/*
|
* Copyright (C) 2018 The Android Open Source Project
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
#define LOG_TAG "ExtCamDevSsn@3.4"
|
//#define LOG_NDEBUG 0
|
#define ATRACE_TAG ATRACE_TAG_CAMERA
|
#include <log/log.h>
|
|
#include <inttypes.h>
|
#include "ExternalCameraDeviceSession.h"
|
|
#include "android-base/macros.h"
|
#include <utils/Timers.h>
|
#include <utils/Trace.h>
|
#include <linux/videodev2.h>
|
#include <sync/sync.h>
|
|
#define HAVE_JPEG // required for libyuv.h to export MJPEG decode APIs
|
#include <libyuv.h>
|
|
#include <jpeglib.h>
|
|
|
namespace android {
|
namespace hardware {
|
namespace camera {
|
namespace device {
|
namespace V3_4 {
|
namespace implementation {
|
|
namespace {
|
// Size of request/result metadata fast message queue. Change to 0 to always use hwbinder buffer.
|
static constexpr size_t kMetadataMsgQueueSize = 1 << 18 /* 256kB */;
|
|
const int kBadFramesAfterStreamOn = 1; // drop x frames after streamOn to get rid of some initial
|
// bad frames. TODO: develop a better bad frame detection
|
// method
|
constexpr int MAX_RETRY = 15; // Allow retry some ioctl failures a few times to account for some
|
// webcam showing temporarily ioctl failures.
|
constexpr int IOCTL_RETRY_SLEEP_US = 33000; // 33ms * MAX_RETRY = 0.5 seconds
|
|
// Constants for tryLock during dumpstate
|
static constexpr int kDumpLockRetries = 50;
|
static constexpr int kDumpLockSleep = 60000;
|
|
bool tryLock(Mutex& mutex)
|
{
|
bool locked = false;
|
for (int i = 0; i < kDumpLockRetries; ++i) {
|
if (mutex.tryLock() == NO_ERROR) {
|
locked = true;
|
break;
|
}
|
usleep(kDumpLockSleep);
|
}
|
return locked;
|
}
|
|
bool tryLock(std::mutex& mutex)
|
{
|
bool locked = false;
|
for (int i = 0; i < kDumpLockRetries; ++i) {
|
if (mutex.try_lock()) {
|
locked = true;
|
break;
|
}
|
usleep(kDumpLockSleep);
|
}
|
return locked;
|
}
|
|
buffer_handle_t sEmptyBuffer = nullptr;
|
|
} // Anonymous namespace
|
|
// Static instances
|
const int ExternalCameraDeviceSession::kMaxProcessedStream;
|
const int ExternalCameraDeviceSession::kMaxStallStream;
|
HandleImporter ExternalCameraDeviceSession::sHandleImporter;
|
|
ExternalCameraDeviceSession::ExternalCameraDeviceSession(
|
const sp<ICameraDeviceCallback>& callback,
|
const ExternalCameraConfig& cfg,
|
const std::vector<SupportedV4L2Format>& sortedFormats,
|
const CroppingType& croppingType,
|
const common::V1_0::helper::CameraMetadata& chars,
|
const std::string& cameraId,
|
unique_fd v4l2Fd) :
|
mCallback(callback),
|
mCfg(cfg),
|
mCameraCharacteristics(chars),
|
mSupportedFormats(sortedFormats),
|
mCroppingType(croppingType),
|
mCameraId(cameraId),
|
mV4l2Fd(std::move(v4l2Fd)),
|
mMaxThumbResolution(getMaxThumbResolution()),
|
mMaxJpegResolution(getMaxJpegResolution()),
|
mDecoder(NULL){}
|
|
bool ExternalCameraDeviceSession::initialize() {
|
if (mV4l2Fd.get() < 0) {
|
ALOGE("%s: invalid v4l2 device fd %d!", __FUNCTION__, mV4l2Fd.get());
|
return true;
|
}
|
|
struct v4l2_capability capability;
|
int ret = ioctl(mV4l2Fd.get(), VIDIOC_QUERYCAP, &capability);
|
std::string make, model;
|
if (ret < 0) {
|
ALOGW("%s v4l2 QUERYCAP failed", __FUNCTION__);
|
make = "Generic UVC webcam";
|
model = "Generic UVC webcam";
|
} else {
|
// capability.card is UTF-8 encoded
|
char card[32];
|
int j = 0;
|
for (int i = 0; i < 32; i++) {
|
if (capability.card[i] < 128) {
|
card[j++] = capability.card[i];
|
}
|
if (capability.card[i] == '\0') {
|
break;
|
}
|
}
|
if (j == 0 || card[j - 1] != '\0') {
|
make = "Generic UVC webcam";
|
model = "Generic UVC webcam";
|
} else {
|
make = card;
|
model = card;
|
}
|
}
|
|
initOutputThread();
|
if (mOutputThread == nullptr) {
|
ALOGE("%s: init OutputThread failed!", __FUNCTION__);
|
return true;
|
}
|
mOutputThread->setExifMakeModel(make, model);
|
|
status_t status = initDefaultRequests();
|
if (status != OK) {
|
ALOGE("%s: init default requests failed!", __FUNCTION__);
|
return true;
|
}
|
|
mRequestMetadataQueue = std::make_unique<RequestMetadataQueue>(
|
kMetadataMsgQueueSize, false /* non blocking */);
|
if (!mRequestMetadataQueue->isValid()) {
|
ALOGE("%s: invalid request fmq", __FUNCTION__);
|
return true;
|
}
|
mResultMetadataQueue = std::make_shared<RequestMetadataQueue>(
|
kMetadataMsgQueueSize, false /* non blocking */);
|
if (!mResultMetadataQueue->isValid()) {
|
ALOGE("%s: invalid result fmq", __FUNCTION__);
|
return true;
|
}
|
|
// TODO: check is PRIORITY_DISPLAY enough?
|
mOutputThread->run("ExtCamOut", PRIORITY_DISPLAY);
|
return false;
|
}
|
|
bool ExternalCameraDeviceSession::isInitFailed() {
|
Mutex::Autolock _l(mLock);
|
if (!mInitialized) {
|
mInitFail = initialize();
|
mInitialized = true;
|
}
|
return mInitFail;
|
}
|
|
void ExternalCameraDeviceSession::initOutputThread() {
|
mOutputThread = new OutputThread(this, mCroppingType);
|
}
|
|
void ExternalCameraDeviceSession::closeOutputThread() {
|
closeOutputThreadImpl();
|
}
|
|
void ExternalCameraDeviceSession::closeOutputThreadImpl() {
|
if (mOutputThread) {
|
mOutputThread->flush();
|
mOutputThread->requestExit();
|
mOutputThread->join();
|
mOutputThread.clear();
|
}
|
}
|
|
Status ExternalCameraDeviceSession::initStatus() const {
|
Mutex::Autolock _l(mLock);
|
Status status = Status::OK;
|
if (mInitFail || mClosed) {
|
ALOGI("%s: sesssion initFailed %d closed %d", __FUNCTION__, mInitFail, mClosed);
|
status = Status::INTERNAL_ERROR;
|
}
|
return status;
|
}
|
|
ExternalCameraDeviceSession::~ExternalCameraDeviceSession() {
|
if (!isClosed()) {
|
ALOGE("ExternalCameraDeviceSession deleted before close!");
|
close(/*callerIsDtor*/true);
|
}
|
}
|
|
|
void ExternalCameraDeviceSession::dumpState(const native_handle_t* handle) {
|
if (handle->numFds != 1 || handle->numInts != 0) {
|
ALOGE("%s: handle must contain 1 FD and 0 integers! Got %d FDs and %d ints",
|
__FUNCTION__, handle->numFds, handle->numInts);
|
return;
|
}
|
int fd = handle->data[0];
|
|
bool intfLocked = tryLock(mInterfaceLock);
|
if (!intfLocked) {
|
dprintf(fd, "!! ExternalCameraDeviceSession interface may be deadlocked !!\n");
|
}
|
|
if (isClosed()) {
|
dprintf(fd, "External camera %s is closed\n", mCameraId.c_str());
|
return;
|
}
|
|
bool streaming = false;
|
size_t v4L2BufferCount = 0;
|
SupportedV4L2Format streamingFmt;
|
{
|
bool sessionLocked = tryLock(mLock);
|
if (!sessionLocked) {
|
dprintf(fd, "!! ExternalCameraDeviceSession mLock may be deadlocked !!\n");
|
}
|
streaming = mV4l2Streaming;
|
streamingFmt = mV4l2StreamingFmt;
|
v4L2BufferCount = mV4L2BufferCount;
|
|
if (sessionLocked) {
|
mLock.unlock();
|
}
|
}
|
|
std::unordered_set<uint32_t> inflightFrames;
|
{
|
bool iffLocked = tryLock(mInflightFramesLock);
|
if (!iffLocked) {
|
dprintf(fd,
|
"!! ExternalCameraDeviceSession mInflightFramesLock may be deadlocked !!\n");
|
}
|
inflightFrames = mInflightFrames;
|
if (iffLocked) {
|
mInflightFramesLock.unlock();
|
}
|
}
|
|
dprintf(fd, "External camera %s V4L2 FD %d, cropping type %s, %s\n",
|
mCameraId.c_str(), mV4l2Fd.get(),
|
(mCroppingType == VERTICAL) ? "vertical" : "horizontal",
|
streaming ? "streaming" : "not streaming");
|
if (streaming) {
|
// TODO: dump fps later
|
dprintf(fd, "Current V4L2 format %c%c%c%c %dx%d @ %ffps\n",
|
streamingFmt.fourcc & 0xFF,
|
(streamingFmt.fourcc >> 8) & 0xFF,
|
(streamingFmt.fourcc >> 16) & 0xFF,
|
(streamingFmt.fourcc >> 24) & 0xFF,
|
streamingFmt.width, streamingFmt.height,
|
mV4l2StreamingFps);
|
|
size_t numDequeuedV4l2Buffers = 0;
|
{
|
std::lock_guard<std::mutex> lk(mV4l2BufferLock);
|
numDequeuedV4l2Buffers = mNumDequeuedV4l2Buffers;
|
}
|
dprintf(fd, "V4L2 buffer queue size %zu, dequeued %zu\n",
|
v4L2BufferCount, numDequeuedV4l2Buffers);
|
}
|
|
dprintf(fd, "In-flight frames (not sorted):");
|
for (const auto& frameNumber : inflightFrames) {
|
dprintf(fd, "%d, ", frameNumber);
|
}
|
dprintf(fd, "\n");
|
mOutputThread->dump(fd);
|
dprintf(fd, "\n");
|
|
if (intfLocked) {
|
mInterfaceLock.unlock();
|
}
|
|
return;
|
}
|
|
Return<void> ExternalCameraDeviceSession::constructDefaultRequestSettings(
|
V3_2::RequestTemplate type,
|
V3_2::ICameraDeviceSession::constructDefaultRequestSettings_cb _hidl_cb) {
|
V3_2::CameraMetadata outMetadata;
|
Status status = constructDefaultRequestSettingsRaw(
|
static_cast<RequestTemplate>(type), &outMetadata);
|
_hidl_cb(status, outMetadata);
|
return Void();
|
}
|
|
Status ExternalCameraDeviceSession::constructDefaultRequestSettingsRaw(RequestTemplate type,
|
V3_2::CameraMetadata *outMetadata) {
|
CameraMetadata emptyMd;
|
Status status = initStatus();
|
if (status != Status::OK) {
|
return status;
|
}
|
|
switch (type) {
|
case RequestTemplate::PREVIEW:
|
case RequestTemplate::STILL_CAPTURE:
|
case RequestTemplate::VIDEO_RECORD:
|
case RequestTemplate::VIDEO_SNAPSHOT: {
|
*outMetadata = mDefaultRequests[type];
|
break;
|
}
|
case RequestTemplate::MANUAL:
|
case RequestTemplate::ZERO_SHUTTER_LAG:
|
// Don't support MANUAL, ZSL templates
|
status = Status::ILLEGAL_ARGUMENT;
|
break;
|
default:
|
ALOGE("%s: unknown request template type %d", __FUNCTION__, static_cast<int>(type));
|
status = Status::ILLEGAL_ARGUMENT;
|
break;
|
}
|
return status;
|
}
|
|
Return<void> ExternalCameraDeviceSession::configureStreams(
|
const V3_2::StreamConfiguration& streams,
|
ICameraDeviceSession::configureStreams_cb _hidl_cb) {
|
V3_2::HalStreamConfiguration outStreams;
|
V3_3::HalStreamConfiguration outStreams_v33;
|
Mutex::Autolock _il(mInterfaceLock);
|
|
Status status = configureStreams(streams, &outStreams_v33);
|
size_t size = outStreams_v33.streams.size();
|
outStreams.streams.resize(size);
|
for (size_t i = 0; i < size; i++) {
|
outStreams.streams[i] = outStreams_v33.streams[i].v3_2;
|
}
|
_hidl_cb(status, outStreams);
|
return Void();
|
}
|
|
Return<void> ExternalCameraDeviceSession::configureStreams_3_3(
|
const V3_2::StreamConfiguration& streams,
|
ICameraDeviceSession::configureStreams_3_3_cb _hidl_cb) {
|
V3_3::HalStreamConfiguration outStreams;
|
Mutex::Autolock _il(mInterfaceLock);
|
|
Status status = configureStreams(streams, &outStreams);
|
_hidl_cb(status, outStreams);
|
return Void();
|
}
|
|
Return<void> ExternalCameraDeviceSession::configureStreams_3_4(
|
const V3_4::StreamConfiguration& requestedConfiguration,
|
ICameraDeviceSession::configureStreams_3_4_cb _hidl_cb) {
|
V3_2::StreamConfiguration config_v32;
|
V3_3::HalStreamConfiguration outStreams_v33;
|
V3_4::HalStreamConfiguration outStreams;
|
Mutex::Autolock _il(mInterfaceLock);
|
|
config_v32.operationMode = requestedConfiguration.operationMode;
|
config_v32.streams.resize(requestedConfiguration.streams.size());
