lin
2025-08-01 633231e833e21d5b8b1c00cb15aedb62b3b78e8f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/*
 * Copyright (C) 2010 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
 
#ifndef ANDROID_SENSOR_SERVICE_H
#define ANDROID_SENSOR_SERVICE_H
 
#include "SensorList.h"
#include "RecentEventLogger.h"
 
#include <binder/AppOpsManager.h>
#include <binder/BinderService.h>
#include <binder/IUidObserver.h>
#include <cutils/compiler.h>
#include <cutils/multiuser.h>
#include <sensor/ISensorServer.h>
#include <sensor/ISensorEventConnection.h>
#include <sensor/Sensor.h>
#include "android/hardware/BnSensorPrivacyListener.h"
 
#include <utils/AndroidThreads.h>
#include <utils/KeyedVector.h>
#include <utils/Looper.h>
#include <utils/SortedVector.h>
#include <utils/String8.h>
#include <utils/Vector.h>
#include <utils/threads.h>
 
#include <stdint.h>
#include <sys/types.h>
#include <unordered_map>
#include <unordered_set>
 
#if __clang__
// Clang warns about SensorEventConnection::dump hiding BBinder::dump. The cause isn't fixable
// without changing the API, so let's tell clang this is indeed intentional.
#pragma clang diagnostic ignored "-Woverloaded-virtual"
#endif
 
// ---------------------------------------------------------------------------
#define IGNORE_HARDWARE_FUSION  false
#define DEBUG_CONNECTIONS   false
// Max size is 100 KB which is enough to accept a batch of about 1000 events.
#define MAX_SOCKET_BUFFER_SIZE_BATCHED (100 * 1024)
// For older HALs which don't support batching, use a smaller socket buffer size.
#define SOCKET_BUFFER_SIZE_NON_BATCHED (4 * 1024)
 
#define SENSOR_REGISTRATIONS_BUF_SIZE 200
 
namespace android {
// ---------------------------------------------------------------------------
class SensorInterface;
 
class SensorService :
        public BinderService<SensorService>,
        public BnSensorServer,
        protected Thread
{
    // nested class/struct for internal use
    class SensorEventConnection;
    class SensorDirectConnection;
 
public:
    void cleanupConnection(SensorEventConnection* connection);
    void cleanupConnection(SensorDirectConnection* c);
 
    status_t enable(const sp<SensorEventConnection>& connection, int handle,
                    nsecs_t samplingPeriodNs,  nsecs_t maxBatchReportLatencyNs, int reservedFlags,
                    const String16& opPackageName);
 
    status_t disable(const sp<SensorEventConnection>& connection, int handle);
 
    status_t setEventRate(const sp<SensorEventConnection>& connection, int handle, nsecs_t ns,
                          const String16& opPackageName);
 
    status_t flushSensor(const sp<SensorEventConnection>& connection,
                         const String16& opPackageName);
 
 
    virtual status_t shellCommand(int in, int out, int err, Vector<String16>& args);
 
private:
    friend class BinderService<SensorService>;
 
    // nested class/struct for internal use
    class SensorRecord;
    class SensorEventAckReceiver;
    class SensorRegistrationInfo;
 
    // If accessing a sensor we need to make sure the UID has access to it. If
    // the app UID is idle then it cannot access sensors and gets no trigger
    // events, no on-change events, flush event behavior does not change, and
    // recurring events are the same as the first one delivered in idle state
    // emulating no sensor change. As soon as the app UID transitions to an
    // active state we will start reporting events as usual and vise versa. This
    // approach transparently handles observing sensors while the app UID transitions
    // between idle/active state avoiding to get stuck in a state receiving sensor
    // data while idle or not receiving sensor data while active.
    class UidPolicy : public BnUidObserver {
        public:
            explicit UidPolicy(wp<SensorService> service)
                    : mService(service) {}
            void registerSelf();
            void unregisterSelf();
 
            bool isUidActive(uid_t uid);
 
            void onUidGone(uid_t uid, bool disabled);
            void onUidActive(uid_t uid);
            void onUidIdle(uid_t uid, bool disabled);
            void onUidStateChanged(uid_t uid __unused, int32_t procState __unused,
                                   int64_t procStateSeq __unused) {}
 
            void addOverrideUid(uid_t uid, bool active);
            void removeOverrideUid(uid_t uid);
        private:
            bool isUidActiveLocked(uid_t uid);
            void updateOverrideUid(uid_t uid, bool active, bool insert);
 
            Mutex mUidLock;
            wp<SensorService> mService;
            std::unordered_set<uid_t> mActiveUids;
            std::unordered_map<uid_t, bool> mOverrideUids;
    };
 
