lin
2025-04-23 399353eb5dc7e9c1db94cc97c380dc7f66c51a4c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd" []>
 
<book id="index">
<bookinfo>
<title>The Userspace I/O HOWTO</title>
 
<author>
      <firstname>Hans-Jürgen</firstname>
      <surname>Koch</surname>
      <authorblurb><para>Linux developer, Linutronix</para></authorblurb>
   <affiliation>
   <orgname>
       <ulink url="http://www.linutronix.de">Linutronix</ulink>
   </orgname>
 
   <address>
      <email>hjk@hansjkoch.de</email>
   </address>
    </affiliation>
</author>
 
<copyright>
   <year>2006-2008</year>
   <holder>Hans-Jürgen Koch.</holder>
</copyright>
<copyright>
   <year>2009</year>
   <holder>Red Hat Inc, Michael S. Tsirkin (mst@redhat.com)</holder>
</copyright>
 
<legalnotice>
<para>
This documentation is Free Software licensed under the terms of the
GPL version 2.
</para>
</legalnotice>
 
<pubdate>2006-12-11</pubdate>
 
<abstract>
   <para>This HOWTO describes concept and usage of Linux kernel's
       Userspace I/O system.</para>
</abstract>
 
<revhistory>
   <revision>
   <revnumber>0.9</revnumber>
   <date>2009-07-16</date>
   <authorinitials>mst</authorinitials>
   <revremark>Added generic pci driver
       </revremark>
   </revision>
   <revision>
   <revnumber>0.8</revnumber>
   <date>2008-12-24</date>
   <authorinitials>hjk</authorinitials>
   <revremark>Added name attributes in mem and portio sysfs directories.
       </revremark>
   </revision>
   <revision>
   <revnumber>0.7</revnumber>
   <date>2008-12-23</date>
   <authorinitials>hjk</authorinitials>
   <revremark>Added generic platform drivers and offset attribute.</revremark>
   </revision>
   <revision>
   <revnumber>0.6</revnumber>
   <date>2008-12-05</date>
   <authorinitials>hjk</authorinitials>
   <revremark>Added description of portio sysfs attributes.</revremark>
   </revision>
   <revision>
   <revnumber>0.5</revnumber>
   <date>2008-05-22</date>
   <authorinitials>hjk</authorinitials>
   <revremark>Added description of write() function.</revremark>
   </revision>
   <revision>
   <revnumber>0.4</revnumber>
   <date>2007-11-26</date>
   <authorinitials>hjk</authorinitials>
   <revremark>Removed section about uio_dummy.</revremark>
   </revision>
   <revision>
   <revnumber>0.3</revnumber>
   <date>2007-04-29</date>
   <authorinitials>hjk</authorinitials>
   <revremark>Added section about userspace drivers.</revremark>
   </revision>
   <revision>
   <revnumber>0.2</revnumber>
   <date>2007-02-13</date>
   <authorinitials>hjk</authorinitials>
   <revremark>Update after multiple mappings were added.</revremark>
   </revision>
   <revision>
   <revnumber>0.1</revnumber>
   <date>2006-12-11</date>
   <authorinitials>hjk</authorinitials>
   <revremark>First draft.</revremark>
   </revision>
</revhistory>
</bookinfo>
 
<chapter id="aboutthisdoc">
<?dbhtml filename="aboutthis.html"?>
<title>About this document</title>
 
<sect1 id="translations">
<?dbhtml filename="translations.html"?>
<title>Translations</title>
 
<para>If you know of any translations for this document, or you are
interested in translating it, please email me
<email>hjk@hansjkoch.de</email>.
</para>
</sect1>
 
<sect1 id="preface">
<title>Preface</title>
   <para>
   For many types of devices, creating a Linux kernel driver is
   overkill.  All that is really needed is some way to handle an
   interrupt and provide access to the memory space of the
   device.  The logic of controlling the device does not
   necessarily have to be within the kernel, as the device does
   not need to take advantage of any of other resources that the
   kernel provides.  One such common class of devices that are
   like this are for industrial I/O cards.
   </para>
   <para>
   To address this situation, the userspace I/O system (UIO) was
   designed.  For typical industrial I/O cards, only a very small
   kernel module is needed. The main part of the driver will run in
   user space. This simplifies development and reduces the risk of
   serious bugs within a kernel module.
   </para>
   <para>
   Please note that UIO is not an universal driver interface. Devices
   that are already handled well by other kernel subsystems (like
   networking or serial or USB) are no candidates for an UIO driver.
   Hardware that is ideally suited for an UIO driver fulfills all of
   the following:
   </para>
<itemizedlist>
<listitem>
   <para>The device has memory that can be mapped. The device can be
   controlled completely by writing to this memory.</para>
</listitem>
<listitem>
   <para>The device usually generates interrupts.</para>
</listitem>
<listitem>
   <para>The device does not fit into one of the standard kernel
   subsystems.</para>
</listitem>
</itemizedlist>
</sect1>
 
<sect1 id="thanks">
<title>Acknowledgments</title>
   <para>I'd like to thank Thomas Gleixner and Benedikt Spranger of
   Linutronix, who have not only written most of the UIO code, but also
   helped greatly writing this HOWTO by giving me all kinds of background
   information.</para>
</sect1>
 