|
uint32_t blobBufferSize = 0;
|
int numStallStream = 0;
|
for (size_t i = 0; i < config_v32.streams.size(); i++) {
|
config_v32.streams[i] = requestedConfiguration.streams[i].v3_2;
|
if (config_v32.streams[i].format == PixelFormat::BLOB) {
|
blobBufferSize = requestedConfiguration.streams[i].bufferSize;
|
numStallStream++;
|
}
|
}
|
|
// Fail early if there are multiple BLOB streams
|
if (numStallStream > kMaxStallStream) {
|
ALOGE("%s: too many stall streams (expect <= %d, got %d)", __FUNCTION__,
|
kMaxStallStream, numStallStream);
|
_hidl_cb(Status::ILLEGAL_ARGUMENT, outStreams);
|
return Void();
|
}
|
|
Status status = configureStreams(config_v32, &outStreams_v33, blobBufferSize);
|
|
outStreams.streams.resize(outStreams_v33.streams.size());
|
for (size_t i = 0; i < outStreams.streams.size(); i++) {
|
outStreams.streams[i].v3_3 = outStreams_v33.streams[i];
|
}
|
_hidl_cb(status, outStreams);
|
return Void();
|
}
|
|
Return<void> ExternalCameraDeviceSession::getCaptureRequestMetadataQueue(
|
ICameraDeviceSession::getCaptureRequestMetadataQueue_cb _hidl_cb) {
|
Mutex::Autolock _il(mInterfaceLock);
|
_hidl_cb(*mRequestMetadataQueue->getDesc());
|
return Void();
|
}
|
|
Return<void> ExternalCameraDeviceSession::getCaptureResultMetadataQueue(
|
ICameraDeviceSession::getCaptureResultMetadataQueue_cb _hidl_cb) {
|
Mutex::Autolock _il(mInterfaceLock);
|
_hidl_cb(*mResultMetadataQueue->getDesc());
|
return Void();
|
}
|
|
Return<void> ExternalCameraDeviceSession::processCaptureRequest(
|
const hidl_vec<CaptureRequest>& requests,
|
const hidl_vec<BufferCache>& cachesToRemove,
|
ICameraDeviceSession::processCaptureRequest_cb _hidl_cb) {
|
Mutex::Autolock _il(mInterfaceLock);
|
updateBufferCaches(cachesToRemove);
|
|
uint32_t numRequestProcessed = 0;
|
Status s = Status::OK;
|
for (size_t i = 0; i < requests.size(); i++, numRequestProcessed++) {
|
s = processOneCaptureRequest(requests[i]);
|
if (s != Status::OK) {
|
break;
|
}
|
}
|
|
_hidl_cb(s, numRequestProcessed);
|
return Void();
|
}
|
|
Return<void> ExternalCameraDeviceSession::processCaptureRequest_3_4(
|
const hidl_vec<V3_4::CaptureRequest>& requests,
|
const hidl_vec<V3_2::BufferCache>& cachesToRemove,
|
ICameraDeviceSession::processCaptureRequest_3_4_cb _hidl_cb) {
|
Mutex::Autolock _il(mInterfaceLock);
|
updateBufferCaches(cachesToRemove);
|
|
uint32_t numRequestProcessed = 0;
|
Status s = Status::OK;
|
for (size_t i = 0; i < requests.size(); i++, numRequestProcessed++) {
|
s = processOneCaptureRequest(requests[i].v3_2);
|
if (s != Status::OK) {
|
break;
|
}
|
}
|
|
_hidl_cb(s, numRequestProcessed);
|
return Void();
|
}
|
|
Return<Status> ExternalCameraDeviceSession::flush() {
|
ATRACE_CALL();
|
Mutex::Autolock _il(mInterfaceLock);
|
Status status = initStatus();
|
if (status != Status::OK) {
|
return status;
|
}
|
mOutputThread->flush();
|
return Status::OK;
|
}
|
|
Return<void> ExternalCameraDeviceSession::close(bool callerIsDtor) {
|
Mutex::Autolock _il(mInterfaceLock);
|
bool closed = isClosed();
|
if (!closed) {
|
if (callerIsDtor) {
|
closeOutputThreadImpl();
|
} else {
|
closeOutputThread();
|
}
|
|
Libve_exit2(&mDecoder);
|
|
Mutex::Autolock _l(mLock);
|
// free all buffers
|
{
|
Mutex::Autolock _l(mCbsLock);
|
for(auto pair : mStreamMap) {
|
cleanupBuffersLocked(/*Stream ID*/pair.first);
|
}
|
}
|
v4l2StreamOffLocked();
|
ALOGV("%s: closing V4L2 camera FD %d", __FUNCTION__, mV4l2Fd.get());
|
mV4l2Fd.reset();
|
mClosed = true;
|
}
|
return Void();
|
}
|
|
Status ExternalCameraDeviceSession::importRequestLocked(
|
const CaptureRequest& request,
|
hidl_vec<buffer_handle_t*>& allBufPtrs,
|
hidl_vec<int>& allFences) {
|
return importRequestLockedImpl(request, allBufPtrs, allFences);
|
}
|
|
Status ExternalCameraDeviceSession::importBuffer(int32_t streamId,
|
uint64_t bufId, buffer_handle_t buf,
|
/*out*/buffer_handle_t** outBufPtr,
|
bool allowEmptyBuf) {
|
Mutex::Autolock _l(mCbsLock);
|
return importBufferLocked(streamId, bufId, buf, outBufPtr, allowEmptyBuf);
|
}
|
|
Status ExternalCameraDeviceSession::importBufferLocked(int32_t streamId,
|
uint64_t bufId, buffer_handle_t buf,
|
/*out*/buffer_handle_t** outBufPtr,
|
bool allowEmptyBuf) {
|
|
if (buf == nullptr && bufId == BUFFER_ID_NO_BUFFER) {
|
if (allowEmptyBuf) {
|
*outBufPtr = &sEmptyBuffer;
|
return Status::OK;
|
} else {
|
ALOGE("%s: bufferId %" PRIu64 " has null buffer handle!", __FUNCTION__, bufId);
|
return Status::ILLEGAL_ARGUMENT;
|
}
|
}
|
|
CirculatingBuffers& cbs = mCirculatingBuffers[streamId];
|
if (cbs.count(bufId) == 0) {
|
if (buf == nullptr) {
|
ALOGE("%s: bufferId %" PRIu64 " has null buffer handle!", __FUNCTION__, bufId);
|
return Status::ILLEGAL_ARGUMENT;
|
}
|
// Register a newly seen buffer
|
buffer_handle_t importedBuf = buf;
|
sHandleImporter.importBuffer(importedBuf);
|
if (importedBuf == nullptr) {
|
ALOGE("%s: output buffer for stream %d is invalid!", __FUNCTION__, streamId);
|
return Status::INTERNAL_ERROR;
|
} else {
|
cbs[bufId] = importedBuf;
|
}
|
}
|
*outBufPtr = &cbs[bufId];
|
return Status::OK;
|
}
|
|
Status ExternalCameraDeviceSession::importRequestLockedImpl(
|
const CaptureRequest& request,
|
hidl_vec<buffer_handle_t*>& allBufPtrs,
|
hidl_vec<int>& allFences,
|
bool allowEmptyBuf) {
|
size_t numOutputBufs = request.outputBuffers.size();
|
size_t numBufs = numOutputBufs;
|
// Validate all I/O buffers
|
hidl_vec<buffer_handle_t> allBufs;
|
hidl_vec<uint64_t> allBufIds;
|
allBufs.resize(numBufs);
|
allBufIds.resize(numBufs);
|
allBufPtrs.resize(numBufs);
|
allFences.resize(numBufs);
|
std::vector<int32_t> streamIds(numBufs);
|
|
for (size_t i = 0; i < numOutputBufs; i++) {
|
allBufs[i] = request.outputBuffers[i].buffer.getNativeHandle();
|
allBufIds[i] = request.outputBuffers[i].bufferId;
|
allBufPtrs[i] = &allBufs[i];
|
streamIds[i] = request.outputBuffers[i].streamId;
|
}
|
|
{
|
Mutex::Autolock _l(mCbsLock);
|
for (size_t i = 0; i < numBufs; i++) {
|
Status st = importBufferLocked(
|
streamIds[i], allBufIds[i], allBufs[i], &allBufPtrs[i],
|
allowEmptyBuf);
|
if (st != Status::OK) {
|
// Detailed error logs printed in importBuffer
|
return st;
|
}
|
}
|
}
|
|
// All buffers are imported. Now validate output buffer acquire fences
|
for (size_t i = 0; i < numOutputBufs; i++) {
|
if (!sHandleImporter.importFence(
|
request.outputBuffers[i].acquireFence, allFences[i])) {
|
ALOGE("%s: output buffer %zu acquire fence is invalid", __FUNCTION__, i);
|
cleanupInflightFences(allFences, i);
|
return Status::INTERNAL_ERROR;
|
}
|
}
|
return Status::OK;
|
}
|
|
void ExternalCameraDeviceSession::cleanupInflightFences(
|
hidl_vec<int>& allFences, size_t numFences) {
|
for (size_t j = 0; j < numFences; j++) {
|
sHandleImporter.closeFence(allFences[j]);
|
}
|
}
|
|
int ExternalCameraDeviceSession::waitForV4L2BufferReturnLocked(std::unique_lock<std::mutex>& lk) {
|
ATRACE_CALL();
|
std::chrono::seconds timeout = std::chrono::seconds(kBufferWaitTimeoutSec);
|
mLock.unlock();
|
auto st = mV4L2BufferReturned.wait_for(lk, timeout);
|
// Here we introduce a order where mV4l2BufferLock is acquired before mLock, while
|
// the normal lock acquisition order is reversed. This is fine because in most of
|
// cases we are protected by mInterfaceLock. The only thread that can cause deadlock
|
// is the OutputThread, where we do need to make sure we don't acquire mLock then
|
// mV4l2BufferLock
|
mLock.lock();
|
if (st == std::cv_status::timeout) {
|
ALOGE("%s: wait for V4L2 buffer return timeout!", __FUNCTION__);
|
return -1;
|
}
|
return 0;
|
}
|
|
Status ExternalCameraDeviceSession::processOneCaptureRequest(const CaptureRequest& request) {
|
ATRACE_CALL();
|
Status status = initStatus();
|
if (status != Status::OK) {
|
return status;
|
}
|
|
if (request.inputBuffer.streamId != -1) {
|
ALOGE("%s: external camera does not support reprocessing!", __FUNCTION__);
|
return Status::ILLEGAL_ARGUMENT;
|
}
|
|
Mutex::Autolock _l(mLock);
|
if (!mV4l2Streaming) {
|
ALOGE("%s: cannot process request in streamOff state!", __FUNCTION__);
|
return Status::INTERNAL_ERROR;
|
}
|
|
const camera_metadata_t *rawSettings = nullptr;
|
bool converted = true;
|
CameraMetadata settingsFmq; // settings from FMQ
|
if (request.fmqSettingsSize > 0) {
|
// non-blocking read; client must write metadata before calling
|
// processOneCaptureRequest
|
settingsFmq.resize(request.fmqSettingsSize);
|
bool read = mRequestMetadataQueue->read(settingsFmq.data(), request.fmqSettingsSize);
|
if (read) {
|
converted = V3_2::implementation::convertFromHidl(settingsFmq, &rawSettings);
|
} else {
|
ALOGE("%s: capture request settings metadata couldn't be read from fmq!", __FUNCTION__);
|
converted = false;
|
}
|
} else {
|
converted = V3_2::implementation::convertFromHidl(request.settings, &rawSettings);
|
}
|
|
if (converted && rawSettings != nullptr) {
|
mLatestReqSetting = rawSettings;
|
}
|
|
if (!converted) {
|
ALOGE("%s: capture request settings metadata is corrupt!", __FUNCTION__);
|
return Status::ILLEGAL_ARGUMENT;
|
}
|
|
if (mFirstRequest && rawSettings == nullptr) {
|
ALOGE("%s: capture request settings must not be null for first request!",
|
__FUNCTION__);
|
return Status::ILLEGAL_ARGUMENT;
|
}
|
|
hidl_vec<buffer_handle_t*> allBufPtrs;
|
hidl_vec<int> allFences;
|
size_t numOutputBufs = request.outputBuffers.size();
|
|
if (numOutputBufs == 0) {
|
ALOGE("%s: capture request must have at least one output buffer!", __FUNCTION__);
|
return Status::ILLEGAL_ARGUMENT;
|
}
|
|
camera_metadata_entry fpsRange = mLatestReqSetting.find(ANDROID_CONTROL_AE_TARGET_FPS_RANGE);
|
if (fpsRange.count == 2) {
|
double requestFpsMax = fpsRange.data.i32[1];
|
double closestFps = 0.0;
|
double fpsError = 1000.0;
|
bool fpsSupported = false;
|
for (const auto& fr : mV4l2StreamingFmt.frameRates) {
|
double f = fr.getDouble();
|
if (std::fabs(requestFpsMax - f) < 1.0) {
|
fpsSupported = true;
|
break;
|
}
|
if (std::fabs(requestFpsMax - f) < fpsError) {
|
fpsError = std::fabs(requestFpsMax - f);
|
closestFps = f;
|
}
|
}
|
if (!fpsSupported) {
|
/* This can happen in a few scenarios:
|
* 1. The application is sending a FPS range not supported by the configured outputs.
|
* 2. The application is sending a valid FPS range for all cofigured outputs, but
|
* the selected V4L2 size can only run at slower speed. This should be very rare
|
* though: for this to happen a sensor needs to support at least 3 different aspect
|
* ratio outputs, and when (at least) two outputs are both not the main aspect ratio
|
* of the webcam, a third size that's larger might be picked and runs into this
|
* issue.