    // Sensor privacy allows a user to disable access to all sensors on the device. When
    // enabled sensor privacy will prevent all apps, including active apps, from accessing
    // sensors, they will not receive trigger nor on-change events, flush event behavior
    // does not change, and recurring events are the same as the first one delivered when
    // sensor privacy was enabled. All sensor direct connections will be stopped as well
    // and new direct connections will not be allowed while sensor privacy is enabled.
    // Once sensor privacy is disabled access to sensors will be restored for active
    // apps, previously stopped direct connections will be restarted, and new direct
    // connections will be allowed again.
    class SensorPrivacyPolicy : public hardware::BnSensorPrivacyListener {
        public:
            explicit SensorPrivacyPolicy(wp<SensorService> service) : mService(service) {}
            void registerSelf();
            void unregisterSelf();
 
            bool isSensorPrivacyEnabled();
 
            binder::Status onSensorPrivacyChanged(bool enabled);
 
        private:
            wp<SensorService> mService;
            std::atomic_bool mSensorPrivacyEnabled;
    };
 
    enum Mode {
       // The regular operating mode where any application can register/unregister/call flush on
       // sensors.
       NORMAL = 0,
       // This mode is only used for testing purposes. Not all HALs support this mode. In this mode,
       // the HAL ignores the sensor data provided by physical sensors and accepts the data that is
       // injected from the SensorService as if it were the real sensor data. This mode is primarily
       // used for testing various algorithms like vendor provided SensorFusion, Step Counter and
       // Step Detector etc. Typically in this mode, there will be a client (a
       // SensorEventConnection) which will be injecting sensor data into the HAL. Normal apps can
       // unregister and register for any sensor that supports injection. Registering to sensors
       // that do not support injection will give an error.  TODO(aakella) : Allow exactly one
       // client to inject sensor data at a time.
       DATA_INJECTION = 1,
       // This mode is used only for testing sensors. Each sensor can be tested in isolation with
       // the required sampling_rate and maxReportLatency parameters without having to think about
       // the data rates requested by other applications. End user devices are always expected to be
       // in NORMAL mode. When this mode is first activated, all active sensors from all connections
       // are disabled. Calling flush() will return an error. In this mode, only the requests from
       // selected apps whose package names are whitelisted are allowed (typically CTS apps).  Only
       // these apps can register/unregister/call flush() on sensors. If SensorService switches to
       // NORMAL mode again, all sensors that were previously registered to are activated with the
       // corresponding paramaters if the application hasn't unregistered for sensors in the mean
       // time.  NOTE: Non whitelisted app whose sensors were previously deactivated may still
       // receive events if a whitelisted app requests data from the same sensor.
       RESTRICTED = 2
 
      // State Transitions supported.
      //     RESTRICTED   <---  NORMAL   ---> DATA_INJECTION
      //                  --->           <---
 
      // Shell commands to switch modes in SensorService.
      // 1) Put SensorService in RESTRICTED mode with packageName .cts. If it is already in
      // restricted mode it is treated as a NO_OP (and packageName is NOT changed).
      //
      //     $ adb shell dumpsys sensorservice restrict .cts.
      //
      // 2) Put SensorService in DATA_INJECTION mode with packageName .xts. If it is already in
      // data_injection mode it is treated as a NO_OP (and packageName is NOT changed).
      //
      //     $ adb shell dumpsys sensorservice data_injection .xts.
      //
      // 3) Reset sensorservice back to NORMAL mode.
      //     $ adb shell dumpsys sensorservice enable
    };
 
    static const char* WAKE_LOCK_NAME;
    static char const* getServiceName() ANDROID_API { return "sensorservice"; }
    SensorService() ANDROID_API;
    virtual ~SensorService();
 
    virtual void onFirstRef();
 
    // Thread interface
    virtual bool threadLoop();
 
    // ISensorServer interface
    virtual Vector<Sensor> getSensorList(const String16& opPackageName);
    virtual Vector<Sensor> getDynamicSensorList(const String16& opPackageName);
    virtual sp<ISensorEventConnection> createSensorEventConnection(
            const String8& packageName,
            int requestedMode, const String16& opPackageName);
    virtual int isDataInjectionEnabled();
    virtual sp<ISensorEventConnection> createSensorDirectConnection(const String16& opPackageName,
            uint32_t size, int32_t type, int32_t format, const native_handle *resource);
    virtual int setOperationParameter(
            int32_t handle, int32_t type, const Vector<float> &floats, const Vector<int32_t> &ints);
    virtual status_t dump(int fd, const Vector<String16>& args);
    String8 getSensorName(int handle) const;
    bool isVirtualSensor(int handle) const;
    sp<SensorInterface> getSensorInterfaceFromHandle(int handle) const;
    bool isWakeUpSensor(int type) const;
    void recordLastValueLocked(sensors_event_t const* buffer, size_t count);
    static void sortEventBuffer(sensors_event_t* buffer, size_t count);
    const Sensor& registerSensor(SensorInterface* sensor,
                                 bool isDebug = false, bool isVirtual = false);
    const Sensor& registerVirtualSensor(SensorInterface* sensor, bool isDebug = false);
    const Sensor& registerDynamicSensorLocked(SensorInterface* sensor, bool isDebug = false);
    bool unregisterDynamicSensorLocked(int handle);
    status_t cleanupWithoutDisable(const sp<SensorEventConnection>& connection, int handle);
    status_t cleanupWithoutDisableLocked(const sp<SensorEventConnection>& connection, int handle);
    void cleanupAutoDisabledSensorLocked(const sp<SensorEventConnection>& connection,
            sensors_event_t const* buffer, const int count);
    static bool canAccessSensor(const Sensor& sensor, const char* operation,
            const String16& opPackageName);
    static bool hasPermissionForSensor(const Sensor& sensor);
    static int getTargetSdkVersion(const String16& opPackageName);
    // SensorService acquires a partial wakelock for delivering events from wake up sensors. This
    // method checks whether all the events from these wake up sensors have been delivered to the
    // corresponding applications, if yes the wakelock is released.
    void checkWakeLockState();
    void checkWakeLockStateLocked();
    bool isWakeLockAcquired();
    bool isWakeUpSensorEvent(const sensors_event_t& event) const;
 
