str(), static_cast<int32_t>(error));
|
visible.dump(LOG_TAG);
|
}
|
outputLayer->editState().visibleRegion = visible;
|
|
auto& layerCompositionState = getCompositionLayer()->editState().frontEnd;
|
|
error = hwcLayer->setSurfaceDamage(surfaceDamageRegion);
|
if (error != HWC2::Error::None) {
|
ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(),
|
to_string(error).c_str(), static_cast<int32_t>(error));
|
surfaceDamageRegion.dump(LOG_TAG);
|
}
|
layerCompositionState.surfaceDamage = surfaceDamageRegion;
|
|
// Sideband layers
|
if (layerCompositionState.sidebandStream.get()) {
|
setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::SIDEBAND);
|
ALOGV("[%s] Requesting Sideband composition", mName.string());
|
error = hwcLayer->setSidebandStream(layerCompositionState.sidebandStream->handle());
|
if (error != HWC2::Error::None) {
|
ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", mName.string(),
|
layerCompositionState.sidebandStream->handle(), to_string(error).c_str(),
|
static_cast<int32_t>(error));
|
}
|
layerCompositionState.compositionType = Hwc2::IComposerClient::Composition::SIDEBAND;
|
return;
|
}
|
|
// Device or Cursor layers
|
if (mPotentialCursor) {
|
ALOGV("[%s] Requesting Cursor composition", mName.string());
|
setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::CURSOR);
|
} else {
|
ALOGV("[%s] Requesting Device composition", mName.string());
|
setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::DEVICE);
|
}
|
|
ui::Dataspace dataspace = isColorSpaceAgnostic() && targetDataspace != ui::Dataspace::UNKNOWN
|
? targetDataspace
|
: mCurrentDataSpace;
|
error = hwcLayer->setDataspace(dataspace);
|
if (error != HWC2::Error::None) {
|
ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), dataspace,
|
to_string(error).c_str(), static_cast<int32_t>(error));
|
}
|
|
const HdrMetadata& metadata = getDrawingHdrMetadata();
|
error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata, metadata);
|
if (error != HWC2::Error::None && error != HWC2::Error::Unsupported) {
|
ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", mName.string(),
|
to_string(error).c_str(), static_cast<int32_t>(error));
|
}
|
|
error = hwcLayer->setColorTransform(getColorTransform());
|
if (error == HWC2::Error::Unsupported) {
|
// If per layer color transform is not supported, we use GPU composition.
|
setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::CLIENT);
|
} else if (error != HWC2::Error::None) {
|
ALOGE("[%s] Failed to setColorTransform: %s (%d)", mName.string(),
|
to_string(error).c_str(), static_cast<int32_t>(error));
|
}
|
layerCompositionState.dataspace = mCurrentDataSpace;
|
layerCompositionState.colorTransform = getColorTransform();
|
layerCompositionState.hdrMetadata = metadata;
|
|
setHwcLayerBuffer(displayDevice);
|
}
|
|
bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) {
|
if (mBufferLatched) {
|
Mutex::Autolock lock(mFrameEventHistoryMutex);
|
mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime);
|
}
|
mRefreshPending = false;
|
return hasReadyFrame();
|
}
|
|
bool BufferLayer::onPostComposition(const std::optional<DisplayId>& displayId,
|
const std::shared_ptr<FenceTime>& glDoneFence,
|
const std::shared_ptr<FenceTime>& presentFence,
|
const CompositorTiming& compositorTiming) {
|
// mFrameLatencyNeeded is true when a new frame was latched for the
|
// composition.
|
if (!mFrameLatencyNeeded) return false;
|
|
// Update mFrameEventHistory.
|
{
|
Mutex::Autolock lock(mFrameEventHistoryMutex);
|
mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence,
|
compositorTiming);
|
}
|
|
// Update mFrameTracker.
|
nsecs_t desiredPresentTime = getDesiredPresentTime();
|
mFrameTracker.setDesiredPresentTime(desiredPresentTime);
|
|
const int32_t layerID = getSequence();
|
mFlinger->mTimeStats->setDesiredTime(layerID, mCurrentFrameNumber, desiredPresentTime);
|
|
std::shared_ptr<FenceTime> frameReadyFence = getCurrentFenceTime();
|
if (frameReadyFence->isValid()) {
|
mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
|
} else {
|
// There was no fence for this frame, so assume that it was ready
|
// to be presented at the desired present time.
