/*
|
* Copyright (C) 2018 The Android Open Source Project
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
#include "actions/lua-actions.h"
|
#include "utils/base/logging.h"
|
#include "utils/lua-utils.h"
|
|
#ifdef __cplusplus
|
extern "C" {
|
#endif
|
#include "lauxlib.h"
|
#include "lualib.h"
|
#ifdef __cplusplus
|
}
|
#endif
|
|
namespace libtextclassifier3 {
|
namespace {
|
TensorView<float> GetTensorViewForOutput(
|
const TfLiteModelExecutor* model_executor,
|
const tflite::Interpreter* interpreter, int output) {
|
if (output < 0 || model_executor == nullptr || interpreter == nullptr) {
|
return TensorView<float>::Invalid();
|
}
|
return model_executor->OutputView<float>(output, interpreter);
|
}
|
} // namespace
|
|
int LuaActionsSuggestions::TensorViewIterator::Item(
|
const TensorView<float>* tensor, const int64 index,
|
lua_State* state) const {
|
lua_pushnumber(state, tensor->data()[index]);
|
return 1;
|
}
|
|
std::unique_ptr<LuaActionsSuggestions>
|
LuaActionsSuggestions::CreateLuaActionsSuggestions(
|
const std::string& snippet, const Conversation& conversation,
|
const TfLiteModelExecutor* model_executor,
|
const TensorflowLiteModelSpec* model_spec,
|
const tflite::Interpreter* interpreter,
|
const reflection::Schema* actions_entity_data_schema,
|
const reflection::Schema* annotations_entity_data_schema) {
|
auto lua_actions =
|
std::unique_ptr<LuaActionsSuggestions>(new LuaActionsSuggestions(
|
snippet, conversation, model_executor, model_spec, interpreter,
|
actions_entity_data_schema, annotations_entity_data_schema));
|
if (!lua_actions->Initialize()) {
|
TC3_LOG(ERROR)
|
<< "Could not initialize lua environment for actions suggestions.";
|
return nullptr;
|
}
|
return lua_actions;
|
}
|
|
LuaActionsSuggestions::LuaActionsSuggestions(
|
const std::string& snippet, const Conversation& conversation,
|
const TfLiteModelExecutor* model_executor,
|
const TensorflowLiteModelSpec* model_spec,
|
const tflite::Interpreter* interpreter,
|
const reflection::Schema* actions_entity_data_schema,
|
const reflection::Schema* annotations_entity_data_schema)
|
: snippet_(snippet),
|
conversation_(conversation),
|
conversation_iterator_(annotations_entity_data_schema, this),
|
actions_scores_(
|
model_spec == nullptr
|
? TensorView<float>::Invalid()
|
: GetTensorViewForOutput(model_executor, interpreter,
|
model_spec->output_actions_scores())),
|
smart_reply_scores_(
|
model_spec == nullptr
|
? TensorView<float>::Invalid()
|
: GetTensorViewForOutput(model_executor, interpreter,
|
model_spec->output_replies_scores())),
|
sensitivity_score_(model_spec == nullptr
|
? TensorView<float>::Invalid()
|
: GetTensorViewForOutput(
|
model_executor, interpreter,
|
model_spec->output_sensitive_topic_score())),
|
triggering_score_(
|
model_spec == nullptr
|
? TensorView<float>::Invalid()
|
: GetTensorViewForOutput(model_executor, interpreter,
|
model_spec->output_triggering_score())),
|
actions_entity_data_schema_(actions_entity_data_schema),
|
annotations_entity_data_schema_(annotations_entity_data_schema) {}
|
|
bool LuaActionsSuggestions::Initialize() {
|
return RunProtected([this] {
|
LoadDefaultLibraries();
|
|
// Expose conversation message stream.
|
conversation_iterator_.NewIterator("messages",
|
&conversation_.messages, state_);
|
lua_setglobal(state_, "messages");
|
|
// Expose ML model output.
|
lua_newtable(state_);
|
{
|
tensor_iterator_.NewIterator("actions_scores", &actions_scores_,
|
state_);
|
lua_setfield(state_, /*idx=*/-2, "actions_scores");
|
}
|
{
|
tensor_iterator_.NewIterator("reply_scores", &smart_reply_scores_,
|
state_);
|
lua_setfield(state_, /*idx=*/-2, "reply_scores");
|
}
|
{
|
tensor_iterator_.NewIterator("sensitivity", &sensitivity_score_,
|
state_);
|
lua_setfield(state_, /*idx=*/-2, "sensitivity");
|
}
|
{
|
tensor_iterator_.NewIterator("triggering_score",
|
&triggering_score_, state_);
|
lua_setfield(state_, /*idx=*/-2, "triggering_score");
|
}
|
lua_setglobal(state_, "model");
|
|
return LUA_OK;
|
}) == LUA_OK;
|
}
|
|
bool LuaActionsSuggestions::SuggestActions(
|
std::vector<ActionSuggestion>* actions) {
|
if (luaL_loadbuffer(state_, snippet_.data(), snippet_.size(),
|
/*name=*/nullptr) != LUA_OK) {
|
TC3_LOG(ERROR) << "Could not load actions suggestions snippet.";
|
return false;
|
}
|
|
if (lua_pcall(state_, /*nargs=*/0, /*nargs=*/1, /*errfunc=*/0) != LUA_OK) {
|
TC3_LOG(ERROR) << "Could not run actions suggestions snippet.";
|
return false;
|
}
|
|
if (RunProtected(
|
[this, actions] {
|
return ReadActions(actions_entity_data_schema_,
|
annotations_entity_data_schema_, this, actions);
|
},
|
/*num_args=*/1) != LUA_OK) {
|
TC3_LOG(ERROR) << "Could not read lua result.";
|
return false;
|
}
|
return true;
|
}
|
|
} // namespace libtextclassifier3
|