    sp<Looper> getLooper() const;
 
    // Reset mWakeLockRefCounts for all SensorEventConnections to zero. This may happen if
    // SensorService did not receive any acknowledgements from apps which have registered for
    // wake_up sensors.
    void resetAllWakeLockRefCounts();
 
    // Acquire or release wake_lock. If wake_lock is acquired, set the timeout in the looper to 5
    // seconds and wake the looper.
    void setWakeLockAcquiredLocked(bool acquire);
 
    // Send events from the event cache for this particular connection.
    void sendEventsFromCache(const sp<SensorEventConnection>& connection);
 
    // Promote all weak referecences in mActiveConnections vector to strong references and add them
    // to the output vector.
    void populateActiveConnections( SortedVector< sp<SensorEventConnection> >* activeConnections);
 
    // If SensorService is operating in RESTRICTED mode, only select whitelisted packages are
    // allowed to register for or call flush on sensors. Typically only cts test packages are
    // allowed.
    bool isWhiteListedPackage(const String8& packageName);
    bool isOperationPermitted(const String16& opPackageName);
 
    // Reset the state of SensorService to NORMAL mode.
    status_t resetToNormalMode();
    status_t resetToNormalModeLocked();
 
    // Transforms the UUIDs for all the sensors into proper IDs.
    void makeUuidsIntoIdsForSensorList(Vector<Sensor> &sensorList) const;
    // Gets the appropriate ID from the given UUID.
    int32_t getIdFromUuid(const Sensor::uuid_t &uuid) const;
    // Either read from storage or create a new one.
    static bool initializeHmacKey();
 
    // Enable SCHED_FIFO priority for thread
    void enableSchedFifoMode();
 
    // Sets whether the given UID can get sensor data
    void setSensorAccess(uid_t uid, bool hasAccess);
 
    // Overrides the UID state as if it is idle
    status_t handleSetUidState(Vector<String16>& args, int err);
    // Clears the override for the UID state
    status_t handleResetUidState(Vector<String16>& args, int err);
    // Gets the UID state
    status_t handleGetUidState(Vector<String16>& args, int out, int err);
    // Prints the shell command help
    status_t printHelp(int out);
 
    // temporarily stops all active direct connections and disables all sensors
    void disableAllSensors();
    void disableAllSensorsLocked();
    // restarts the previously stopped direct connections and enables all sensors
    void enableAllSensors();
    void enableAllSensorsLocked();
 
    static uint8_t sHmacGlobalKey[128];
    static bool sHmacGlobalKeyIsValid;
 
    SensorServiceUtil::SensorList mSensors;
    status_t mInitCheck;
 
    // Socket buffersize used to initialize BitTube. This size depends on whether batching is
    // supported or not.
    uint32_t mSocketBufferSize;
    sp<Looper> mLooper;
    sp<SensorEventAckReceiver> mAckReceiver;
 
    // protected by mLock
    mutable Mutex mLock;
    DefaultKeyedVector<int, SensorRecord*> mActiveSensors;
    std::unordered_set<int> mActiveVirtualSensors;
    SortedVector< wp<SensorEventConnection> > mActiveConnections;
    bool mWakeLockAcquired;
    sensors_event_t *mSensorEventBuffer, *mSensorEventScratch;
    wp<const SensorEventConnection> * mMapFlushEventsToConnections;
    std::unordered_map<int, SensorServiceUtil::RecentEventLogger*> mRecentEvent;
    SortedVector< wp<SensorDirectConnection> > mDirectConnections;
    Mode mCurrentOperatingMode;
 
    // This packagaName is set when SensorService is in RESTRICTED or DATA_INJECTION mode. Only
    // applications with this packageName are allowed to activate/deactivate or call flush on
    // sensors. To run CTS this is can be set to ".cts." and only CTS tests will get access to
    // sensors.
    String8 mWhiteListedPackage;
 
    int mNextSensorRegIndex;
    Vector<SensorRegistrationInfo> mLastNSensorRegistrations;
 
    sp<UidPolicy> mUidPolicy;
    sp<SensorPrivacyPolicy> mSensorPrivacyPolicy;
 
    static AppOpsManager sAppOpsManager;
    static std::map<String16, int> sPackageTargetVersion;
    static Mutex sPackageTargetVersionLock;
};
 
} // namespace android
#endif // ANDROID_SENSOR_SERVICE_H