|
*/
|
ALOGW("%s: cannot reach fps %d! Will do %f instead",
|
__FUNCTION__, fpsRange.data.i32[1], closestFps);
|
requestFpsMax = closestFps;
|
}
|
|
if (requestFpsMax != mV4l2StreamingFps) {
|
{
|
std::unique_lock<std::mutex> lk(mV4l2BufferLock);
|
while (mNumDequeuedV4l2Buffers != 0) {
|
// Wait until pipeline is idle before reconfigure stream
|
int waitRet = waitForV4L2BufferReturnLocked(lk);
|
if (waitRet != 0) {
|
ALOGE("%s: wait for pipeline idle failed!", __FUNCTION__);
|
return Status::INTERNAL_ERROR;
|
}
|
}
|
}
|
configureV4l2StreamLocked(mV4l2StreamingFmt, requestFpsMax);
|
}
|
}
|
|
status = importRequestLocked(request, allBufPtrs, allFences);
|
if (status != Status::OK) {
|
return status;
|
}
|
|
nsecs_t shutterTs = 0;
|
sp<V4L2Frame> frameIn = dequeueV4l2FrameLocked(&shutterTs);
|
if ( frameIn == nullptr) {
|
ALOGE("%s: V4L2 deque frame failed!", __FUNCTION__);
|
return Status::INTERNAL_ERROR;
|
}
|
|
std::shared_ptr<HalRequest> halReq = std::make_shared<HalRequest>();
|
halReq->frameNumber = request.frameNumber;
|
halReq->setting = mLatestReqSetting;
|
halReq->frameIn = frameIn;
|
halReq->shutterTs = shutterTs;
|
halReq->buffers.resize(numOutputBufs);
|
for (size_t i = 0; i < numOutputBufs; i++) {
|
HalStreamBuffer& halBuf = halReq->buffers[i];
|
int streamId = halBuf.streamId = request.outputBuffers[i].streamId;
|
halBuf.bufferId = request.outputBuffers[i].bufferId;
|
const Stream& stream = mStreamMap[streamId];
|
halBuf.width = stream.width;
|
halBuf.height = stream.height;
|
halBuf.format = stream.format;
|
halBuf.usage = stream.usage;
|
halBuf.bufPtr = allBufPtrs[i];
|
halBuf.acquireFence = allFences[i];
|
halBuf.fenceTimeout = false;
|
}
|
{
|
std::lock_guard<std::mutex> lk(mInflightFramesLock);
|
mInflightFrames.insert(halReq->frameNumber);
|
}
|
// Send request to OutputThread for the rest of processing
|
mOutputThread->submitRequest(halReq);
|
mFirstRequest = false;
|
return Status::OK;
|
}
|
|
void ExternalCameraDeviceSession::notifyShutter(uint32_t frameNumber, nsecs_t shutterTs) {
|
NotifyMsg msg;
|
msg.type = MsgType::SHUTTER;
|
msg.msg.shutter.frameNumber = frameNumber;
|
msg.msg.shutter.timestamp = shutterTs;
|
mCallback->notify({msg});
|
}
|
|
void ExternalCameraDeviceSession::notifyError(
|
uint32_t frameNumber, int32_t streamId, ErrorCode ec) {
|
NotifyMsg msg;
|
msg.type = MsgType::ERROR;
|
msg.msg.error.frameNumber = frameNumber;
|
msg.msg.error.errorStreamId = streamId;
|
msg.msg.error.errorCode = ec;
|
mCallback->notify({msg});
|
}
|
|
//TODO: refactor with processCaptureResult
|
Status ExternalCameraDeviceSession::processCaptureRequestError(
|
const std::shared_ptr<HalRequest>& req) {
|
ATRACE_CALL();
|
// Return V4L2 buffer to V4L2 buffer queue
|
enqueueV4l2Frame(req->frameIn);
|
|
// NotifyShutter
|
notifyShutter(req->frameNumber, req->shutterTs);
|
|
notifyError(/*frameNum*/req->frameNumber, /*stream*/-1, ErrorCode::ERROR_REQUEST);
|
|
// Fill output buffers
|
hidl_vec<CaptureResult> results;
|
results.resize(1);
|
CaptureResult& result = results[0];
|
result.frameNumber = req->frameNumber;
|
result.partialResult = 1;
|
result.inputBuffer.streamId = -1;
|
result.outputBuffers.resize(req->buffers.size());
|
for (size_t i = 0; i < req->buffers.size(); i++) {
|
result.outputBuffers[i].streamId = req->buffers[i].streamId;
|
result.outputBuffers[i].bufferId = req->buffers[i].bufferId;
|
result.outputBuffers[i].status = BufferStatus::ERROR;
|
if (req->buffers[i].acquireFence >= 0) {
|
native_handle_t* handle = native_handle_create(/*numFds*/1, /*numInts*/0);
|
handle->data[0] = req->buffers[i].acquireFence;
|
result.outputBuffers[i].releaseFence.setTo(handle, /*shouldOwn*/false);
|
}
|
}
|
|
// update inflight records
|
{
|
std::lock_guard<std::mutex> lk(mInflightFramesLock);
|
mInflightFrames.erase(req->frameNumber);
|
}
|
|
// Callback into framework
|
invokeProcessCaptureResultCallback(results, /* tryWriteFmq */true);
|
freeReleaseFences(results);
|
return Status::OK;
|
}
|
|
Status ExternalCameraDeviceSession::processCaptureResult(std::shared_ptr<HalRequest>& req) {
|
ATRACE_CALL();
|
// Return V4L2 buffer to V4L2 buffer queue
|
enqueueV4l2Frame(req->frameIn);
|
|
// NotifyShutter
|
notifyShutter(req->frameNumber, req->shutterTs);
|
|
// Fill output buffers
|
hidl_vec<CaptureResult> results;
|
results.resize(1);
|
CaptureResult& result = results[0];
|
result.frameNumber = req->frameNumber;
|
result.partialResult = 1;
|
result.inputBuffer.streamId = -1;
|
result.outputBuffers.resize(req->buffers.size());
|
for (size_t i = 0; i < req->buffers.size(); i++) {
|
result.outputBuffers[i].streamId = req->buffers[i].streamId;
|
result.outputBuffers[i].bufferId = req->buffers[i].bufferId;
|
if (req->buffers[i].fenceTimeout) {
|
result.outputBuffers[i].status = BufferStatus::ERROR;
|
if (req->buffers[i].acquireFence >= 0) {
|
native_handle_t* handle = native_handle_create(/*numFds*/1, /*numInts*/0);
|
handle->data[0] = req->buffers[i].acquireFence;
|
result.outputBuffers[i].releaseFence.setTo(handle, /*shouldOwn*/false);
|
}
|
notifyError(req->frameNumber, req->buffers[i].streamId, ErrorCode::ERROR_BUFFER);
|
} else {
|
result.outputBuffers[i].status = BufferStatus::OK;
|
// TODO: refactor
|
if (req->buffers[i].acquireFence >= 0) {
|
native_handle_t* handle = native_handle_create(/*numFds*/1, /*numInts*/0);
|
handle->data[0] = req->buffers[i].acquireFence;
|
result.outputBuffers[i].releaseFence.setTo(handle, /*shouldOwn*/false);
|
}
|
}
|
}
|
|
// Fill capture result metadata
|
fillCaptureResult(req->setting, req->shutterTs);
|
const camera_metadata_t *rawResult = req->setting.getAndLock();
|
V3_2::implementation::convertToHidl(rawResult, &result.result);
|
req->setting.unlock(rawResult);
|
|
// update inflight records
|
{
|
std::lock_guard<std::mutex> lk(mInflightFramesLock);
|
mInflightFrames.erase(req->frameNumber);
|
}
|
|
// Callback into framework
|
invokeProcessCaptureResultCallback(results, /* tryWriteFmq */true);
|
freeReleaseFences(results);
|
return Status::OK;
|
}
|
|
void ExternalCameraDeviceSession::invokeProcessCaptureResultCallback(
|
hidl_vec<CaptureResult> &results, bool tryWriteFmq) {
|
if (mProcessCaptureResultLock.tryLock() != OK) {
|
const nsecs_t NS_TO_SECOND = 1000000000;
|
ALOGV("%s: previous call is not finished! waiting 1s...", __FUNCTION__);
|
if (mProcessCaptureResultLock.timedLock(/* 1s */NS_TO_SECOND) != OK) {
|
ALOGE("%s: cannot acquire lock in 1s, cannot proceed",
|
__FUNCTION__);
|
return;
|
}
|
}
|
if (tryWriteFmq && mResultMetadataQueue->availableToWrite() > 0) {
|
for (CaptureResult &result : results) {
|
if (result.result.size() > 0) {
|
if (mResultMetadataQueue->write(result.result.data(), result.result.size())) {
|
result.fmqResultSize = result.result.size();
|
result.result.resize(0);
|
} else {
|
ALOGW("%s: couldn't utilize fmq, fall back to hwbinder", __FUNCTION__);
|
result.fmqResultSize = 0;
|
}
|
} else {
|
result.fmqResultSize = 0;
|
}
|
}
|
}
|
auto status = mCallback->processCaptureResult(results);
|
if (!status.isOk()) {
|
ALOGE("%s: processCaptureResult ERROR : %s", __FUNCTION__,
|
status.description().c_str());
|
}
|
|
mProcessCaptureResultLock.unlock();
|
}
|
|
void ExternalCameraDeviceSession::freeReleaseFences(hidl_vec<CaptureResult>& results) {
|
for (auto& result : results) {
|
if (result.inputBuffer.releaseFence.getNativeHandle() != nullptr) {
|
native_handle_t* handle = const_cast<native_handle_t*>(
|
result.inputBuffer.releaseFence.getNativeHandle());
|
native_handle_close(handle);
|
native_handle_delete(handle);
|
}
|
for (auto& buf : result.outputBuffers) {
|
if (buf.releaseFence.getNativeHandle() != nullptr) {
|
native_handle_t* handle = const_cast<native_handle_t*>(
|
buf.releaseFence.getNativeHandle());
|
native_handle_close(handle);
|
native_handle_delete(handle);
|
}
|
}
|
}
|
return;
|
}
|
|
ExternalCameraDeviceSession::OutputThread::OutputThread(
|
wp<ExternalCameraDeviceSession> parent,
|
CroppingType ct) : mParent(parent), mCroppingType(ct) {}
|
|
ExternalCameraDeviceSession::OutputThread::~OutputThread() {}
|
|
void ExternalCameraDeviceSession::OutputThread::setExifMakeModel(
|
const std::string& make, const std::string& model) {
|
mExifMake = make;
|
mExifModel = model;
|
}
|
|
uint32_t ExternalCameraDeviceSession::OutputThread::getFourCcFromLayout(
|
const YCbCrLayout& layout) {
|
intptr_t cb = reinterpret_cast<intptr_t>(layout.cb);
|
intptr_t cr = reinterpret_cast<intptr_t>(layout.cr);
|
if (std::abs(cb - cr) == 1 && layout.chromaStep == 2) {
|
// Interleaved format
|
if (layout.cb > layout.cr) {
|
return V4L2_PIX_FMT_NV21;
|
} else {
|
return V4L2_PIX_FMT_NV12;
|
}
|
} else if (layout.chromaStep == 1) {
|
// Planar format
|
if (layout.cb > layout.cr) {
|
return V4L2_PIX_FMT_YVU420; // YV12
|
} else {
|
return V4L2_PIX_FMT_YUV420; // YU12
|
}
|
} else {
|
return FLEX_YUV_GENERIC;
|
}
|
}
|
|
int ExternalCameraDeviceSession::OutputThread::getCropRect(
|
CroppingType ct, const Size& inSize, const Size& outSize, IMapper::Rect* out) {
|
if (out == nullptr) {
|
ALOGE("%s: out is null", __FUNCTION__);
|
return -1;
|
}
|
|
uint32_t inW = inSize.width;
|
uint32_t inH = inSize.height;
|
uint32_t outW = outSize.width;
|
uint32_t outH = outSize.height;
|
|
// Handle special case where aspect ratio is close to input but scaled
|
// dimension is slightly larger than input
|
float arIn = ASPECT_RATIO(inSize);
|
float arOut = ASPECT_RATIO(outSize);
|
if (isAspectRatioClose(arIn, arOut)) {
|
out->left = 0;
|
out->top = 0;
|
out->width = inW;
|
out->height = inH;
|
return 0;
|
}
|
|
if (ct == VERTICAL) {
|
uint64_t scaledOutH = static_cast<uint64_t>(outH) * inW / outW;
|
if (scaledOutH > inH) {
|
ALOGE("%s: Output size %dx%d cannot be vertically cropped from input size %dx%d",
|
__FUNCTION__, outW, outH, inW, inH);
|
return -1;
|
}
|
scaledOutH = scaledOutH & ~0x1; // make it multiple of 2
|
|
out->left = 0;
|
out->top = ((inH - scaledOutH) / 2) & ~0x1;
|
out->width = inW;
|
out->height = static_cast<int32_t>(scaledOutH);
|
ALOGV("%s: crop %dx%d to %dx%d: top %d, scaledH %d",
|
__FUNCTION__, inW, inH, outW, outH, out->top, static_cast<int32_t>(scaledOutH));
|
} else {
|
uint64_t scaledOutW = static_cast<uint64_t>(outW) * inH / outH;
|
if (scaledOutW > inW) {
|
ALOGE("%s: Output size %dx%d cannot be horizontally cropped from input size %dx%d",
|
__FUNCTION__, outW, outH, inW, inH);
|
return -1;
|
}
|
scaledOutW = scaledOutW & ~0x1; // make it multiple of 2
|
|
out->left = ((inW - scaledOutW) / 2) & ~0x1;
|
out->top = 0;
|
out->width = static_cast<int32_t>(scaledOutW);
|
out->height = inH;
|
ALOGV("%s: crop %dx%d to %dx%d: top %d, scaledW %d",
|
__FUNCTION__, inW, inH, outW, outH, out->top, static_cast<int32_t>(scaledOutW));
|
}
|
|
return 0;
|
}
|
|
int ExternalCameraDeviceSession::OutputThread::cropAndScaleLocked(
|
sp<AllocatedFrame>& in, const Size& outSz, YCbCrLayout* out) {
|
Size inSz = {in->mWidth, in->mHeight};
|
|
int ret;
|
if (inSz == outSz) {
|
ret = in->getLayout(out);
|
if (ret != 0) {
|
ALOGE("%s: failed to get input image layout", __FUNCTION__);
|
return ret;
|
}
|
return ret;
|
}
|
|
// Cropping to output aspect ratio
|
IMapper::Rect inputCrop;
|
ret = getCropRect(mCroppingType, inSz, outSz, &inputCrop);
|
if (ret != 0) {
|
ALOGE("%s: failed to compute crop rect for output size %dx%d",
|
__FUNCTION__, outSz.width, outSz.height);
|
return ret;
|
}
|
|
YCbCrLayout croppedLayout;
|
ret = in->getCroppedLayout(inputCrop, &croppedLayout);
|
if (ret != 0) {
|
ALOGE("%s: failed to crop input image %dx%d to output size %dx%d",
|
__FUNCTION__, inSz.width, inSz.height, outSz.width, outSz.height);
|
return ret;
|
}
|
|
if ((mCroppingType == VERTICAL && inSz.width == outSz.width) ||
|
(mCroppingType == HORIZONTAL && inSz.height == outSz.height)) {
|
// No scale is needed
|
*out = croppedLayout;
|
return 0;
|
}
|
|
auto it = mScaledYu12Frames.find(outSz);
|
sp<AllocatedFrame> scaledYu12Buf;
|
if (it != mScaledYu12Frames.end()) {
|
scaledYu12Buf = it->second;
|
} else {
|
it = mIntermediateBuffers.find(outSz);
|
if (it == mIntermediateBuffers.end()) {
|
ALOGE("%s: failed to find intermediate buffer size %dx%d",
|
__FUNCTION__, outSz.width, outSz.height);
|
return -1;
|
}
|
scaledYu12Buf = it->second;
|
}
|
// Scale
|
YCbCrLayout outLayout;
|
ret = scaledYu12Buf->getLayout(&outLayout);
|
if (ret != 0) {
|
ALOGE("%s: failed to get output buffer layout", __FUNCTION__);
|
return ret;
|
}
|
|
ret = libyuv::I420Scale(
|
static_cast<uint8_t*>(croppedLayout.y),
|
croppedLayout.yStride,
|
static_cast<uint8_t*>(croppedLayout.cb),
|
croppedLayout.cStride,
|
static_cast<uint8_t*>(croppedLayout.cr),
|
croppedLayout.cStride,
|
inputCrop.width,
|
inputCrop.height,
|
static_cast<uint8_t*>(outLayout.y),
|
outLayout.yStride,
|
static_cast<uint8_t*>(outLayout.cb),
|
outLayout.cStride,
|
static_cast<uint8_t*>(outLayout.cr),
|
outLayout.cStride,
|
outSz.width,
|
outSz.height,
|
// TODO: b/72261744 see if we can use better filter without losing too much perf
|
libyuv::FilterMode::kFilterNone);
|
|
if (ret != 0) {
|
ALOGE("%s: failed to scale buffer from %dx%d to %dx%d. Ret %d",
|
__FUNCTION__, inputCrop.width, inputCrop.height,
|
outSz.width, outSz.height, ret);
|
return ret;
|
}
|
|
*out = outLayout;
|
mScaledYu12Frames.insert({outSz, scaledYu12Buf});
|
return 0;
|
}
|
|
|
int ExternalCameraDeviceSession::OutputThread::cropAndScaleThumbLocked(
|
sp<AllocatedFrame>& in, const Size &outSz, YCbCrLayout* out) {
|
Size inSz {in->mWidth, in->mHeight};
|
|
if ((outSz.width * outSz.height) >
|
(mYu12ThumbFrame->mWidth * mYu12ThumbFrame->mHeight)) {
|
ALOGE("%s: Requested thumbnail size too big (%d,%d) > (%d,%d)",
|
__FUNCTION__, outSz.width, outSz.height,
|
mYu12ThumbFrame->mWidth, mYu12ThumbFrame->mHeight);
|
return -1;
|
}
|
|
int ret;
|
|
/* This will crop-and-zoom the input YUV frame to the thumbnail size
|
* Based on the following logic:
|
* 1) Square pixels come in, square pixels come out, therefore single
|
* scale factor is computed to either make input bigger or smaller
|
* depending on if we are upscaling or downscaling
|
* 2) That single scale factor would either make height too tall or width
|
* too wide so we need to crop the input either horizontally or vertically
|
* but not both
|
*/
|
|
/* Convert the input and output dimensions into floats for ease of math */
|
float fWin = static_cast<float>(inSz.width);
|
float fHin = static_cast<float>(inSz.height);
|
float fWout = static_cast<float>(outSz.width);
|
float fHout = static_cast<float>(outSz.height);
|
|
/* Compute the one scale factor from (1) above, it will be the smaller of
|
* the two possibilities. */
|
float scaleFactor = std::min( fHin / fHout, fWin / fWout );
|
|
/* Since we are crop-and-zooming (as opposed to letter/pillar boxing) we can
|
* simply multiply the output by our scaleFactor to get the cropped input
|
* size. Note that at least one of {fWcrop, fHcrop} is going to wind up
|
* being {fWin, fHin} respectively because fHout or fWout cancels out the
|
* scaleFactor calculation above.
