ronnie
2022-10-23 3eef1810ec35005e8bcaaee0957166baba31b68c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
//
// Copyright (C) 2018 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
 
include "utils/codepoint-range.fbs";
include "utils/flatbuffers.fbs";
include "utils/intents/intent-config.fbs";
include "utils/resources.fbs";
include "utils/tokenizer.fbs";
include "utils/zlib/buffer.fbs";
 
file_identifier "TC2 ";
 
// The possible model modes, represents a bit field.
namespace libtextclassifier3;
enum ModeFlag : int {
  NONE = 0,
  ANNOTATION = 1,
  CLASSIFICATION = 2,
  ANNOTATION_AND_CLASSIFICATION = 3,
  SELECTION = 4,
  ANNOTATION_AND_SELECTION = 5,
  CLASSIFICATION_AND_SELECTION = 6,
  ALL = 7,
}
 
// Enum for specifying the annotation usecase.
namespace libtextclassifier3;
enum AnnotationUsecase : int {
  // Results are optimized for Smart{Select,Share,Linkify}.
  ANNOTATION_USECASE_SMART = 0,
 
  // Results are optimized for using TextClassifier as an infrastructure that
  // annotates as much as possible.
  ANNOTATION_USECASE_RAW = 1,
}
 
namespace libtextclassifier3;
enum DatetimeExtractorType : int {
  UNKNOWN_DATETIME_EXTRACTOR_TYPE = 0,
  AM = 1,
  PM = 2,
  JANUARY = 3,
  FEBRUARY = 4,
  MARCH = 5,
  APRIL = 6,
  MAY = 7,
  JUNE = 8,
  JULY = 9,
  AUGUST = 10,
  SEPTEMBER = 11,
  OCTOBER = 12,
  NOVEMBER = 13,
  DECEMBER = 14,
  NEXT = 15,
  NEXT_OR_SAME = 16,
  LAST = 17,
  NOW = 18,
  TOMORROW = 19,
  YESTERDAY = 20,
  PAST = 21,
  FUTURE = 22,
  DAY = 23,
  WEEK = 24,
  MONTH = 25,
  YEAR = 26,
  MONDAY = 27,
  TUESDAY = 28,
  WEDNESDAY = 29,
  THURSDAY = 30,
  FRIDAY = 31,
  SATURDAY = 32,
  SUNDAY = 33,
  DAYS = 34,
  WEEKS = 35,
  MONTHS = 36,
 
  // TODO(zilka): Make the following 3 values singular for consistency.
  HOURS = 37,
 
  MINUTES = 38,
  SECONDS = 39,
  YEARS = 40,
  DIGITS = 41,
  SIGNEDDIGITS = 42,
  ZERO = 43,
  ONE = 44,
  TWO = 45,
  THREE = 46,
  FOUR = 47,
  FIVE = 48,
  SIX = 49,
  SEVEN = 50,
  EIGHT = 51,
  NINE = 52,
  TEN = 53,
  ELEVEN = 54,
  TWELVE = 55,
  THIRTEEN = 56,
  FOURTEEN = 57,
  FIFTEEN = 58,
  SIXTEEN = 59,
  SEVENTEEN = 60,
  EIGHTEEN = 61,
  NINETEEN = 62,
  TWENTY = 63,
  THIRTY = 64,
  FORTY = 65,
  FIFTY = 66,
  SIXTY = 67,
  SEVENTY = 68,
  EIGHTY = 69,
  NINETY = 70,
  HUNDRED = 71,
  THOUSAND = 72,
}
 
namespace libtextclassifier3;
enum DatetimeGroupType : int {
  GROUP_UNKNOWN = 0,
  GROUP_UNUSED = 1,
  GROUP_YEAR = 2,
  GROUP_MONTH = 3,
  GROUP_DAY = 4,
  GROUP_HOUR = 5,
  GROUP_MINUTE = 6,
  GROUP_SECOND = 7,
  GROUP_AMPM = 8,
  GROUP_RELATIONDISTANCE = 9,
  GROUP_RELATION = 10,
  GROUP_RELATIONTYPE = 11,
 
  // Dummy groups serve just as an inflator of the selection. E.g. we might want
  // to select more text than was contained in an envelope of all extractor
  // spans.
  GROUP_DUMMY1 = 12,
 