|
mFrameTracker.setFrameReadyTime(desiredPresentTime);
|
}
|
|
if (presentFence->isValid()) {
|
mFlinger->mTimeStats->setPresentFence(layerID, mCurrentFrameNumber, presentFence);
|
mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence));
|
} else if (displayId && mFlinger->getHwComposer().isConnected(*displayId)) {
|
// The HWC doesn't support present fences, so use the refresh
|
// timestamp instead.
|
const nsecs_t actualPresentTime = mFlinger->getHwComposer().getRefreshTimestamp(*displayId);
|
mFlinger->mTimeStats->setPresentTime(layerID, mCurrentFrameNumber, actualPresentTime);
|
mFrameTracker.setActualPresentTime(actualPresentTime);
|
}
|
|
mFrameTracker.advanceFrame();
|
mFrameLatencyNeeded = false;
|
return true;
|
}
|
|
bool BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) {
|
ATRACE_CALL();
|
|
bool refreshRequired = latchSidebandStream(recomputeVisibleRegions);
|
|
if (refreshRequired) {
|
return refreshRequired;
|
}
|
|
if (!hasReadyFrame()) {
|
return false;
|
}
|
|
// if we've already called updateTexImage() without going through
|
// a composition step, we have to skip this layer at this point
|
// because we cannot call updateTeximage() without a corresponding
|
// compositionComplete() call.
|
// we'll trigger an update in onPreComposition().
|
if (mRefreshPending) {
|
return false;
|
}
|
|
// If the head buffer's acquire fence hasn't signaled yet, return and
|
// try again later
|
if (!fenceHasSignaled()) {
|
ATRACE_NAME("!fenceHasSignaled()");
|
mFlinger->signalLayerUpdate();
|
return false;
|
}
|
|
// Capture the old state of the layer for comparisons later
|
const State& s(getDrawingState());
|
const bool oldOpacity = isOpaque(s);
|
sp<GraphicBuffer> oldBuffer = mActiveBuffer;
|
|
if (!allTransactionsSignaled()) {
|
mFlinger->setTransactionFlags(eTraversalNeeded);
|
return false;
|
}
|
|
status_t err = updateTexImage(recomputeVisibleRegions, latchTime);
|
if (err != NO_ERROR) {
|
return false;
|
}
|
|
err = updateActiveBuffer();
|
if (err != NO_ERROR) {
|
return false;
|
}
|
|
mBufferLatched = true;
|
|
err = updateFrameNumber(latchTime);
|
if (err != NO_ERROR) {
|
return false;
|
}
|
|
mRefreshPending = true;
|
mFrameLatencyNeeded = true;
|
if (oldBuffer == nullptr) {
|
// the first time we receive a buffer, we need to trigger a
|
// geometry invalidation.
|
recomputeVisibleRegions = true;
|
}
|
|
ui::Dataspace dataSpace = getDrawingDataSpace();
|
// translate legacy dataspaces to modern dataspaces
|
switch (dataSpace) {
|
case ui::Dataspace::SRGB:
|
dataSpace = ui::Dataspace::V0_SRGB;
|
break;
|
case ui::Dataspace::SRGB_LINEAR:
|
dataSpace = ui::Dataspace::V0_SRGB_LINEAR;
|
break;
|
case ui::Dataspace::JFIF:
|
dataSpace = ui::Dataspace::V0_JFIF;
|
break;
|
case ui::Dataspace::BT601_625:
|
dataSpace = ui::Dataspace::V0_BT601_625;
|
break;
|
case ui::Dataspace::BT601_525:
|
dataSpace = ui::Dataspace::V0_BT601_525;
|
break;
|
case ui::Dataspace::BT709:
|
dataSpace = ui::Dataspace::V0_BT709;
|
break;
|
default:
|
break;
|
}
|
mCurrentDataSpace = dataSpace;
|
|
Rect crop(getDrawingCrop());
|
const uint32_t transform(getDrawingTransform());
|
const uint32_t scalingMode(getDrawingScalingMode());
|
const bool transformToDisplayInverse(getTransformToDisplayInverse());
|
if ((crop != mCurrentCrop) || (transform != mCurrentTransform) ||
|
(scalingMode != mCurrentScalingMode) ||
|
(transformToDisplayInverse != mTransformToDisplayInverse)) {
|
mCurrentCrop = crop;
|
mCurrentTransform = transform;
|
mCurrentScalingMode = scalingMode;
|
mTransformToDisplayInverse = transformToDisplayInverse;
|
recomputeVisibleRegions = true;
|
}
|
|
if (oldBuffer != nullptr) {
|
uint32_t bufWidth = mActiveBuffer->getWidth();
|
uint32_t bufHeight = mActiveBuffer->getHeight();
|
if (bufWidth != uint32_t(oldBuffer->width) || bufHeight != uint32_t(oldBuffer->height)) {
|
recomputeVisibleRegions = true;
|
}
|
}
|
|
if (oldOpacity != isOpaque(s)) {
|
recomputeVisibleRegions = true;
|
}
|
|
// Remove any sync points corresponding to the buffer which was just
|
// latched
|
{
|
Mutex::Autolock lock(mLocalSyncPointMutex);
|
auto point = mLocalSyncPoints.begin();
|
while (point != mLocalSyncPoints.end()) {
|
if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) {
|
// This sync point must have been added since we started
|
// latching. Don't drop it yet.