|
*
|
* Specifically:
|
* if ( fHin / fHout ) < ( fWin / fWout ) we crop the sides off
|
* input, in which case
|
* scaleFactor = fHin / fHout
|
* fWcrop = fHin / fHout * fWout
|
* fHcrop = fHin
|
*
|
* Note that fWcrop <= fWin ( because ( fHin / fHout ) * fWout < fWin, which
|
* is just the inequality above with both sides multiplied by fWout
|
*
|
* on the other hand if ( fWin / fWout ) < ( fHin / fHout) we crop the top
|
* and the bottom off of input, and
|
* scaleFactor = fWin / fWout
|
* fWcrop = fWin
|
* fHCrop = fWin / fWout * fHout
|
*/
|
float fWcrop = scaleFactor * fWout;
|
float fHcrop = scaleFactor * fHout;
|
|
/* Convert to integer and truncate to an even number */
|
Size cropSz = { 2*static_cast<uint32_t>(fWcrop/2.0f),
|
2*static_cast<uint32_t>(fHcrop/2.0f) };
|
|
/* Convert to a centered rectange with even top/left */
|
IMapper::Rect inputCrop {
|
2*static_cast<int32_t>((inSz.width - cropSz.width)/4),
|
2*static_cast<int32_t>((inSz.height - cropSz.height)/4),
|
static_cast<int32_t>(cropSz.width),
|
static_cast<int32_t>(cropSz.height) };
|
|
if ((inputCrop.top < 0) ||
|
(inputCrop.top >= static_cast<int32_t>(inSz.height)) ||
|
(inputCrop.left < 0) ||
|
(inputCrop.left >= static_cast<int32_t>(inSz.width)) ||
|
(inputCrop.width <= 0) ||
|
(inputCrop.width + inputCrop.left > static_cast<int32_t>(inSz.width)) ||
|
(inputCrop.height <= 0) ||
|
(inputCrop.height + inputCrop.top > static_cast<int32_t>(inSz.height)))
|
{
|
ALOGE("%s: came up with really wrong crop rectangle",__FUNCTION__);
|
ALOGE("%s: input layout %dx%d to for output size %dx%d",
|
__FUNCTION__, inSz.width, inSz.height, outSz.width, outSz.height);
|
ALOGE("%s: computed input crop +%d,+%d %dx%d",
|
__FUNCTION__, inputCrop.left, inputCrop.top,
|
inputCrop.width, inputCrop.height);
|
return -1;
|
}
|
|
YCbCrLayout inputLayout;
|
ret = in->getCroppedLayout(inputCrop, &inputLayout);
|
if (ret != 0) {
|
ALOGE("%s: failed to crop input layout %dx%d to for output size %dx%d",
|
__FUNCTION__, inSz.width, inSz.height, outSz.width, outSz.height);
|
ALOGE("%s: computed input crop +%d,+%d %dx%d",
|
__FUNCTION__, inputCrop.left, inputCrop.top,
|
inputCrop.width, inputCrop.height);
|
return ret;
|
}
|
ALOGV("%s: crop input layout %dx%d to for output size %dx%d",
|
__FUNCTION__, inSz.width, inSz.height, outSz.width, outSz.height);
|
ALOGV("%s: computed input crop +%d,+%d %dx%d",
|
__FUNCTION__, inputCrop.left, inputCrop.top,
|
inputCrop.width, inputCrop.height);
|
|
|
// Scale
|
YCbCrLayout outFullLayout;
|
|
ret = mYu12ThumbFrame->getLayout(&outFullLayout);
|
if (ret != 0) {
|
ALOGE("%s: failed to get output buffer layout", __FUNCTION__);
|
return ret;
|
}
|
|
|
ret = libyuv::I420Scale(
|
static_cast<uint8_t*>(inputLayout.y),
|
inputLayout.yStride,
|
static_cast<uint8_t*>(inputLayout.cb),
|
inputLayout.cStride,
|
static_cast<uint8_t*>(inputLayout.cr),
|
inputLayout.cStride,
|
inputCrop.width,
|
inputCrop.height,
|
static_cast<uint8_t*>(outFullLayout.y),
|
outFullLayout.yStride,
|
static_cast<uint8_t*>(outFullLayout.cb),
|
outFullLayout.cStride,
|
static_cast<uint8_t*>(outFullLayout.cr),
|
outFullLayout.cStride,
|
outSz.width,
|
outSz.height,
|
libyuv::FilterMode::kFilterNone);
|
|
if (ret != 0) {
|
ALOGE("%s: failed to scale buffer from %dx%d to %dx%d. Ret %d",
|
__FUNCTION__, inputCrop.width, inputCrop.height,
|
outSz.width, outSz.height, ret);
|
return ret;
|
}
|
|
*out = outFullLayout;
|
return 0;
|
}
|
|
int ExternalCameraDeviceSession::OutputThread::formatConvertLocked(
|
const YCbCrLayout& in, const YCbCrLayout& out, Size sz, uint32_t format) {
|
int ret = 0;
|
switch (format) {
|
case V4L2_PIX_FMT_NV21:
|
ret = libyuv::I420ToNV21(
|
static_cast<uint8_t*>(in.y),
|
in.yStride,
|
static_cast<uint8_t*>(in.cb),
|
in.cStride,
|
static_cast<uint8_t*>(in.cr),
|
in.cStride,
|
static_cast<uint8_t*>(out.y),
|
out.yStride,
|
static_cast<uint8_t*>(out.cr),
|
out.cStride,
|
sz.width,
|
sz.height);
|
if (ret != 0) {
|
ALOGE("%s: convert to NV21 buffer failed! ret %d",
|
__FUNCTION__, ret);
|
return ret;
|
}
|
break;
|
case V4L2_PIX_FMT_NV12:
|
ret = libyuv::I420ToNV12(
|
static_cast<uint8_t*>(in.y),
|
in.yStride,
|
static_cast<uint8_t*>(in.cb),
|
in.cStride,
|
static_cast<uint8_t*>(in.cr),
|
in.cStride,
|
static_cast<uint8_t*>(out.y),
|
out.yStride,
|
static_cast<uint8_t*>(out.cb),
|
out.cStride,
|
sz.width,
|
sz.height);
|
if (ret != 0) {
|
ALOGE("%s: convert to NV12 buffer failed! ret %d",
|
__FUNCTION__, ret);
|
return ret;
|
}
|
break;
|
case V4L2_PIX_FMT_YVU420: // YV12
|
case V4L2_PIX_FMT_YUV420: // YU12
|
// TODO: maybe we can speed up here by somehow save this copy?
|
ret = libyuv::I420Copy(
|
static_cast<uint8_t*>(in.y),
|
in.yStride,
|
static_cast<uint8_t*>(in.cb),
|
in.cStride,
|
static_cast<uint8_t*>(in.cr),
|
in.cStride,
|
static_cast<uint8_t*>(out.y),
|
out.yStride,
|
static_cast<uint8_t*>(out.cb),
|
out.cStride,
|
static_cast<uint8_t*>(out.cr),
|
out.cStride,
|
sz.width,
|
sz.height);
|
if (ret != 0) {
|
ALOGE("%s: copy to YV12 or YU12 buffer failed! ret %d",
|
__FUNCTION__, ret);
|
return ret;
|
}
|
break;
|
case FLEX_YUV_GENERIC:
|
// TODO: b/72261744 write to arbitrary flexible YUV layout. Slow.
|
ALOGE("%s: unsupported flexible yuv layout"
|
" y %p cb %p cr %p y_str %d c_str %d c_step %d",
|
__FUNCTION__, out.y, out.cb, out.cr,
|
out.yStride, out.cStride, out.chromaStep);
|
return -1;
|
default:
|
ALOGE("%s: unknown YUV format 0x%x!", __FUNCTION__, format);
|
return -1;
|
}
|
return 0;
|
}
|
|
int ExternalCameraDeviceSession::OutputThread::encodeJpegYU12(
|
const Size & inSz, const YCbCrLayout& inLayout,
|
int jpegQuality, const void *app1Buffer, size_t app1Size,
|
void *out, const size_t maxOutSize, size_t &actualCodeSize)
|
{
|
/* libjpeg is a C library so we use C-style "inheritance" by
|
* putting libjpeg's jpeg_destination_mgr first in our custom
|
* struct. This allows us to cast jpeg_destination_mgr* to
|
* CustomJpegDestMgr* when we get it passed to us in a callback */
|
struct CustomJpegDestMgr {
|
struct jpeg_destination_mgr mgr;
|
JOCTET *mBuffer;
|
size_t mBufferSize;
|
size_t mEncodedSize;
|
bool mSuccess;
|
} dmgr;
|
|
jpeg_compress_struct cinfo = {};
|
jpeg_error_mgr jerr;
|
|
/* Initialize error handling with standard callbacks, but
|
* then override output_message (to print to ALOG) and
|
* error_exit to set a flag and print a message instead
|
* of killing the whole process */
|
cinfo.err = jpeg_std_error(&jerr);
|
|
cinfo.err->output_message = [](j_common_ptr cinfo) {
|
char buffer[JMSG_LENGTH_MAX];
|
|
/* Create the message */
|
(*cinfo->err->format_message)(cinfo, buffer);
|
ALOGE("libjpeg error: %s", buffer);
|
};
|
cinfo.err->error_exit = [](j_common_ptr cinfo) {
|
(*cinfo->err->output_message)(cinfo);
|
if(cinfo->client_data) {
|
auto & dmgr =
|
*reinterpret_cast<CustomJpegDestMgr*>(cinfo->client_data);
|
dmgr.mSuccess = false;
|
}
|
};
|
/* Now that we initialized some callbacks, let's create our compressor */
|
jpeg_create_compress(&cinfo);
|
|
/* Initialize our destination manager */
|
dmgr.mBuffer = static_cast<JOCTET*>(out);
|
dmgr.mBufferSize = maxOutSize;
|
dmgr.mEncodedSize = 0;
|
dmgr.mSuccess = true;
|
cinfo.client_data = static_cast<void*>(&dmgr);
|
|
/* These lambdas become C-style function pointers and as per C++11 spec
|
* may not capture anything */
|
dmgr.mgr.init_destination = [](j_compress_ptr cinfo) {
|
auto & dmgr = reinterpret_cast<CustomJpegDestMgr&>(*cinfo->dest);
|
dmgr.mgr.next_output_byte = dmgr.mBuffer;
|
dmgr.mgr.free_in_buffer = dmgr.mBufferSize;
|
ALOGV("%s:%d jpeg start: %p [%zu]",
|
__FUNCTION__, __LINE__, dmgr.mBuffer, dmgr.mBufferSize);
|
};
|
|
dmgr.mgr.empty_output_buffer = [](j_compress_ptr cinfo __unused) {
|
ALOGV("%s:%d Out of buffer", __FUNCTION__, __LINE__);
|
return 0;
|
};
|
|
dmgr.mgr.term_destination = [](j_compress_ptr cinfo) {
|
auto & dmgr = reinterpret_cast<CustomJpegDestMgr&>(*cinfo->dest);
|
dmgr.mEncodedSize = dmgr.mBufferSize - dmgr.mgr.free_in_buffer;
|
ALOGV("%s:%d Done with jpeg: %zu", __FUNCTION__, __LINE__, dmgr.mEncodedSize);
|
};
|
cinfo.dest = reinterpret_cast<struct jpeg_destination_mgr*>(&dmgr);
|
|
/* We are going to be using JPEG in raw data mode, so we are passing
|
* straight subsampled planar YCbCr and it will not touch our pixel
|
* data or do any scaling or anything */
|
cinfo.image_width = inSz.width;
|
cinfo.image_height = inSz.height;
|
cinfo.input_components = 3;
|
cinfo.in_color_space = JCS_YCbCr;
|
|
/* Initialize defaults and then override what we want */
|
jpeg_set_defaults(&cinfo);
|
|
jpeg_set_quality(&cinfo, jpegQuality, 1);
|
jpeg_set_colorspace(&cinfo, JCS_YCbCr);
|
cinfo.raw_data_in = 1;
|
cinfo.dct_method = JDCT_IFAST;
|
|
/* Configure sampling factors. The sampling factor is JPEG subsampling 420
|
* because the source format is YUV420. Note that libjpeg sampling factors
|
* are... a little weird. Sampling of Y=2,U=1,V=1 means there is 1 U and
|
* 1 V value for each 2 Y values */
|
cinfo.comp_info[0].h_samp_factor = 2;
|
cinfo.comp_info[0].v_samp_factor = 2;
|
cinfo.comp_info[1].h_samp_factor = 1;
|
cinfo.comp_info[1].v_samp_factor = 1;
|
cinfo.comp_info[2].h_samp_factor = 1;
|
cinfo.comp_info[2].v_samp_factor = 1;
|
|
/* Let's not hardcode YUV420 in 6 places... 5 was enough */
|
int maxVSampFactor = std::max( {
|
cinfo.comp_info[0].v_samp_factor,
|
cinfo.comp_info[1].v_samp_factor,
|
cinfo.comp_info[2].v_samp_factor
|
});
|
int cVSubSampling = cinfo.comp_info[0].v_samp_factor /
|
cinfo.comp_info[1].v_samp_factor;
|
|
/* Start the compressor */
|
jpeg_start_compress(&cinfo, TRUE);
|
|
/* Compute our macroblock height, so we can pad our input to be vertically
|
* macroblock aligned.
|
* TODO: Does it need to be horizontally MCU aligned too? */
|
|
size_t mcuV = DCTSIZE*maxVSampFactor;
|
size_t paddedHeight = mcuV * ((inSz.height + mcuV - 1) / mcuV);
|
|
/* libjpeg uses arrays of row pointers, which makes it really easy to pad
|
* data vertically (unfortunately doesn't help horizontally) */
|
std::vector<JSAMPROW> yLines (paddedHeight);
|
std::vector<JSAMPROW> cbLines(paddedHeight/cVSubSampling);
|
std::vector<JSAMPROW> crLines(paddedHeight/cVSubSampling);
|
|
uint8_t *py = static_cast<uint8_t*>(inLayout.y);
|
uint8_t *pcr = static_cast<uint8_t*>(inLayout.cr);
|
uint8_t *pcb = static_cast<uint8_t*>(inLayout.cb);
|
|
for(uint32_t i = 0; i < paddedHeight; i++)
|
{
|
/* Once we are in the padding territory we still point to the last line
|
* effectively replicating it several times ~ CLAMP_TO_EDGE */
|
int li = std::min(i, inSz.height - 1);
|
yLines[i] = static_cast<JSAMPROW>(py + li * inLayout.yStride);
|
if(i < paddedHeight / cVSubSampling)
|
{
|
crLines[i] = static_cast<JSAMPROW>(pcr + li * inLayout.cStride);
|
cbLines[i] = static_cast<JSAMPROW>(pcb + li * inLayout.cStride);
|
}
|
}
|
|
/* If APP1 data was passed in, use it */
|
if(app1Buffer && app1Size)
|
{
|
jpeg_write_marker(&cinfo, JPEG_APP0 + 1,
|
static_cast<const JOCTET*>(app1Buffer), app1Size);
|
}
|
|
/* While we still have padded height left to go, keep giving it one
|
* macroblock at a time. */
|
while (cinfo.next_scanline < cinfo.image_height) {
|
const uint32_t batchSize = DCTSIZE * maxVSampFactor;
|
const uint32_t nl = cinfo.next_scanline;
|
JSAMPARRAY planes[3]{ &yLines[nl],
|
&cbLines[nl/cVSubSampling],
|
&crLines[nl/cVSubSampling] };
|
|
uint32_t done = jpeg_write_raw_data(&cinfo, planes, batchSize);
|
|
if (done != batchSize) {
|
ALOGE("%s: compressed %u lines, expected %u (total %u/%u)",
|
__FUNCTION__, done, batchSize, cinfo.next_scanline,
|
cinfo.image_height);
|
return -1;
|
}
|
}
|
|
/* This will flush everything */
|
jpeg_finish_compress(&cinfo);
|
|
/* Grab the actual code size and set it */
|
actualCodeSize = dmgr.mEncodedSize;
|
|
return 0;
|
}
|
|
/*
|
* TODO: There needs to be a mechanism to discover allocated buffer size
|
* in the HAL.