  GROUP_DUMMY2 = 13,
}
 
// Options for the model that predicts text selection.
namespace libtextclassifier3;
table SelectionModelOptions {
  // If true, before the selection is returned, the unpaired brackets contained
  // in the predicted selection are stripped from the both selection ends.
  // The bracket codepoints are defined in the Unicode standard:
  // http://www.unicode.org/Public/UNIDATA/BidiBrackets.txt
  strip_unpaired_brackets:bool = true;
 
  // Number of hypothetical click positions on either side of the actual click
  // to consider in order to enforce symmetry.
  symmetry_context_size:int;
 
  // Number of examples to bundle in one batch for inference.
  batch_size:int = 1024;
 
  // Whether to always classify a suggested selection or only on demand.
  always_classify_suggested_selection:bool = false;
}
 
// Options for the model that classifies a text selection.
namespace libtextclassifier3;
table ClassificationModelOptions {
  // Limits for phone numbers.
  phone_min_num_digits:int = 7;
 
  phone_max_num_digits:int = 15;
 
  // Limits for addresses.
  address_min_num_tokens:int;
 
  // Maximum number of tokens to attempt a classification (-1 is unlimited).
  max_num_tokens:int = -1;
}
 
// Options for post-checks, checksums and verification to apply on a match.
namespace libtextclassifier3;
table VerificationOptions {
  verify_luhn_checksum:bool = false;
 
  // Lua verifier to use.
  // Index of the lua verifier in the model.
  lua_verifier:int = -1;
}
 
// Behaviour of capturing groups.
namespace libtextclassifier3.RegexModel_.Pattern_;
table CapturingGroup {
  // If true, the span of the capturing group will be used to
  // extend the selection.
  extend_selection:bool = true;
 
  // If set, the text of the capturing group will be used to set a field in
  // the classfication result entity data.
  entity_field_path:FlatbufferFieldPath;
}
 
// List of regular expression matchers to check.
namespace libtextclassifier3.RegexModel_;
table Pattern {
  // The name of the collection of a match.
  collection_name:string;
 
  // The pattern to check.
  pattern:string;
 
  // The modes for which to apply the patterns.
  enabled_modes:ModeFlag = ALL;
 
  // The final score to assign to the results of this pattern.
  target_classification_score:float = 1;
 
  // Priority score used for conflict resolution with the other models.
  priority_score:float = 0;
 
  // If true, will use an approximate matching implementation implemented
  // using Find() instead of the true Match(). This approximate matching will
  // use the first Find() result and then check that it spans the whole input.
  use_approximate_matching:bool = false;
 
  compressed_pattern:CompressedBuffer;
 
  // Verification to apply on a match.
  verification_options:VerificationOptions;
 
  capturing_group:[Pattern_.CapturingGroup];
 
  // Serialized entity data to set for a match.
  serialized_entity_data:string;
}
 
namespace libtextclassifier3;
table RegexModel {
  patterns:[RegexModel_.Pattern];
 
  // If true, will compile the regexes only on first use.
  lazy_regex_compilation:bool = true;
 
  // Lua scripts for match verification.
  // The verifier can access:
  // * `context`: The context as a string.
  // * `match`: The groups of the regex match as an array, each group gives
  // * `begin`: span start
  // * `end`: span end
  // * `text`: the text
  // The verifier is expected to return a boolean, indicating whether the
  // verification succeeded or not.
  lua_verifier:[string];
}
 
// List of regex patterns.
namespace libtextclassifier3.DatetimeModelPattern_;
table Regex {
  pattern:string;
 
  // The ith entry specifies the type of the ith capturing group.
  // This is used to decide how the matched content has to be parsed.
  groups:[DatetimeGroupType];
 
  compressed_pattern:CompressedBuffer;
}
 
namespace libtextclassifier3;
table DatetimeModelPattern {
  regexes:[DatetimeModelPattern_.Regex];
 
  // List of locale indices in DatetimeModel that represent the locales that
  // these patterns should be used for. If empty, can be used for all locales.
  locales:[int];
 
  // The final score to assign to the results of this pattern.
  target_classification_score:float = 1;
 
  // Priority score used for conflict resolution with the other models.
  priority_score:float = 0;
 
  // The modes for which to apply the patterns.
  enabled_modes:ModeFlag = ALL;
 