|
++point;
|
continue;
|
}
|
|
if ((*point)->getFrameNumber() <= mCurrentFrameNumber) {
|
std::stringstream ss;
|
ss << "Dropping sync point " << (*point)->getFrameNumber();
|
ATRACE_NAME(ss.str().c_str());
|
point = mLocalSyncPoints.erase(point);
|
} else {
|
++point;
|
}
|
}
|
}
|
|
return true;
|
}
|
|
// transaction
|
void BufferLayer::notifyAvailableFrames() {
|
const auto headFrameNumber = getHeadFrameNumber();
|
const bool headFenceSignaled = fenceHasSignaled();
|
const bool presentTimeIsCurrent = framePresentTimeIsCurrent();
|
Mutex::Autolock lock(mLocalSyncPointMutex);
|
for (auto& point : mLocalSyncPoints) {
|
if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled &&
|
presentTimeIsCurrent) {
|
point->setFrameAvailable();
|
sp<Layer> requestedSyncLayer = point->getRequestedSyncLayer();
|
if (requestedSyncLayer) {
|
// Need to update the transaction flag to ensure the layer's pending transaction
|
// gets applied.
|
requestedSyncLayer->setTransactionFlags(eTransactionNeeded);
|
}
|
}
|
}
|
}
|
|
bool BufferLayer::hasReadyFrame() const {
|
return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh();
|
}
|
|
uint32_t BufferLayer::getEffectiveScalingMode() const {
|
if (mOverrideScalingMode >= 0) {
|
return mOverrideScalingMode;
|
}
|
|
return mCurrentScalingMode;
|
}
|
|
bool BufferLayer::isProtected() const {
|
const sp<GraphicBuffer>& buffer(mActiveBuffer);
|
return (buffer != 0) && (buffer->getUsage() & GRALLOC_USAGE_PROTECTED);
|
}
|
|
bool BufferLayer::latchUnsignaledBuffers() {
|
static bool propertyLoaded = false;
|
static bool latch = false;
|
static std::mutex mutex;
|
std::lock_guard<std::mutex> lock(mutex);
|
if (!propertyLoaded) {
|
char value[PROPERTY_VALUE_MAX] = {};
|
property_get("debug.sf.latch_unsignaled", value, "0");
|
latch = atoi(value);
|
propertyLoaded = true;
|
}
|
return latch;
|
}
|
|
// h/w composer set-up
|
bool BufferLayer::allTransactionsSignaled() {
|
auto headFrameNumber = getHeadFrameNumber();
|
bool matchingFramesFound = false;
|
bool allTransactionsApplied = true;
|
Mutex::Autolock lock(mLocalSyncPointMutex);
|
|
for (auto& point : mLocalSyncPoints) {
|
if (point->getFrameNumber() > headFrameNumber) {
|
break;
|
}
|
matchingFramesFound = true;
|
|
if (!point->frameIsAvailable()) {
|
// We haven't notified the remote layer that the frame for
|
// this point is available yet. Notify it now, and then
|
// abort this attempt to latch.
|
point->setFrameAvailable();
|
allTransactionsApplied = false;
|
break;
|
}
|
|
allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied();
|
}
|
return !matchingFramesFound || allTransactionsApplied;
|
}
|
|
// As documented in libhardware header, formats in the range
|
// 0x100 - 0x1FF are specific to the HAL implementation, and
|
// are known to have no alpha channel
|
// TODO: move definition for device-specific range into
|
// hardware.h, instead of using hard-coded values here.