|
*
|
* This is very fragile because it is duplicated computation from:
|
* frameworks/av/services/camera/libcameraservice/device3/Camera3Device.cpp
|
*
|
*/
|
|
/* This assumes mSupportedFormats have all been declared as supporting
|
* HAL_PIXEL_FORMAT_BLOB to the framework */
|
Size ExternalCameraDeviceSession::getMaxJpegResolution() const {
|
Size ret { 0, 0 };
|
for(auto & fmt : mSupportedFormats) {
|
if(fmt.width * fmt.height > ret.width * ret.height) {
|
ret = Size { fmt.width, fmt.height };
|
}
|
}
|
return ret;
|
}
|
|
Size ExternalCameraDeviceSession::getMaxThumbResolution() const {
|
Size thumbSize { 0, 0 };
|
camera_metadata_ro_entry entry =
|
mCameraCharacteristics.find(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES);
|
for(uint32_t i = 0; i < entry.count; i += 2) {
|
Size sz { static_cast<uint32_t>(entry.data.i32[i]),
|
static_cast<uint32_t>(entry.data.i32[i+1]) };
|
if(sz.width * sz.height > thumbSize.width * thumbSize.height) {
|
thumbSize = sz;
|
}
|
}
|
|
if (thumbSize.width * thumbSize.height == 0) {
|
ALOGW("%s: non-zero thumbnail size not available", __FUNCTION__);
|
}
|
|
return thumbSize;
|
}
|
|
|
ssize_t ExternalCameraDeviceSession::getJpegBufferSize(
|
uint32_t width, uint32_t height) const {
|
// Constant from camera3.h
|
const ssize_t kMinJpegBufferSize = 256 * 1024 + sizeof(CameraBlob);
|
// Get max jpeg size (area-wise).
|
if (mMaxJpegResolution.width == 0) {
|
ALOGE("%s: Do not have a single supported JPEG stream",
|
__FUNCTION__);
|
return BAD_VALUE;
|
}
|
|
// Get max jpeg buffer size
|
ssize_t maxJpegBufferSize = 0;
|
camera_metadata_ro_entry jpegBufMaxSize =
|
mCameraCharacteristics.find(ANDROID_JPEG_MAX_SIZE);
|
if (jpegBufMaxSize.count == 0) {
|
ALOGE("%s: Can't find maximum JPEG size in static metadata!",
|
__FUNCTION__);
|
return BAD_VALUE;
|
}
|
maxJpegBufferSize = jpegBufMaxSize.data.i32[0];
|
|
if (maxJpegBufferSize <= kMinJpegBufferSize) {
|
ALOGE("%s: ANDROID_JPEG_MAX_SIZE (%zd) <= kMinJpegBufferSize (%zd)",
|
__FUNCTION__, maxJpegBufferSize, kMinJpegBufferSize);
|
return BAD_VALUE;
|
}
|
|
// Calculate final jpeg buffer size for the given resolution.
|
float scaleFactor = ((float) (width * height)) /
|
(mMaxJpegResolution.width * mMaxJpegResolution.height);
|
ssize_t jpegBufferSize = scaleFactor * (maxJpegBufferSize - kMinJpegBufferSize) +
|
kMinJpegBufferSize;
|
if (jpegBufferSize > maxJpegBufferSize) {
|
jpegBufferSize = maxJpegBufferSize;
|
}
|
|
return jpegBufferSize;
|
}
|
|
int ExternalCameraDeviceSession::OutputThread::createJpegLocked(
|
HalStreamBuffer &halBuf,
|
const std::shared_ptr<HalRequest>& req)
|
{
|
ATRACE_CALL();
|
int ret;
|
auto lfail = [&](auto... args) {
|
ALOGE(args...);
|
|
return 1;
|
};
|
auto parent = mParent.promote();
|
if (parent == nullptr) {
|
ALOGE("%s: session has been disconnected!", __FUNCTION__);
|
return 1;
|
}
|
|
ALOGV("%s: HAL buffer sid: %d bid: %" PRIu64 " w: %u h: %u",
|
__FUNCTION__, halBuf.streamId, static_cast<uint64_t>(halBuf.bufferId),
|
halBuf.width, halBuf.height);
|
ALOGV("%s: HAL buffer fmt: %x usage: %" PRIx64 " ptr: %p",
|
__FUNCTION__, halBuf.format, static_cast<uint64_t>(halBuf.usage),
|
halBuf.bufPtr);
|
ALOGV("%s: YV12 buffer %d x %d",
|
__FUNCTION__,
|
mYu12Frame->mWidth, mYu12Frame->mHeight);
|
|
int jpegQuality, thumbQuality;
|
Size thumbSize;
|
bool outputThumbnail = true;
|
|
if (req->setting.exists(ANDROID_JPEG_QUALITY)) {
|
camera_metadata_entry entry =
|
req->setting.find(ANDROID_JPEG_QUALITY);
|
jpegQuality = entry.data.u8[0];
|
} else {
|
return lfail("%s: ANDROID_JPEG_QUALITY not set",__FUNCTION__);
|
}
|
|
if (req->setting.exists(ANDROID_JPEG_THUMBNAIL_QUALITY)) {
|
camera_metadata_entry entry =
|
req->setting.find(ANDROID_JPEG_THUMBNAIL_QUALITY);
|
thumbQuality = entry.data.u8[0];
|
} else {
|
return lfail(
|
"%s: ANDROID_JPEG_THUMBNAIL_QUALITY not set",
|
__FUNCTION__);
|
}
|
|
if (req->setting.exists(ANDROID_JPEG_THUMBNAIL_SIZE)) {
|
camera_metadata_entry entry =
|
req->setting.find(ANDROID_JPEG_THUMBNAIL_SIZE);
|
thumbSize = Size { static_cast<uint32_t>(entry.data.i32[0]),
|
static_cast<uint32_t>(entry.data.i32[1])
|
};
|
if (thumbSize.width == 0 && thumbSize.height == 0) {
|
outputThumbnail = false;
|
}
|
} else {
|
return lfail(
|
"%s: ANDROID_JPEG_THUMBNAIL_SIZE not set", __FUNCTION__);
|
}
|
|
int jpegOrientation;
|
if (req->setting.exists(ANDROID_JPEG_ORIENTATION)) {
|
camera_metadata_entry entry =
|
req->setting.find(ANDROID_JPEG_ORIENTATION);
|
jpegOrientation = entry.data.u8[0];
|
} else {
|
return lfail("%s: ANDROID_JPEG_ORIENTATION not set",__FUNCTION__);
|
}
|
|
Size jpegSize { halBuf.width, halBuf.height };
|
|
/* Compute temporary buffer sizes accounting for the following:
|
* thumbnail can't exceed APP1 size of 64K
|
* main image needs to hold APP1, headers, and at most a poorly
|
* compressed image */
|
const ssize_t maxThumbCodeSize = 64 * 1024;
|
const ssize_t maxJpegCodeSize = mBlobBufferSize == 0 ?
|
parent->getJpegBufferSize(jpegSize.width, jpegSize.height) :
|
mBlobBufferSize;
|
|
/* Check that getJpegBufferSize did not return an error */
|
if (maxJpegCodeSize < 0) {
|
return lfail(
|
"%s: getJpegBufferSize returned %zd",__FUNCTION__,maxJpegCodeSize);
|
}
|
|
|
/* Hold actual thumbnail and main image code sizes */
|
size_t jpegCodeSize = 0;
|
/* Temporary thumbnail code buffer */
|
std::vector<uint8_t> thumbCode(outputThumbnail ? maxThumbCodeSize : 0);
|
|
/* Combine camera characteristics with request settings to form EXIF
|
* metadata */
|
common::V1_0::helper::CameraMetadata meta(parent->mCameraCharacteristics);
|
meta.append(req->setting);
|
|
/* Generate EXIF object */
|
std::unique_ptr<ExifUtils> utils(ExifUtils::create());
|
/* Make sure it's initialized */
|
utils->initialize();
|
|
utils->setFromMetadata(meta, jpegSize.width, jpegSize.height);
|
utils->setMake(mExifMake);
|
utils->setModel(mExifModel);
|
|
/* Lock the HAL jpeg code buffer */
|
void *bufPtr = sHandleImporter.lock(
|
*(halBuf.bufPtr), halBuf.usage, maxJpegCodeSize);
|
|
if (!bufPtr) {
|
return lfail("%s: could not lock %zu bytes", __FUNCTION__, maxJpegCodeSize);
|
}
|
|
/* Encode the main jpeg image */
|
JpegEncInfo sjpegInfo;
|
memset(&sjpegInfo, 0, sizeof(JpegEncInfo));
|
|
//todo: ignore scale and modify input widht/height
|
sjpegInfo.sBaseInfo.nStride = mYu12Frame->mWidth;
|
sjpegInfo.sBaseInfo.nInputWidth = mYu12Frame->mWidth;
|
sjpegInfo.sBaseInfo.nInputHeight = mYu12Frame->mHeight;
|
|
sjpegInfo.sBaseInfo.nDstWidth = jpegSize.width;
|
sjpegInfo.sBaseInfo.nDstHeight = jpegSize.height;
|
sjpegInfo.sBaseInfo.eInputFormat = VENC_PIXEL_YVU420SP;
|
|
sjpegInfo.quality = jpegQuality;
|
sjpegInfo.bEnableCorp = 0;
|
sjpegInfo.bNoUseAddrPhy = 1;
|
|
sjpegInfo.pAddrPhyY = (unsigned char *)mYu12FrameLayout.y;
|
sjpegInfo.pAddrPhyC = (unsigned char *)mYu12FrameLayout.cb;
|
sjpegInfo.pAddrVirY = (unsigned char *)mYu12FrameLayout.y;
|
sjpegInfo.pAddrVirC = (unsigned char *)mYu12FrameLayout.cb;
|
|
EXIFInfo exifInfo;
|
memset(&exifInfo, 0, sizeof(EXIFInfo));
|
//exifInfo.Orientation = jpegOrientation;
|
exifInfo.Orientation = 0;
|
exifInfo.ThumbWidth = thumbSize.width;
|
exifInfo.ThumbHeight = thumbSize.height;
|
|
time_t t;
|
struct tm *tm_t;
|
time(&t);
|
tm_t = localtime(&t);
|
char mDateTime[21];
|
sprintf(mDateTime, "%4d:%02d:%02d %02d:%02d:%02d",
|
tm_t->tm_year+1900, tm_t->tm_mon+1, tm_t->tm_mday,
|
tm_t->tm_hour, tm_t->tm_min, tm_t->tm_sec);
|
|
char property[1024];
|
char CameraMake[64];
|
char CameraModel[64];
|
if (property_get("ro.product.manufacturer", property, "") > 0)
|
{
|
strcpy(CameraMake, property);
|
}
|
if (property_get("ro.product.model", property, "") > 0)
|
{
|
strcpy(CameraModel, property);
|
}
|
|
strcpy((char*)exifInfo.CameraMake, CameraMake);
|
strcpy((char*)exifInfo.CameraModel, CameraModel);
|
strcpy((char*)exifInfo.DateTime, mDateTime);
|
|
struct timeval tv;
|
gettimeofday(&tv, NULL);
|
char subSecTime1[8];
|
char subSecTime2[8];
|
char subSecTime3[8];
|
sprintf(subSecTime1, "%06ld", tv.tv_usec);
|
sprintf(subSecTime2, "%06ld", tv.tv_usec);
|
sprintf(subSecTime3, "%06ld", tv.tv_usec);
|
strcpy((char*)exifInfo.subSecTime, subSecTime1);
|
strcpy((char*)exifInfo.subSecTimeOrig, subSecTime2);
|
strcpy((char*)exifInfo.subSecTimeDig, subSecTime3);
|
|
exifInfo.ExposureTime.num = 25;
|
exifInfo.ExposureTime.den = 100;
|
|
exifInfo.FNumber.num = 200; //eg:FNum=2.2, aperture = 220, --> num = 220,den = 100
|
exifInfo.FNumber.den = 100;
|
exifInfo.ISOSpeed = 400;
|
|
exifInfo.ExposureBiasValue.num= 25;
|
exifInfo.ExposureBiasValue.den= 100;
|
|
exifInfo.MeteringMode = 0;
|
exifInfo.FlashUsed = 0;
|
|
exifInfo.FocalLength.num = 304;
|
exifInfo.FocalLength.den = 100;
|
|
exifInfo.DigitalZoomRatio.num = 0;
|
exifInfo.DigitalZoomRatio.den = 0;
|
|
exifInfo.WhiteBalance = 0;
|
exifInfo.ExposureMode = 0;
|
|
int bufSize = 0;
|
ret = AWJpecEnc(&sjpegInfo, &exifInfo, bufPtr, &bufSize);
|
|
/* TODO: Not sure this belongs here, maybe better to pass jpegCodeSize out
|
* and do this when returning buffer to parent */
|
CameraBlob blob { CameraBlobId::JPEG, static_cast<uint32_t>(jpegCodeSize) };
|
void *blobDst =
|
reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(bufPtr) +
|
maxJpegCodeSize -
|
sizeof(CameraBlob));
|
memcpy(blobDst, &blob, sizeof(CameraBlob));
|
|
/* Unlock the HAL jpeg code buffer */
|
int relFence = sHandleImporter.unlock(*(halBuf.bufPtr));
|
if (relFence >= 0) {
|
halBuf.acquireFence = relFence;
|
}
|
|
/* Check if our JPEG actually succeeded */
|
if (ret != 0) {
|
return lfail(
|
"%s: encodeJpegYU12 failed with %d",__FUNCTION__, ret);
|
}
|
|
ALOGV("%s: encoded JPEG (ret:%d) with Q:%d max size: %zu",
|
__FUNCTION__, ret, jpegQuality, maxJpegCodeSize);
|
|
return 0;
|
}
|
|
bool ExternalCameraDeviceSession::OutputThread::threadLoop() {
|
std::shared_ptr<HalRequest> req;
|
auto parent = mParent.promote();
|
if (parent == nullptr) {
|
ALOGE("%s: session has been disconnected!", __FUNCTION__);
|
return false;
|
}
|
|
// TODO: maybe we need to setup a sensor thread to dq/enq v4l frames
|
// regularly to prevent v4l buffer queue filled with stale buffers
|
// when app doesn't program a preveiw request
|
waitForNextRequest(&req);
|
if (req == nullptr) {
|
// No new request, wait again
|
return true;
|
}
|
|
auto onDeviceError = [&](auto... args) {
|
ALOGE(args...);
|
parent->notifyError(
|
req->frameNumber, /*stream*/-1, ErrorCode::ERROR_DEVICE);
|
signalRequestDone();
|
return false;
|
};
|
|
if (req->frameIn->mFourcc != V4L2_PIX_FMT_MJPEG && req->frameIn->mFourcc != V4L2_PIX_FMT_Z16) {
|
return onDeviceError("%s: do not support V4L2 format %c%c%c%c", __FUNCTION__,
|
req->frameIn->mFourcc & 0xFF,
|
(req->frameIn->mFourcc >> 8) & 0xFF,
|
(req->frameIn->mFourcc >> 16) & 0xFF,
|
(req->frameIn->mFourcc >> 24) & 0xFF);
|
}
|
|
int res = requestBufferStart(req->buffers);
|
if (res != 0) {
|
ALOGE("%s: send BufferRequest failed! res %d", __FUNCTION__, res);
|
return onDeviceError("%s: failed to send buffer request!", __FUNCTION__);
|
}
|
|
std::unique_lock<std::mutex> lk(mBufferLock);
|
// Convert input V4L2 frame to YU12 of the same size
|
// TODO: see if we can save some computation by converting to YV12 here
|
uint8_t* inData;
|
size_t inDataSize;
|
if (req->frameIn->map(&inData, &inDataSize) != 0) {
|
lk.unlock();
|
return onDeviceError("%s: V4L2 buffer map failed", __FUNCTION__);
|
}
|
parent->mDataInfo.nLength = inDataSize;
|
// TODO: in some special case maybe we can decode jpg directly to gralloc output?
|
if (req->frameIn->mFourcc == V4L2_PIX_FMT_MJPEG) {
|
ATRACE_BEGIN("MJPGtoNV21");
|
Libve_dec2(&(parent->mDecoder),
|
inData,
|
(void*)(mYu12FrameLayout.y),
|
(void*)(mYu12FrameLayout.cb),
|
(void*)(mYu12FrameLayout.cr),
|
&parent->mVideoInfo,
|
&parent->mDataInfo,
|
&parent->mVideoConf);
|
ATRACE_END();
|
|
if (res != 0) {
|
// For some webcam, the first few V4L2 frames might be malformed...