  // The annotation usecases for which to apply the patterns.
  // This is a flag field for values of AnnotationUsecase.
  enabled_annotation_usecases:uint = 4294967295;
}
 
namespace libtextclassifier3;
table DatetimeModelExtractor {
  extractor:DatetimeExtractorType;
  pattern:string;
  locales:[int];
  compressed_pattern:CompressedBuffer;
}
 
namespace libtextclassifier3;
table DatetimeModel {
  // List of BCP 47 locale strings representing all locales supported by the
  // model. The individual patterns refer back to them using an index.
  locales:[string];
 
  patterns:[DatetimeModelPattern];
  extractors:[DatetimeModelExtractor];
 
  // If true, will use the extractors for determining the match location as
  // opposed to using the location where the global pattern matched.
  use_extractors_for_locating:bool = true;
 
  // List of locale ids, rules of whose are always run, after the requested
  // ones.
  default_locales:[int];
 
  // If true, will generate the alternative interpretations for ambiguous
  // datetime expressions.
  generate_alternative_interpretations_when_ambiguous:bool = false;
 
  // If true, will compile the regexes only on first use.
  lazy_regex_compilation:bool = true;
}
 
namespace libtextclassifier3.DatetimeModelLibrary_;
table Item {
  key:string;
  value:DatetimeModel;
}
 
// A set of named DateTime models.
namespace libtextclassifier3;
table DatetimeModelLibrary {
  models:[DatetimeModelLibrary_.Item];
}
 
// Options controlling the output of the Tensorflow Lite models.
namespace libtextclassifier3;
table ModelTriggeringOptions {
  // Lower bound threshold for filtering annotation model outputs.
  min_annotate_confidence:float = 0;
 
  // The modes for which to enable the models.
  enabled_modes:ModeFlag = ALL;
 
  // Comma-separated list of locales (BCP 47 tags) that dictionary
  // classification supports.
  dictionary_locales:string;
 
  // Comma-separated list of locales (BCP 47 tags) that the model supports, that
  // are used to prevent  triggering on input in unsupported languages. If
  // empty, the model will trigger on all inputs.
  locales:string;
}
 
// Options controlling the output of the classifier.
namespace libtextclassifier3;
table OutputOptions {
  // Lists of collection names that will be filtered out at the output:
  // - For annotation, the spans of given collection are simply dropped.
  // - For classification, the result is mapped to the class "other".
  // - For selection, the spans of given class are returned as
  // single-selection.
  filtered_collections_annotation:[string];
 
  filtered_collections_classification:[string];
  filtered_collections_selection:[string];
}
 
namespace libtextclassifier3.Model_;
table EmbeddingPruningMask {
  // If true, use pruning mask. In this case, we use mask
  // pruning_mask to determine the mapping of hashed-charactergrams.
  enabled:bool;
 
  // Packing of the binary pruning mask into uint64 values.
  pruning_mask:[ulong] (force_align: 16);
 
  // Number of buckets before pruning.
  full_num_buckets:int;
 
  // Index of row of compressed embedding matrix to which all pruned buckets
  // are mapped.
  pruned_row_bucket_id:int;
}
 
namespace libtextclassifier3;
table Model {
  // Comma-separated list of locales supported by the model as BCP 47 tags.
  locales:string;
 
  version:int;
 
  // A name for the model that can be used for e.g. logging.
  name:string;
 
  selection_feature_options:FeatureProcessorOptions;
  classification_feature_options:FeatureProcessorOptions;
 
  // Tensorflow Lite models.
  selection_model:[ubyte] (force_align: 16);
 
  classification_model:[ubyte] (force_align: 16);
  embedding_model:[ubyte] (force_align: 16);
 
  // Options for the different models.
  selection_options:SelectionModelOptions;
 
  classification_options:ClassificationModelOptions;
  regex_model:RegexModel;
  datetime_model:DatetimeModel;
 
  // Options controlling the output of the models.
  triggering_options:ModelTriggeringOptions;
 
  // Global switch that controls if SuggestSelection(), ClassifyText() and
  // Annotate() will run. If a mode is disabled it returns empty/no-op results.
  enabled_modes:ModeFlag = ALL;
 
  // If true, will snap the selections that consist only of whitespaces to the
  // containing suggested span. Otherwise, no suggestion is proposed, since the
  // selections are not part of any token.
  snap_whitespace_selections:bool = true;
 
  // Global configuration for the output of SuggestSelection(), ClassifyText()
  // and Annotate().
  output_options:OutputOptions;
 