|
#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
|
|
bool BufferLayer::getOpacityForFormat(uint32_t format) {
|
if (HARDWARE_IS_DEVICE_FORMAT(format)) {
|
return true;
|
}
|
switch (format) {
|
case HAL_PIXEL_FORMAT_RGBA_8888:
|
case HAL_PIXEL_FORMAT_BGRA_8888:
|
case HAL_PIXEL_FORMAT_RGBA_FP16:
|
case HAL_PIXEL_FORMAT_RGBA_1010102:
|
return false;
|
}
|
// in all other case, we have no blending (also for unknown formats)
|
return true;
|
}
|
|
bool BufferLayer::needsFiltering(const sp<const DisplayDevice>& displayDevice) const {
|
// If we are not capturing based on the state of a known display device, we
|
// only return mNeedsFiltering
|
if (displayDevice == nullptr) {
|
return mNeedsFiltering;
|
}
|
|
const auto outputLayer = findOutputLayerForDisplay(displayDevice);
|
if (outputLayer == nullptr) {
|
return mNeedsFiltering;
|
}
|
|
const auto& compositionState = outputLayer->getState();
|
const auto displayFrame = compositionState.displayFrame;
|
const auto sourceCrop = compositionState.sourceCrop;
|
return mNeedsFiltering || sourceCrop.getHeight() != displayFrame.getHeight() ||
|
sourceCrop.getWidth() != displayFrame.getWidth();
|
}
|
|
uint64_t BufferLayer::getHeadFrameNumber() const {
|
if (hasFrameUpdate()) {
|
return getFrameNumber();
|
} else {
|
return mCurrentFrameNumber;
|
}
|
}
|
|
Rect BufferLayer::getBufferSize(const State& s) const {
|
// If we have a sideband stream, or we are scaling the buffer then return the layer size since
|
// we cannot determine the buffer size.
|
if ((s.sidebandStream != nullptr) ||
|
(getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
|
return Rect(getActiveWidth(s), getActiveHeight(s));
|
}
|
|
if (mActiveBuffer == nullptr) {
|
return Rect::INVALID_RECT;
|
}
|
|
uint32_t bufWidth = mActiveBuffer->getWidth();
|
uint32_t bufHeight = mActiveBuffer->getHeight();
|
|
// Undo any transformations on the buffer and return the result.
|
if (mCurrentTransform & ui::Transform::ROT_90) {
|
std::swap(bufWidth, bufHeight);
|
}
|
|
if (getTransformToDisplayInverse()) {
|
uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform();
|
if (invTransform & ui::Transform::ROT_90) {
|
std::swap(bufWidth, bufHeight);
|
}
|
}
|
|
return Rect(bufWidth, bufHeight);
|
}
|
|
std::shared_ptr<compositionengine::Layer> BufferLayer::getCompositionLayer() const {
|
return mCompositionLayer;
|
}
|
|
FloatRect BufferLayer::computeSourceBounds(const FloatRect& parentBounds) const {
|
const State& s(getDrawingState());
|
|
// If we have a sideband stream, or we are scaling the buffer then return the layer size since
|
// we cannot determine the buffer size.
|
if ((s.sidebandStream != nullptr) ||
|
(getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
|
return FloatRect(0, 0, getActiveWidth(s), getActiveHeight(s));
|
}
|
|
if (mActiveBuffer == nullptr) {
|
return parentBounds;
|
}
|
|
uint32_t bufWidth = mActiveBuffer->getWidth();
|
uint32_t bufHeight = mActiveBuffer->getHeight();
|
|
// Undo any transformations on the buffer and return the result.
|
if (mCurrentTransform & ui::Transform::ROT_90) {
|
std::swap(bufWidth, bufHeight);
|
}
|
|
if (getTransformToDisplayInverse()) {
|
uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform();
|
if (invTransform & ui::Transform::ROT_90) {
|
std::swap(bufWidth, bufHeight);
|
}
|
}
|
|
return FloatRect(0, 0, bufWidth, bufHeight);
|
}
|
|
} // namespace android
|
|
#if defined(__gl_h_)
|
#error "don't include gl/gl.h in this file"
|
#endif
|
|
#if defined(__gl2_h_)
|
#error "don't include gl2/gl2.h in this file"
|
#endif
|