|
ALOGE("%s: Convert V4L2 frame to YU12 failed! res %d", __FUNCTION__, res);
|
lk.unlock();
|
Status st = parent->processCaptureRequestError(req);
|
if (st != Status::OK) {
|
return onDeviceError("%s: failed to process capture request error!", __FUNCTION__);
|
}
|
signalRequestDone();
|
return true;
|
}
|
}
|
|
ATRACE_BEGIN("Wait for BufferRequest done");
|
res = waitForBufferRequestDone(&req->buffers);
|
ATRACE_END();
|
|
if (res != 0) {
|
ALOGE("%s: wait for BufferRequest done failed! res %d", __FUNCTION__, res);
|
lk.unlock();
|
return onDeviceError("%s: failed to process buffer request error!", __FUNCTION__);
|
}
|
|
ALOGV("%s processing new request", __FUNCTION__);
|
const int kSyncWaitTimeoutMs = 500;
|
for (auto& halBuf : req->buffers) {
|
if (*(halBuf.bufPtr) == nullptr) {
|
ALOGW("%s: buffer for stream %d missing", __FUNCTION__, halBuf.streamId);
|
halBuf.fenceTimeout = true;
|
} else if (halBuf.acquireFence >= 0) {
|
int ret = sync_wait(halBuf.acquireFence, kSyncWaitTimeoutMs);
|
if (ret) {
|
halBuf.fenceTimeout = true;
|
} else {
|
::close(halBuf.acquireFence);
|
halBuf.acquireFence = -1;
|
}
|
}
|
|
if (halBuf.fenceTimeout) {
|
continue;
|
}
|
|
// Gralloc lockYCbCr the buffer
|
switch (halBuf.format) {
|
case PixelFormat::BLOB: {
|
int ret = createJpegLocked(halBuf, req);
|
|
if(ret != 0) {
|
lk.unlock();
|
return onDeviceError("%s: createJpegLocked failed with %d",
|
__FUNCTION__, ret);
|
}
|
} break;
|
case PixelFormat::Y16:
|
case PixelFormat::YCBCR_420_888:
|
case PixelFormat::YV12:{
|
void* outLayout = sHandleImporter.lock(*(halBuf.bufPtr), halBuf.usage, inDataSize);
|
int yuv_size = mYu12Frame->mWidth * mYu12Frame->mHeight * 3/2;
|
std::memcpy(outLayout, (void*)(mYu12FrameLayout.y),yuv_size);
|
|
int relFence = sHandleImporter.unlock(*(halBuf.bufPtr));
|
if (relFence >= 0) {
|
halBuf.acquireFence = relFence;
|
}
|
} break;
|
default:
|
lk.unlock();
|
return onDeviceError("%s: unknown output format %x", __FUNCTION__, halBuf.format);
|
}
|
} // for each buffer
|
mScaledYu12Frames.clear();
|
|
// Don't hold the lock while calling back to parent
|
lk.unlock();
|
Status st = parent->processCaptureResult(req);
|
if (st != Status::OK) {
|
return onDeviceError("%s: failed to process capture result!", __FUNCTION__);
|
}
|
signalRequestDone();
|
return true;
|
}
|
|
Status ExternalCameraDeviceSession::OutputThread::allocateIntermediateBuffers(
|
const Size& v4lSize, const Size& thumbSize,
|
const hidl_vec<Stream>& streams,
|
uint32_t blobBufferSize) {
|
std::lock_guard<std::mutex> lk(mBufferLock);
|
if (mScaledYu12Frames.size() != 0) {
|
ALOGE("%s: intermediate buffer pool has %zu inflight buffers! (expect 0)",
|
__FUNCTION__, mScaledYu12Frames.size());
|
return Status::INTERNAL_ERROR;
|
}
|
|
// Allocating intermediate YU12 frame
|
if (mYu12Frame == nullptr || mYu12Frame->mWidth != v4lSize.width ||
|
mYu12Frame->mHeight != v4lSize.height) {
|
mYu12Frame.clear();
|
mYu12Frame = new AllocatedFrame(v4lSize.width, v4lSize.height);
|
int ret = mYu12Frame->allocate(&mYu12FrameLayout);
|
if (ret != 0) {
|
ALOGE("%s: allocating YU12 frame failed!", __FUNCTION__);
|
return Status::INTERNAL_ERROR;
|
}
|
}
|
|
// Allocating intermediate YU12 thumbnail frame
|
if (mYu12ThumbFrame == nullptr ||
|
mYu12ThumbFrame->mWidth != thumbSize.width ||
|
mYu12ThumbFrame->mHeight != thumbSize.height) {
|
mYu12ThumbFrame.clear();
|
mYu12ThumbFrame = new AllocatedFrame(thumbSize.width, thumbSize.height);
|
int ret = mYu12ThumbFrame->allocate(&mYu12ThumbFrameLayout);
|
if (ret != 0) {
|
ALOGE("%s: allocating YU12 thumb frame failed!", __FUNCTION__);
|
return Status::INTERNAL_ERROR;
|
}
|
}
|
|
// Allocating scaled buffers
|
for (const auto& stream : streams) {
|
Size sz = {stream.width, stream.height};
|
if (sz == v4lSize) {
|
continue; // Don't need an intermediate buffer same size as v4lBuffer
|
}
|
if (mIntermediateBuffers.count(sz) == 0) {
|
// Create new intermediate buffer
|
sp<AllocatedFrame> buf = new AllocatedFrame(stream.width, stream.height);
|
int ret = buf->allocate();
|
if (ret != 0) {
|
ALOGE("%s: allocating intermediate YU12 frame %dx%d failed!",
|
__FUNCTION__, stream.width, stream.height);
|
return Status::INTERNAL_ERROR;
|
}
|
mIntermediateBuffers[sz] = buf;
|
}
|
}
|
|
// Remove unconfigured buffers
|
auto it = mIntermediateBuffers.begin();
|
while (it != mIntermediateBuffers.end()) {
|
bool configured = false;
|
auto sz = it->first;
|
for (const auto& stream : streams) {
|
if (stream.width == sz.width && stream.height == sz.height) {
|
configured = true;
|
break;
|
}
|
}
|
if (configured) {
|
it++;
|
} else {
|
it = mIntermediateBuffers.erase(it);
|
}
|
}
|
|
mBlobBufferSize = blobBufferSize;
|
return Status::OK;
|
}
|
|
Status ExternalCameraDeviceSession::OutputThread::submitRequest(
|
const std::shared_ptr<HalRequest>& req) {
|
std::unique_lock<std::mutex> lk(mRequestListLock);
|
mRequestList.push_back(req);
|
lk.unlock();
|
mRequestCond.notify_one();
|
return Status::OK;
|
}
|
|
void ExternalCameraDeviceSession::OutputThread::flush() {
|
ATRACE_CALL();
|
auto parent = mParent.promote();
|
if (parent == nullptr) {
|
ALOGE("%s: session has been disconnected!", __FUNCTION__);
|
return;
|
}
|
|
std::unique_lock<std::mutex> lk(mRequestListLock);
|
std::list<std::shared_ptr<HalRequest>> reqs = std::move(mRequestList);
|
mRequestList.clear();
|
if (mProcessingRequest) {
|
std::chrono::seconds timeout = std::chrono::seconds(kFlushWaitTimeoutSec);
|
auto st = mRequestDoneCond.wait_for(lk, timeout);
|
if (st == std::cv_status::timeout) {
|
ALOGE("%s: wait for inflight request finish timeout!", __FUNCTION__);
|
}
|
}
|
|
ALOGV("%s: flusing inflight requests", __FUNCTION__);
|
lk.unlock();
|
for (const auto& req : reqs) {
|
parent->processCaptureRequestError(req);
|
}
|
}
|
|
void ExternalCameraDeviceSession::OutputThread::waitForNextRequest(
|
std::shared_ptr<HalRequest>* out) {
|
ATRACE_CALL();
|
if (out == nullptr) {
|
ALOGE("%s: out is null", __FUNCTION__);
|
return;
|
}
|
|
std::unique_lock<std::mutex> lk(mRequestListLock);
|
int waitTimes = 0;
|
while (mRequestList.empty()) {
|
if (exitPending()) {
|
return;
|
}
|
std::chrono::milliseconds timeout = std::chrono::milliseconds(kReqWaitTimeoutMs);
|
auto st = mRequestCond.wait_for(lk, timeout);
|
if (st == std::cv_status::timeout) {
|
waitTimes++;
|
if (waitTimes == kReqWaitTimesMax) {
|
// no new request, return
|
return;
|
}
|
}
|
}
|
*out = mRequestList.front();
|
mRequestList.pop_front();
|
mProcessingRequest = true;
|
mProcessingFrameNumer = (*out)->frameNumber;
|
}
|
|
void ExternalCameraDeviceSession::OutputThread::signalRequestDone() {
|
std::unique_lock<std::mutex> lk(mRequestListLock);
|
mProcessingRequest = false;
|
mProcessingFrameNumer = 0;
|
lk.unlock();
|
mRequestDoneCond.notify_one();
|
}
|
|
void ExternalCameraDeviceSession::OutputThread::dump(int fd) {
|
std::lock_guard<std::mutex> lk(mRequestListLock);
|
if (mProcessingRequest) {
|
dprintf(fd, "OutputThread processing frame %d\n", mProcessingFrameNumer);
|
} else {
|
dprintf(fd, "OutputThread not processing any frames\n");
|
}
|
dprintf(fd, "OutputThread request list contains frame: ");
|
for (const auto& req : mRequestList) {
|
dprintf(fd, "%d, ", req->frameNumber);
|
}
|
dprintf(fd, "\n");
|
}
|
|
void ExternalCameraDeviceSession::cleanupBuffersLocked(int id) {
|
for (auto& pair : mCirculatingBuffers.at(id)) {
|
sHandleImporter.freeBuffer(pair.second);
|
}
|
mCirculatingBuffers[id].clear();
|
mCirculatingBuffers.erase(id);
|
}
|
|
void ExternalCameraDeviceSession::updateBufferCaches(const hidl_vec<BufferCache>& cachesToRemove) {
|
Mutex::Autolock _l(mCbsLock);
|
for (auto& cache : cachesToRemove) {
|
auto cbsIt = mCirculatingBuffers.find(cache.streamId);
|
if (cbsIt == mCirculatingBuffers.end()) {
|
// The stream could have been removed
|
continue;
|
}
|
CirculatingBuffers& cbs = cbsIt->second;
|
auto it = cbs.find(cache.bufferId);
|
if (it != cbs.end()) {
|
sHandleImporter.freeBuffer(it->second);
|
cbs.erase(it);
|
} else {
|
ALOGE("%s: stream %d buffer %" PRIu64 " is not cached",
|
__FUNCTION__, cache.streamId, cache.bufferId);
|
}
|
}
|
}
|
|
bool ExternalCameraDeviceSession::isSupported(const Stream& stream,
|
const std::vector<SupportedV4L2Format>& supportedFormats,
|
const ExternalCameraConfig& devCfg) {
|
int32_t ds = static_cast<int32_t>(stream.dataSpace);
|
PixelFormat fmt = stream.format;
|
uint32_t width = stream.width;
|
uint32_t height = stream.height;
|
// TODO: check usage flags
|
|
if (stream.streamType != StreamType::OUTPUT) {
|
ALOGE("%s: does not support non-output stream type", __FUNCTION__);
|
return false;
|
}
|
|
if (stream.rotation != StreamRotation::ROTATION_0) {
|
ALOGE("%s: does not support stream rotation", __FUNCTION__);
|
return false;
|
}
|
|
switch (fmt) {
|
case PixelFormat::BLOB:
|
if (ds != static_cast<int32_t>(Dataspace::V0_JFIF)) {
|
ALOGI("%s: BLOB format does not support dataSpace %x", __FUNCTION__, ds);
|
return false;
|
}
|
break;
|
case PixelFormat::IMPLEMENTATION_DEFINED:
|
case PixelFormat::YCBCR_420_888:
|
case PixelFormat::YV12:
|
// TODO: check what dataspace we can support here.
|
// intentional no-ops.
|
break;
|
case PixelFormat::Y16:
|
if (!devCfg.depthEnabled) {
|
ALOGI("%s: Depth is not Enabled", __FUNCTION__);
|
return false;
|
}
|
if (!(ds & Dataspace::DEPTH)) {
|
ALOGI("%s: Y16 supports only dataSpace DEPTH", __FUNCTION__);
|
return false;
|
}
|
break;
|
default:
|
ALOGI("%s: does not support format %x", __FUNCTION__, fmt);
|
return false;
|
}
|
|
// Assume we can convert any V4L2 format to any of supported output format for now, i.e,
|
// ignoring v4l2Fmt.fourcc for now. Might need more subtle check if we support more v4l format
|
// in the futrue.
|
for (const auto& v4l2Fmt : supportedFormats) {
|
if (width == v4l2Fmt.width && height == v4l2Fmt.height) {
|
return true;
|
}
|
}
|
ALOGI("%s: resolution %dx%d is not supported", __FUNCTION__, width, height);
|
return false;
|
}
|
|
int ExternalCameraDeviceSession::v4l2StreamOffLocked() {
|
if (!mV4l2Streaming) {
|
return OK;
|
}
|
|
{
|
std::lock_guard<std::mutex> lk(mV4l2BufferLock);
|
if (mNumDequeuedV4l2Buffers != 0) {
|
ALOGE("%s: there are %zu inflight V4L buffers",
|
__FUNCTION__, mNumDequeuedV4l2Buffers);
|
return -1;
|
}
|
}
|
mV4L2BufferCount = 0;
|
|
// VIDIOC_STREAMOFF
|
v4l2_buf_type capture_type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
|
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_STREAMOFF, &capture_type)) < 0) {
|
ALOGE("%s: STREAMOFF failed: %s", __FUNCTION__, strerror(errno));
|
return -errno;
|
}
|
|
// VIDIOC_REQBUFS: clear buffers
|
v4l2_requestbuffers req_buffers{};
|
req_buffers.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
|
req_buffers.memory = V4L2_MEMORY_MMAP;
|
req_buffers.count = 0;
|
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_REQBUFS, &req_buffers)) < 0) {
|
ALOGE("%s: REQBUFS failed: %s", __FUNCTION__, strerror(errno));
|
return -errno;
|
}
|
|
mV4l2Streaming = false;
|
return OK;
|
}
|
|
int ExternalCameraDeviceSession::setV4l2FpsLocked(double fps) {
|
// VIDIOC_G_PARM/VIDIOC_S_PARM: set fps
|
v4l2_streamparm streamparm = { .type = V4L2_BUF_TYPE_VIDEO_CAPTURE };
|
// The following line checks that the driver knows about framerate get/set.
|
int ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_G_PARM, &streamparm));
|
if (ret != 0) {
|
if (errno == -EINVAL) {
|
ALOGW("%s: device does not support VIDIOC_G_PARM", __FUNCTION__);
|
}
|
return -errno;
|
}
|
// Now check if the device is able to accept a capture framerate set.
|
if (!(streamparm.parm.capture.capability & V4L2_CAP_TIMEPERFRAME)) {
|
ALOGW("%s: device does not support V4L2_CAP_TIMEPERFRAME", __FUNCTION__);
|
return -EINVAL;
|
}
|
|
// fps is float, approximate by a fraction.