  // Configures how Intents should be generated on Android.
  android_intent_options:AndroidIntentFactoryOptions;
 
  intent_options:IntentFactoryModel;
 
  // Model resources.
  resources:ResourcePool;
 
  // Schema data for handling entity data.
  entity_data_schema:[ubyte];
 
  number_annotator_options:NumberAnnotatorOptions;
  duration_annotator_options:DurationAnnotatorOptions;
 
  // Comma-separated list of locales (BCP 47 tags) that the model supports, that
  // are used to prevent  triggering on input in unsupported languages. If
  // empty, the model will trigger on all inputs.
  triggering_locales:string;
 
  embedding_pruning_mask:Model_.EmbeddingPruningMask;
}
 
// Method for selecting the center token.
namespace libtextclassifier3.FeatureProcessorOptions_;
enum CenterTokenSelectionMethod : int {
  DEFAULT_CENTER_TOKEN_METHOD = 0,
 
  // Use click indices to determine the center token.
  CENTER_TOKEN_FROM_CLICK = 1,
 
  // Use selection indices to get a token range, and select the middle of it
  // as the center token.
  CENTER_TOKEN_MIDDLE_OF_SELECTION = 2,
}
 
// Bounds-sensitive feature extraction configuration.
namespace libtextclassifier3.FeatureProcessorOptions_;
table BoundsSensitiveFeatures {
  // Enables the extraction of bounds-sensitive features, instead of the click
  // context features.
  enabled:bool;
 
  // The numbers of tokens to extract in specific locations relative to the
  // bounds.
  // Immediately before the span.
  num_tokens_before:int;
 
  // Inside the span, aligned with the beginning.
  num_tokens_inside_left:int;
 
  // Inside the span, aligned with the end.
  num_tokens_inside_right:int;
 
  // Immediately after the span.
  num_tokens_after:int;
 
  // If true, also extracts the tokens of the entire span and adds up their
  // features forming one "token" to include in the extracted features.
  include_inside_bag:bool;
 
  // If true, includes the selection length (in the number of tokens) as a
  // feature.
  include_inside_length:bool;
 
  // If true, for selection, single token spans are not run through the model
  // and their score is assumed to be zero.
  score_single_token_spans_as_zero:bool;
}
 
namespace libtextclassifier3;
table FeatureProcessorOptions {
  // Number of buckets used for hashing charactergrams.
  num_buckets:int = -1;
 
  // Size of the embedding.
  embedding_size:int = -1;
 
  // Number of bits for quantization for embeddings.
  embedding_quantization_bits:int = 8;
 
  // Context size defines the number of words to the left and to the right of
  // the selected word to be used as context. For example, if context size is
  // N, then we take N words to the left and N words to the right of the
  // selected word as its context.
  context_size:int = -1;
 
  // Maximum number of words of the context to select in total.
  max_selection_span:int = -1;
 
  // Orders of charactergrams to extract. E.g., 2 means character bigrams, 3
  // character trigrams etc.
  chargram_orders:[int];
 
  // Maximum length of a word, in codepoints.
  max_word_length:int = 20;
 
  // If true, will use the unicode-aware functionality for extracting features.
  unicode_aware_features:bool = false;
 
  // Whether to extract the token case feature.
  extract_case_feature:bool = false;
 
  // Whether to extract the selection mask feature.
  extract_selection_mask_feature:bool = false;
 
  // List of regexps to run over each token. For each regexp, if there is a
  // match, a dense feature of 1.0 is emitted. Otherwise -1.0 is used.
  regexp_feature:[string];
 
  // Whether to remap all digits to a single number.
  remap_digits:bool = false;
 
  // Whether to lower-case each token before generating hashgrams.
  lowercase_tokens:bool;
 
  // If true, the selection classifier output will contain only the selections
  // that are feasible (e.g., those that are shorter than max_selection_span),
  // if false, the output will be a complete cross-product of possible
  // selections to the left and possible selections to the right, including the
  // infeasible ones.
  // NOTE: Exists mainly for compatibility with older models that were trained
  // with the non-reduced output space.
  selection_reduced_output_space:bool = true;
 
  // Collection names.
  collections:[string];
 
  // An index of collection in collections to be used if a collection name can't
  // be mapped to an id.
  default_collection:int = -1;
 
  // If true, will split the input by lines, and only use the line that contains
  // the clicked token.
  only_use_line_with_click:bool = false;
 