|
const int kFrameRatePrecision = 10000;
|
streamparm.parm.capture.timeperframe.numerator = kFrameRatePrecision;
|
streamparm.parm.capture.timeperframe.denominator =
|
(fps * kFrameRatePrecision);
|
|
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_S_PARM, &streamparm)) < 0) {
|
ALOGE("%s: failed to set framerate to %f: %s", __FUNCTION__, fps, strerror(errno));
|
return -1;
|
}
|
|
double retFps = streamparm.parm.capture.timeperframe.denominator /
|
static_cast<double>(streamparm.parm.capture.timeperframe.numerator);
|
if (std::fabs(fps - retFps) > 1.0) {
|
ALOGE("%s: expect fps %f, got %f instead", __FUNCTION__, fps, retFps);
|
return -1;
|
}
|
mV4l2StreamingFps = fps;
|
return 0;
|
}
|
|
int ExternalCameraDeviceSession::configureV4l2StreamLocked(
|
const SupportedV4L2Format& v4l2Fmt, double requestFps) {
|
ATRACE_CALL();
|
int ret = v4l2StreamOffLocked();
|
if (ret != OK) {
|
ALOGE("%s: stop v4l2 streaming failed: ret %d", __FUNCTION__, ret);
|
return ret;
|
}
|
|
// VIDIOC_S_FMT w/h/fmt
|
v4l2_format fmt;
|
fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
|
fmt.fmt.pix.width = v4l2Fmt.width;
|
fmt.fmt.pix.height = v4l2Fmt.height;
|
fmt.fmt.pix.pixelformat = v4l2Fmt.fourcc;
|
ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_S_FMT, &fmt));
|
if (ret < 0) {
|
int numAttempt = 0;
|
while (ret < 0) {
|
ALOGW("%s: VIDIOC_S_FMT failed, wait 33ms and try again", __FUNCTION__);
|
usleep(IOCTL_RETRY_SLEEP_US); // sleep and try again
|
ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_S_FMT, &fmt));
|
if (numAttempt == MAX_RETRY) {
|
break;
|
}
|
numAttempt++;
|
}
|
if (ret < 0) {
|
ALOGE("%s: S_FMT ioctl failed: %s", __FUNCTION__, strerror(errno));
|
return -errno;
|
}
|
}
|
|
if (v4l2Fmt.width != fmt.fmt.pix.width || v4l2Fmt.height != fmt.fmt.pix.height ||
|
v4l2Fmt.fourcc != fmt.fmt.pix.pixelformat) {
|
ALOGE("%s: S_FMT expect %c%c%c%c %dx%d, got %c%c%c%c %dx%d instead!", __FUNCTION__,
|
v4l2Fmt.fourcc & 0xFF,
|
(v4l2Fmt.fourcc >> 8) & 0xFF,
|
(v4l2Fmt.fourcc >> 16) & 0xFF,
|
(v4l2Fmt.fourcc >> 24) & 0xFF,
|
v4l2Fmt.width, v4l2Fmt.height,
|
fmt.fmt.pix.pixelformat & 0xFF,
|
(fmt.fmt.pix.pixelformat >> 8) & 0xFF,
|
(fmt.fmt.pix.pixelformat >> 16) & 0xFF,
|
(fmt.fmt.pix.pixelformat >> 24) & 0xFF,
|
fmt.fmt.pix.width, fmt.fmt.pix.height);
|
return -EINVAL;
|
}
|
uint32_t bufferSize = fmt.fmt.pix.sizeimage;
|
ALOGI("%s: V4L2 buffer size is %d", __FUNCTION__, bufferSize);
|
//uint32_t expectedMaxBufferSize = kMaxBytesPerPixel * fmt.fmt.pix.width * fmt.fmt.pix.height;
|
// if ((bufferSize == 0) || (bufferSize > expectedMaxBufferSize)) {
|
// ALOGE("%s: V4L2 buffer size: %u looks invalid. Expected maximum size: %u", __FUNCTION__,
|
// bufferSize, expectedMaxBufferSize);
|
// return -EINVAL;
|
// }
|
mMaxV4L2BufferSize = bufferSize;
|
|
const double kDefaultFps = 30.0;
|
double fps = 1000.0;
|
if (requestFps != 0.0) {
|
fps = requestFps;
|
} else {
|
double maxFps = -1.0;
|
// Try to pick the slowest fps that is at least 30
|
for (const auto& fr : v4l2Fmt.frameRates) {
|
double f = fr.getDouble();
|
if (maxFps < f) {
|
maxFps = f;
|
}
|
if (f >= kDefaultFps && f < fps) {
|
fps = f;
|
}
|
}
|
if (fps == 1000.0) {
|
fps = maxFps;
|
}
|
}
|
|
int fpsRet = setV4l2FpsLocked(fps);
|
if (fpsRet != 0 && fpsRet != -EINVAL) {
|
ALOGE("%s: set fps failed: %s", __FUNCTION__, strerror(fpsRet));
|
return fpsRet;
|
}
|
|
uint32_t v4lBufferCount = (fps >= kDefaultFps) ?
|
mCfg.numVideoBuffers : mCfg.numStillBuffers;
|
// VIDIOC_REQBUFS: create buffers
|
v4l2_requestbuffers req_buffers{};
|
req_buffers.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
|
req_buffers.memory = V4L2_MEMORY_MMAP;
|
req_buffers.count = v4lBufferCount;
|
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_REQBUFS, &req_buffers)) < 0) {
|
ALOGE("%s: VIDIOC_REQBUFS failed: %s", __FUNCTION__, strerror(errno));
|
return -errno;
|
}
|
|
// Driver can indeed return more buffer if it needs more to operate
|
if (req_buffers.count < v4lBufferCount) {
|
ALOGE("%s: VIDIOC_REQBUFS expected %d buffers, got %d instead",
|
__FUNCTION__, v4lBufferCount, req_buffers.count);
|
return NO_MEMORY;
|
}
|
|
// VIDIOC_QUERYBUF: get buffer offset in the V4L2 fd
|
// VIDIOC_QBUF: send buffer to driver
|
mV4L2BufferCount = req_buffers.count;
|
for (uint32_t i = 0; i < req_buffers.count; i++) {
|
v4l2_buffer buffer = {
|
.type = V4L2_BUF_TYPE_VIDEO_CAPTURE,
|
.index = i,
|
.memory = V4L2_MEMORY_MMAP};
|
|
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QUERYBUF, &buffer)) < 0) {
|
ALOGE("%s: QUERYBUF %d failed: %s", __FUNCTION__, i, strerror(errno));
|
return -errno;
|
}
|
|
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) {
|
ALOGE("%s: QBUF %d failed: %s", __FUNCTION__, i, strerror(errno));
|
return -errno;
|
}
|
}
|
|
// VIDIOC_STREAMON: start streaming
|
v4l2_buf_type capture_type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
|
ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_STREAMON, &capture_type));
|
if (ret < 0) {
|
int numAttempt = 0;
|
while (ret < 0) {
|
ALOGW("%s: VIDIOC_STREAMON failed, wait 33ms and try again", __FUNCTION__);
|
usleep(IOCTL_RETRY_SLEEP_US); // sleep 100 ms and try again
|
ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_STREAMON, &capture_type));
|
if (numAttempt == MAX_RETRY) {
|
break;
|
}
|
numAttempt++;
|
}
|
if (ret < 0) {
|
ALOGE("%s: VIDIOC_STREAMON ioctl failed: %s", __FUNCTION__, strerror(errno));
|
return -errno;
|
}
|
}
|
|
// Swallow first few frames after streamOn to account for bad frames from some devices
|
for (int i = 0; i < kBadFramesAfterStreamOn; i++) {
|
v4l2_buffer buffer{};
|
buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
|
buffer.memory = V4L2_MEMORY_MMAP;
|
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_DQBUF, &buffer)) < 0) {
|
ALOGE("%s: DQBUF fails: %s", __FUNCTION__, strerror(errno));
|
return -errno;
|
}
|
|
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) {
|
ALOGE("%s: QBUF index %d fails: %s", __FUNCTION__, buffer.index, strerror(errno));
|
return -errno;
|
}
|
}
|
|
ALOGI("%s: start V4L2 streaming %dx%d@%ffps",
|
__FUNCTION__, v4l2Fmt.width, v4l2Fmt.height, fps);
|
mV4l2StreamingFmt = v4l2Fmt;
|
mV4l2Streaming = true;
|
return OK;
|
}
|
|
sp<V4L2Frame> ExternalCameraDeviceSession::dequeueV4l2FrameLocked(/*out*/nsecs_t* shutterTs) {
|
ATRACE_CALL();
|
sp<V4L2Frame> ret = nullptr;
|
|
if (shutterTs == nullptr) {
|
ALOGE("%s: shutterTs must not be null!", __FUNCTION__);
|
return ret;
|
}
|
|
{
|
std::unique_lock<std::mutex> lk(mV4l2BufferLock);
|
if (mNumDequeuedV4l2Buffers == mV4L2BufferCount) {
|
int waitRet = waitForV4L2BufferReturnLocked(lk);
|
if (waitRet != 0) {
|
return ret;
|
}
|
}
|
}
|
|
ATRACE_BEGIN("VIDIOC_DQBUF");
|
v4l2_buffer buffer{};
|
buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
|
buffer.memory = V4L2_MEMORY_MMAP;
|
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_DQBUF, &buffer)) < 0) {
|
ALOGE("%s: DQBUF fails: %s", __FUNCTION__, strerror(errno));
|
return ret;
|
}
|
ATRACE_END();
|
mDataInfo.nPts =(int64_t)systemTime()/1000;
|
|
if (buffer.index >= mV4L2BufferCount) {
|
ALOGE("%s: Invalid buffer id: %d", __FUNCTION__, buffer.index);
|
return ret;
|
}
|
|
if (buffer.flags & V4L2_BUF_FLAG_ERROR) {
|
ALOGE("%s: v4l2 buf error! buf flag 0x%x", __FUNCTION__, buffer.flags);
|
// TODO: try to dequeue again
|
}
|
|
if (buffer.bytesused > mMaxV4L2BufferSize) {
|
ALOGE("%s: v4l2 buffer bytes used: %u maximum %u", __FUNCTION__, buffer.bytesused,
|
mMaxV4L2BufferSize);
|
return ret;
|
}
|
|
if (buffer.flags & V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC) {
|
// Ideally we should also check for V4L2_BUF_FLAG_TSTAMP_SRC_SOE, but
|
// even V4L2_BUF_FLAG_TSTAMP_SRC_EOF is better than capture a timestamp now
|
*shutterTs = static_cast<nsecs_t>(buffer.timestamp.tv_sec)*1000000000LL +
|
buffer.timestamp.tv_usec * 1000LL;
|
} else {
|
*shutterTs = systemTime(SYSTEM_TIME_MONOTONIC);
|
}
|
|
{
|
std::lock_guard<std::mutex> lk(mV4l2BufferLock);
|
mNumDequeuedV4l2Buffers++;
|
}
|
return new V4L2Frame(
|
mV4l2StreamingFmt.width, mV4l2StreamingFmt.height, mV4l2StreamingFmt.fourcc,
|
buffer.index, mV4l2Fd.get(), buffer.bytesused, buffer.m.offset);
|
}
|
|
void ExternalCameraDeviceSession::enqueueV4l2Frame(const sp<V4L2Frame>& frame) {
|
ATRACE_CALL();
|
frame->unmap();
|
ATRACE_BEGIN("VIDIOC_QBUF");
|
v4l2_buffer buffer{};
|
buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
|
buffer.memory = V4L2_MEMORY_MMAP;
|
buffer.index = frame->mBufferIndex;
|
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) {
|
ALOGE("%s: QBUF index %d fails: %s", __FUNCTION__,
|
frame->mBufferIndex, strerror(errno));
|
return;
|
}
|
ATRACE_END();
|
|
{
|
std::lock_guard<std::mutex> lk(mV4l2BufferLock);
|
mNumDequeuedV4l2Buffers--;
|
}
|
mV4L2BufferReturned.notify_one();
|
}
|
|
Status ExternalCameraDeviceSession::isStreamCombinationSupported(
|
const V3_2::StreamConfiguration& config,
|
const std::vector<SupportedV4L2Format>& supportedFormats,
|
const ExternalCameraConfig& devCfg) {
|
if (config.operationMode != StreamConfigurationMode::NORMAL_MODE) {
|
ALOGE("%s: unsupported operation mode: %d", __FUNCTION__, config.operationMode);
|
return Status::ILLEGAL_ARGUMENT;
|
}
|
|
if (config.streams.size() == 0) {
|
ALOGE("%s: cannot configure zero stream", __FUNCTION__);
|
return Status::ILLEGAL_ARGUMENT;
|
}
|
|
int numProcessedStream = 0;
|
int numStallStream = 0;
|
for (const auto& stream : config.streams) {
|
// Check if the format/width/height combo is supported
|
if (!isSupported(stream, supportedFormats, devCfg)) {
|
return Status::ILLEGAL_ARGUMENT;
|
}
|
if (stream.format == PixelFormat::BLOB) {
|
numStallStream++;
|
} else {
|
numProcessedStream++;
|
}
|
}
|
|
if (numProcessedStream > kMaxProcessedStream) {
|
ALOGE("%s: too many processed streams (expect <= %d, got %d)", __FUNCTION__,
|
kMaxProcessedStream, numProcessedStream);
|
return Status::ILLEGAL_ARGUMENT;
|
}
|
|
if (numStallStream > kMaxStallStream) {
|
ALOGE("%s: too many stall streams (expect <= %d, got %d)", __FUNCTION__,
|
kMaxStallStream, numStallStream);
|
return Status::ILLEGAL_ARGUMENT;
|
}
|
|
return Status::OK;
|
}
|
|
Status ExternalCameraDeviceSession::configureStreams(
|
const V3_2::StreamConfiguration& config,
|
V3_3::HalStreamConfiguration* out,
|
uint32_t blobBufferSize) {
|
ATRACE_CALL();
|
|
Status status = isStreamCombinationSupported(config, mSupportedFormats, mCfg);
|
if (status != Status::OK) {
|
return status;
|
}
|
|
status = initStatus();
|
if (status != Status::OK) {
|
return status;
|
}
|
|
|
{
|
std::lock_guard<std::mutex> lk(mInflightFramesLock);
|
if (!mInflightFrames.empty()) {
|
ALOGE("%s: trying to configureStreams while there are still %zu inflight frames!",
|
__FUNCTION__, mInflightFrames.size());
|
return Status::INTERNAL_ERROR;
|
}
|
}
|
|
Mutex::Autolock _l(mLock);
|
{
|
Mutex::Autolock _l(mCbsLock);
|
// Add new streams
|
for (const auto& stream : config.streams) {
|
if (mStreamMap.count(stream.id) == 0) {
|
mStreamMap[stream.id] = stream;
|
mCirculatingBuffers.emplace(stream.id, CirculatingBuffers{});
|
}
|
}
|
|
// Cleanup removed streams
|
for(auto it = mStreamMap.begin(); it != mStreamMap.end();) {
|
int id = it->first;
|
bool found = false;
|
for (const auto& stream : config.streams) {
|
if (id == stream.id) {
|
found = true;
|
break;
|
}
|
}
|
if (!found) {
|
// Unmap all buffers of deleted stream
|
cleanupBuffersLocked(id);
|
it = mStreamMap.erase(it);
|
} else {
|
++it;
|
}
|
}
|
}
|
|
// Now select a V4L2 format to produce all output streams
|
float desiredAr = (mCroppingType == VERTICAL) ? kMaxAspectRatio : kMinAspectRatio;
|
uint32_t maxDim = 0;
|
for (const auto& stream : config.streams) {
|
float aspectRatio = ASPECT_RATIO(stream);
|
ALOGI("%s: request stream %dx%d", __FUNCTION__, stream.width, stream.height);
|
if ((mCroppingType == VERTICAL && aspectRatio < desiredAr) ||
|
(mCroppingType == HORIZONTAL && aspectRatio > desiredAr)) {
|
desiredAr = aspectRatio;
|
}
|
|
// The dimension that's not cropped
|
uint32_t dim = (mCroppingType == VERTICAL) ? stream.width : stream.height;
|
if (dim > maxDim) {
|
maxDim = dim;
|
}
|
}
|
// Find the smallest format that matches the desired aspect ratio and is wide/high enough
|
SupportedV4L2Format v4l2Fmt {.width = 0, .height = 0};
|
for (const auto& fmt : mSupportedFormats) {
|
uint32_t dim = (mCroppingType == VERTICAL) ? fmt.width : fmt.height;
|
if (dim >= maxDim) {
|
float aspectRatio = ASPECT_RATIO(fmt);
|
if (isAspectRatioClose(aspectRatio, desiredAr)) {
|
v4l2Fmt = fmt;
|
// since mSupportedFormats is sorted by width then height, the first matching fmt
|
// will be the smallest one with matching aspect ratio
|
break;
|
}
|
}
|
}
|
if (v4l2Fmt.width == 0) {
|
// Cannot find exact good aspect ratio candidate, try to find a close one
|
for (const auto& fmt : mSupportedFormats) {
|
uint32_t dim = (mCroppingType == VERTICAL) ? fmt.width : fmt.height;
|
if (dim >= maxDim) {
|
float aspectRatio = ASPECT_RATIO(fmt);
|
if ((mCroppingType == VERTICAL && aspectRatio < desiredAr) ||
|
(mCroppingType == HORIZONTAL && aspectRatio > desiredAr)) {
|
v4l2Fmt = fmt;
|
break;
|
}
|
}
|
}
|
}
|
|
if (v4l2Fmt.width == 0) {
|
ALOGE("%s: unable to find a resolution matching (%s at least %d, aspect ratio %f)"
|
, __FUNCTION__, (mCroppingType == VERTICAL) ? "width" : "height",
|
maxDim, desiredAr);
|
return Status::ILLEGAL_ARGUMENT;
|
}
|
|
if (configureV4l2StreamLocked(v4l2Fmt) != 0) {
|
ALOGE("V4L configuration failed!, format:%c%c%c%c, w %d, h %d",
|
v4l2Fmt.fourcc & 0xFF,
|
(v4l2Fmt.fourcc >> 8) & 0xFF,
|
(v4l2Fmt.fourcc >> 16) & 0xFF,
|
(v4l2Fmt.fourcc >> 24) & 0xFF,
|
v4l2Fmt.width, v4l2Fmt.height);
|
return Status::INTERNAL_ERROR;
|
}
|
|
|
memset(&mVideoConf, 0, sizeof(mVideoConf));
|
mVideoConf.memops = NULL;
|
mVideoConf.eOutputPixelFormat = PIXEL_FORMAT_NV21;
|
mVideoConf.bDisable3D = 1;
|
mVideoConf.bScaleDownEn = 0;
|
mVideoConf.bRotationEn = 0;
|
mVideoConf.bSecOutputEn = 0;
|
mVideoConf.bDispErrorFrame = 1;
|
mVideoConf.nVbvBufferSize = 0;
|
mVideoConf.nAlignStride = 32;
|
|
mVideoInfo.eCodecFormat = VIDEO_CODEC_FORMAT_MJPEG;
|
mVideoInfo.nWidth = v4l2Fmt.width;
|
mVideoInfo.nHeight = v4l2Fmt.height;
|
ALOGD("FUNC:%s, Line:%d width = %d,height = %d,", __FUNCTION__, __LINE__,
|
mVideoInfo.nWidth,mVideoInfo.nHeight);
|
mVideoInfo.nFrameRate = mFrameRate;
|
mVideoInfo.nFrameDuration = 1000 * 1000 / mFrameRate;
|
mVideoInfo.nAspectRatio = 1000;
|
mVideoInfo.bIs3DStream = 0;
|
mVideoInfo.nCodecSpecificDataLen = 0;
|
mVideoInfo.pCodecSpecificData = NULL;
|
if(mDecoder != NULL){
|
Libve_exit2(&mDecoder);
|
}
|
Libve_init2(&mDecoder, &mVideoInfo, &mVideoConf);
|
if(mDecoder == NULL){
|
ALOGE("FUNC:%s, Line:%d ",__FUNCTION__,__LINE__);
|
}
|
|
Size v4lSize = {v4l2Fmt.width, v4l2Fmt.height};
|
Size thumbSize { 0, 0 };
|
camera_metadata_ro_entry entry =
|
mCameraCharacteristics.find(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES);
|
for(uint32_t i = 0; i < entry.count; i += 2) {
|
Size sz { static_cast<uint32_t>(entry.data.i32[i]),
|
static_cast<uint32_t>(entry.data.i32[i+1]) };
|
if(sz.width * sz.height > thumbSize.width * thumbSize.height) {
|
thumbSize = sz;
|
}
|
}
|
|
if (thumbSize.width * thumbSize.height == 0) {
|
ALOGE("%s: non-zero thumbnail size not available", __FUNCTION__);
|
return Status::INTERNAL_ERROR;
|
}
|
|
status = mOutputThread->allocateIntermediateBuffers(v4lSize,
|
mMaxThumbResolution, config.streams, blobBufferSize);
|
if (status != Status::OK) {
|
ALOGE("%s: allocating intermediate buffers failed!", __FUNCTION__);
|
return status;
|
}
|
|
out->streams.resize(config.streams.size());
|
for (size_t i = 0; i < config.streams.size(); i++) {
|
out->streams[i].overrideDataSpace = config.streams[i].dataSpace;
|
out->streams[i].v3_2.id = config.streams[i].id;
|
// TODO: double check should we add those CAMERA flags
|
mStreamMap[config.streams[i].id].usage =
|
out->streams[i].v3_2.producerUsage = config.streams[i].usage |
|
BufferUsage::CPU_WRITE_OFTEN |
|
BufferUsage::CAMERA_OUTPUT;
|
out->streams[i].v3_2.consumerUsage = 0;
|
out->streams[i].v3_2.maxBuffers = mV4L2BufferCount;
|
|
switch (config.streams[i].format) {
|
case PixelFormat::BLOB:
|
case PixelFormat::YCBCR_420_888:
|
case PixelFormat::YV12: // Used by SurfaceTexture
|
case PixelFormat::Y16:
|
// No override
|
out->streams[i].v3_2.overrideFormat = config.streams[i].format;
|
break;
|
case PixelFormat::IMPLEMENTATION_DEFINED:
|
// Override based on VIDEO or not
|
out->streams[i].v3_2.overrideFormat = PixelFormat::YCBCR_420_888;
|
// Save overridden formt in mStreamMap
|
mStreamMap[config.streams[i].id].format = out->streams[i].v3_2.overrideFormat;
|
break;
|
default:
|
ALOGE("%s: unsupported format 0x%x", __FUNCTION__, config.streams[i].format);
|
return Status::ILLEGAL_ARGUMENT;
|
}
|
}
|
|
mFirstRequest = true;
|
return Status::OK;
|
}
|
|
bool ExternalCameraDeviceSession::isClosed() {
|
Mutex::Autolock _l(mLock);
|
return mClosed;
|
}
|
|
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
|
#define UPDATE(md, tag, data, size) \
|
do { \
|
if ((md).update((tag), (data), (size))) { \
|
ALOGE("Update " #tag " failed!"); \
|
return BAD_VALUE; \
|
} \
|
} while (0)
|
|
status_t ExternalCameraDeviceSession::initDefaultRequests() {
|
::android::hardware::camera::common::V1_0::helper::CameraMetadata md;
|
|
const uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
|
UPDATE(md, ANDROID_COLOR_CORRECTION_ABERRATION_MODE, &aberrationMode, 1);
|
|
const int32_t exposureCompensation = 0;
|
UPDATE(md, ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION, &exposureCompensation, 1);
|
|
const uint8_t videoStabilizationMode = ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF;
|
UPDATE(md, ANDROID_CONTROL_VIDEO_STABILIZATION_MODE, &videoStabilizationMode, 1);
|
|
const uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
|
UPDATE(md, ANDROID_CONTROL_AWB_MODE, &awbMode, 1);
|
|
const uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
|
UPDATE(md, ANDROID_CONTROL_AE_MODE, &aeMode, 1);
|
|
const uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
|
UPDATE(md, ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER, &aePrecaptureTrigger, 1);
|
|
const uint8_t afMode = ANDROID_CONTROL_AF_MODE_AUTO;
|
UPDATE(md, ANDROID_CONTROL_AF_MODE, &afMode, 1);
|
|
const uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
|
UPDATE(md, ANDROID_CONTROL_AF_TRIGGER, &afTrigger, 1);
|
|
const uint8_t sceneMode = ANDROID_CONTROL_SCENE_MODE_DISABLED;
|
UPDATE(md, ANDROID_CONTROL_SCENE_MODE, &sceneMode, 1);
|
|
const uint8_t effectMode = ANDROID_CONTROL_EFFECT_MODE_OFF;
|
UPDATE(md, ANDROID_CONTROL_EFFECT_MODE, &effectMode, 1);
|
|
const uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
|
UPDATE(md, ANDROID_FLASH_MODE, &flashMode, 1);
|
|
const int32_t thumbnailSize[] = {240, 180};
|
UPDATE(md, ANDROID_JPEG_THUMBNAIL_SIZE, thumbnailSize, 2);
|
|
const uint8_t jpegQuality = 90;
|
UPDATE(md, ANDROID_JPEG_QUALITY, &jpegQuality, 1);
|
UPDATE(md, ANDROID_JPEG_THUMBNAIL_QUALITY, &jpegQuality, 1);
|
|
const int32_t jpegOrientation = 0;
|
UPDATE(md, ANDROID_JPEG_ORIENTATION, &jpegOrientation, 1);
|
|
const uint8_t oisMode = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
|
UPDATE(md, ANDROID_LENS_OPTICAL_STABILIZATION_MODE, &oisMode, 1);
|
|
const uint8_t nrMode = ANDROID_NOISE_REDUCTION_MODE_OFF;
|
UPDATE(md, ANDROID_NOISE_REDUCTION_MODE, &nrMode, 1);
|
|
const int32_t testPatternModes = ANDROID_SENSOR_TEST_PATTERN_MODE_OFF;
|
UPDATE(md, ANDROID_SENSOR_TEST_PATTERN_MODE, &testPatternModes, 1);
|
|
const uint8_t fdMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
|
UPDATE(md, ANDROID_STATISTICS_FACE_DETECT_MODE, &fdMode, 1);
|
|
const uint8_t hotpixelMode = ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE_OFF;
|
UPDATE(md, ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE, &hotpixelMode, 1);
|
|
bool support30Fps = false;
|
int32_t maxFps = std::numeric_limits<int32_t>::min();
|
for (const auto& supportedFormat : mSupportedFormats) {
|
for (const auto& fr : supportedFormat.frameRates) {
|
int32_t framerateInt = static_cast<int32_t>(fr.getDouble());
|
if (maxFps < framerateInt) {
|
maxFps = framerateInt;
|
}
|
if (framerateInt == 30) {
|
support30Fps = true;
|
break;
|
}
|
}
|
if (support30Fps) {
|
break;
|
}
|
}
|
int32_t defaultFramerate = support30Fps ? 30 : maxFps;
|
mFrameRate = defaultFramerate;
|
int32_t defaultFpsRange[] = {defaultFramerate / 2, defaultFramerate};
|
UPDATE(md, ANDROID_CONTROL_AE_TARGET_FPS_RANGE, defaultFpsRange, ARRAY_SIZE(defaultFpsRange));
|
|
uint8_t antibandingMode = ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
|
UPDATE(md, ANDROID_CONTROL_AE_ANTIBANDING_MODE, &antibandingMode, 1);
|
|
const uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO;
|
UPDATE(md, ANDROID_CONTROL_MODE, &controlMode, 1);
|
|
auto requestTemplates = hidl_enum_range<RequestTemplate>();
|
for (RequestTemplate type : requestTemplates) {
|
::android::hardware::camera::common::V1_0::helper::CameraMetadata mdCopy = md;
|
uint8_t intent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
|
switch (type) {
|
case RequestTemplate::PREVIEW:
|
intent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
|
break;
|
case RequestTemplate::STILL_CAPTURE:
|
intent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
|
break;
|
case RequestTemplate::VIDEO_RECORD:
|
intent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
|
break;
|
case RequestTemplate::VIDEO_SNAPSHOT:
|
intent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
|
break;
|
default:
|
ALOGV("%s: unsupported RequestTemplate type %d", __FUNCTION__, type);
|
continue;
|
}
|
UPDATE(mdCopy, ANDROID_CONTROL_CAPTURE_INTENT, &intent, 1);
|
|
camera_metadata_t* rawMd = mdCopy.release();
|
CameraMetadata hidlMd;
|
hidlMd.setToExternal(
|
(uint8_t*) rawMd, get_camera_metadata_size(rawMd));
|
mDefaultRequests[type] = hidlMd;
|
free_camera_metadata(rawMd);
|
}
|
|
return OK;
|
}
|
|
status_t ExternalCameraDeviceSession::fillCaptureResult(
|
common::V1_0::helper::CameraMetadata &md, nsecs_t timestamp) {
|
// android.control
|
// For USB camera, we don't know the AE state. Set the state to converged to
|
// indicate the frame should be good to use. Then apps don't have to wait the
|
// AE state.
|
const uint8_t aeState = ANDROID_CONTROL_AE_STATE_CONVERGED;
|
UPDATE(md, ANDROID_CONTROL_AE_STATE, &aeState, 1);
|
|
const uint8_t ae_lock = ANDROID_CONTROL_AE_LOCK_OFF;
|
UPDATE(md, ANDROID_CONTROL_AE_LOCK, &ae_lock, 1);
|
|
bool afTrigger = false;
|
{
|
std::lock_guard<std::mutex> lk(mAfTriggerLock);
|
afTrigger = mAfTrigger;
|
if (md.exists(ANDROID_CONTROL_AF_TRIGGER)) {
|
camera_metadata_entry entry = md.find(ANDROID_CONTROL_AF_TRIGGER);
|
if (entry.data.u8[0] == ANDROID_CONTROL_AF_TRIGGER_START) {
|
mAfTrigger = afTrigger = true;
|
} else if (entry.data.u8[0] == ANDROID_CONTROL_AF_TRIGGER_CANCEL) {
|
mAfTrigger = afTrigger = false;
|
}
|
}
|
}
|
|
// For USB camera, the USB camera handles everything and we don't have control
|
// over AF. We only simply fake the AF metadata based on the request
|
// received here.
|
uint8_t afState;
|
if (afTrigger) {
|
afState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED;
|
} else {
|
afState = ANDROID_CONTROL_AF_STATE_INACTIVE;
|
}
|
UPDATE(md, ANDROID_CONTROL_AF_STATE, &afState, 1);
|
|
// Set AWB state to converged to indicate the frame should be good to use.
|
const uint8_t awbState = ANDROID_CONTROL_AWB_STATE_CONVERGED;
|
UPDATE(md, ANDROID_CONTROL_AWB_STATE, &awbState, 1);
|
|
const uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
|
UPDATE(md, ANDROID_CONTROL_AWB_LOCK, &awbLock, 1);
|
|
camera_metadata_ro_entry active_array_size =
|
mCameraCharacteristics.find(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE);
|
|
if (active_array_size.count == 0) {
|
ALOGE("%s: cannot find active array size!", __FUNCTION__);
|
return -EINVAL;
|
}
|
|
const uint8_t flashState = ANDROID_FLASH_STATE_UNAVAILABLE;
|
UPDATE(md, ANDROID_FLASH_STATE, &flashState, 1);
|
|
// This means pipeline latency of X frame intervals. The maximum number is 4.
|
const uint8_t requestPipelineMaxDepth = 4;
|
UPDATE(md, ANDROID_REQUEST_PIPELINE_DEPTH, &requestPipelineMaxDepth, 1);
|
|
// android.scaler
|
const int32_t crop_region[] = {
|
active_array_size.data.i32[0], active_array_size.data.i32[1],
|
active_array_size.data.i32[2], active_array_size.data.i32[3],
|
};
|
UPDATE(md, ANDROID_SCALER_CROP_REGION, crop_region, ARRAY_SIZE(crop_region));
|
|
// android.sensor
|
UPDATE(md, ANDROID_SENSOR_TIMESTAMP, ×tamp, 1);
|
|
// android.statistics
|
const uint8_t lensShadingMapMode = ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF;
|
UPDATE(md, ANDROID_STATISTICS_LENS_SHADING_MAP_MODE, &lensShadingMapMode, 1);
|
|
const uint8_t sceneFlicker = ANDROID_STATISTICS_SCENE_FLICKER_NONE;
|
UPDATE(md, ANDROID_STATISTICS_SCENE_FLICKER, &sceneFlicker, 1);
|
|
return OK;
|
}
|
|
#undef ARRAY_SIZE
|
#undef UPDATE
|
|
} // namespace implementation
|
} // namespace V3_4
|
} // namespace device
|
} // namespace camera
|
} // namespace hardware
|
} // namespace android
|