  // If true, will split tokens that contain the selection boundary, at the
  // position of the boundary.
  // E.g. "foo{bar}@google.com" -> "foo", "bar", "@google.com"
  split_tokens_on_selection_boundaries:bool = false;
 
  // Codepoint ranges that determine how different codepoints are tokenized.
  // The ranges must not overlap.
  tokenization_codepoint_config:[TokenizationCodepointRange];
 
  center_token_selection_method:FeatureProcessorOptions_.CenterTokenSelectionMethod;
 
  // If true, span boundaries will be snapped to containing tokens and not
  // required to exactly match token boundaries.
  snap_label_span_boundaries_to_containing_tokens:bool;
 
  // A set of codepoint ranges supported by the model.
  supported_codepoint_ranges:[CodepointRange];
 
  // A set of codepoint ranges to use in the mixed tokenization mode to identify
  // stretches of tokens to re-tokenize using the internal tokenizer.
  internal_tokenizer_codepoint_ranges:[CodepointRange];
 
  // Minimum ratio of supported codepoints in the input context. If the ratio
  // is lower than this, the feature computation will fail.
  min_supported_codepoint_ratio:float = 0;
 
  // Used for versioning the format of features the model expects.
  // - feature_version == 0:
  // For each token the features consist of:
  // - chargram embeddings
  // - dense features
  // Chargram embeddings for tokens are concatenated first together,
  // and at the end, the dense features for the tokens are concatenated
  // to it. So the resulting feature vector has two regions.
  feature_version:int = 0;
 
  tokenization_type:TokenizationType = INTERNAL_TOKENIZER;
  icu_preserve_whitespace_tokens:bool = false;
 
  // List of codepoints that will be stripped from beginning and end of
  // predicted spans.
  ignored_span_boundary_codepoints:[int];
 
  bounds_sensitive_features:FeatureProcessorOptions_.BoundsSensitiveFeatures;
 
  // List of allowed charactergrams. The extracted charactergrams are filtered
  // using this list, and charactergrams that are not present are interpreted as
  // out-of-vocabulary.
  // If no allowed_chargrams are specified, all charactergrams are allowed.
  // The field is typed as bytes type to allow non-UTF8 chargrams.
  allowed_chargrams:[string];
 
  // If true, tokens will be also split when the codepoint's script_id changes
  // as defined in TokenizationCodepointRange.
  tokenize_on_script_change:bool = false;
}
 
namespace libtextclassifier3;
table NumberAnnotatorOptions {
  // If true, number annotations will be produced.
  enabled:bool = false;
 
  // Score to assign to the annotated numbers from the annotator.
  score:float = 1;
 
  // Priority score used for conflict resolution with the other models.
  priority_score:float = 0;
 
  // The modes in which to enable number annotations.
  enabled_modes:ModeFlag = ALL;
 
  // The annotation usecases for which to produce number annotations.
  // This is a flag field for values of AnnotationUsecase.
  enabled_annotation_usecases:uint = 4294967295;
 
  // A list of codepoints that can form a prefix of a valid number.
  allowed_prefix_codepoints:[int];
 
  // A list of codepoints that can form a suffix of a valid number.
  allowed_suffix_codepoints:[int];
}
 
// DurationAnnotator is so far tailored for English only.
namespace libtextclassifier3;
table DurationAnnotatorOptions {
  // If true, duration annotations will be produced.
  enabled:bool = false;
 
  // Score to assign to the annotated durations from the annotator.
  score:float = 1;
 
  // Priority score used for conflict resolution with the other models.
  priority_score:float = 0;
 
  // The modes in which to enable duration annotations.
  enabled_modes:ModeFlag = ALL;
 
  // The annotation usecases for which to produce duration annotations.
  enabled_annotation_usecases:uint = 4294967295;
 
  // Durations typically look like XX hours and XX minutes etc... The list of
  // strings below enumerate variants of "hours", "minutes", etc. in these
  // expressions. These are verbatim strings that are matched against tokens in
  // the input.
  week_expressions:[string];
 
  day_expressions:[string];
  hour_expressions:[string];
  minute_expressions:[string];
  second_expressions:[string];
 
  // List of expressions that doesn't break a duration expression (can become
  // a part of it) but has not semantic meaning.
  filler_expressions:[string];
 
  // List of expressions that mean half of a unit of duration (e.g. "half an
  // hour").
  half_expressions:[string];
}
 
root_type libtextclassifier3.Model;