<sect1 id="feedback">
<title>Feedback</title>
   <para>Find something wrong with this document? (Or perhaps something
   right?) I would love to hear from you. Please email me at
   <email>hjk@hansjkoch.de</email>.</para>
</sect1>
</chapter>
 
<chapter id="about">
<?dbhtml filename="about.html"?>
<title>About UIO</title>
 
<para>If you use UIO for your card's driver, here's what you get:</para>
 
<itemizedlist>
<listitem>
   <para>only one small kernel module to write and maintain.</para>
</listitem>
<listitem>
   <para>develop the main part of your driver in user space,
   with all the tools and libraries you're used to.</para>
</listitem>
<listitem>
   <para>bugs in your driver won't crash the kernel.</para>
</listitem>
<listitem>
   <para>updates of your driver can take place without recompiling
   the kernel.</para>
</listitem>
</itemizedlist>
 
<sect1 id="how_uio_works">
<title>How UIO works</title>
   <para>
   Each UIO device is accessed through a device file and several
   sysfs attribute files. The device file will be called
   <filename>/dev/uio0</filename> for the first device, and
   <filename>/dev/uio1</filename>, <filename>/dev/uio2</filename>
   and so on for subsequent devices.
   </para>
 
   <para><filename>/dev/uioX</filename> is used to access the
   address space of the card. Just use
   <function>mmap()</function> to access registers or RAM
   locations of your card.
   </para>
 
   <para>
   Interrupts are handled by reading from
   <filename>/dev/uioX</filename>. A blocking
   <function>read()</function> from
   <filename>/dev/uioX</filename> will return as soon as an
   interrupt occurs. You can also use
   <function>select()</function> on
   <filename>/dev/uioX</filename> to wait for an interrupt. The
   integer value read from <filename>/dev/uioX</filename>
   represents the total interrupt count. You can use this number
   to figure out if you missed some interrupts.
   </para>
   <para>
   For some hardware that has more than one interrupt source internally,
   but not separate IRQ mask and status registers, there might be
   situations where userspace cannot determine what the interrupt source
   was if the kernel handler disables them by writing to the chip's IRQ
   register. In such a case, the kernel has to disable the IRQ completely
   to leave the chip's register untouched. Now the userspace part can
   determine the cause of the interrupt, but it cannot re-enable
   interrupts. Another cornercase is chips where re-enabling interrupts
   is a read-modify-write operation to a combined IRQ status/acknowledge
   register. This would be racy if a new interrupt occurred
   simultaneously.
   </para>
   <para>
   To address these problems, UIO also implements a write() function. It
   is normally not used and can be ignored for hardware that has only a
   single interrupt source or has separate IRQ mask and status registers.
   If you need it, however, a write to <filename>/dev/uioX</filename>
   will call the <function>irqcontrol()</function> function implemented
   by the driver. You have to write a 32-bit value that is usually either
   0 or 1 to disable or enable interrupts. If a driver does not implement
   <function>irqcontrol()</function>, <function>write()</function> will
   return with <varname>-ENOSYS</varname>.
   </para>
 
   <para>
   To handle interrupts properly, your custom kernel module can
   provide its own interrupt handler. It will automatically be
   called by the built-in handler.
   </para>
 
   <para>
   For cards that don't generate interrupts but need to be
   polled, there is the possibility to set up a timer that
   triggers the interrupt handler at configurable time intervals.
   This interrupt simulation is done by calling
   <function>uio_event_notify()</function>
   from the timer's event handler.
   </para>
 
   <para>
   Each driver provides attributes that are used to read or write
   variables. These attributes are accessible through sysfs
   files.  A custom kernel driver module can add its own
   attributes to the device owned by the uio driver, but not added
   to the UIO device itself at this time.  This might change in the
   future if it would be found to be useful.
   </para>
 
   <para>
   The following standard attributes are provided by the UIO
   framework:
   </para>
<itemizedlist>
<listitem>
   <para>
   <filename>name</filename>: The name of your device. It is
   recommended to use the name of your kernel module for this.
   </para>
</listitem>
<listitem>
   <para>
   <filename>version</filename>: A version string defined by your
   driver. This allows the user space part of your driver to deal
   with different versions of the kernel module.
   </para>
</listitem>
<listitem>
   <para>
   <filename>event</filename>: The total number of interrupts
   handled by the driver since the last time the device node was
   read.
   </para>
</listitem>
</itemizedlist>
<para>
   These attributes appear under the
   <filename>/sys/class/uio/uioX</filename> directory.  Please
   note that this directory might be a symlink, and not a real
   directory.  Any userspace code that accesses it must be able
   to handle this.
</para>
<para>
   Each UIO device can make one or more memory regions available for
   memory mapping. This is necessary because some industrial I/O cards
   require access to more than one PCI memory region in a driver.
</para>
<para>
   Each mapping has its own directory in sysfs, the first mapping
   appears as <filename>/sys/class/uio/uioX/maps/map0/</filename>.
   Subsequent mappings create directories <filename>map1/</filename>,
   <filename>map2/</filename>, and so on. These directories will only
   appear if the size of the mapping is not 0.
</para>
<para>
   Each <filename>mapX/</filename> directory contains four read-only files
   that show attributes of the memory:
</para>
<itemizedlist>
<listitem>
   <para>
   <filename>name</filename>: A string identifier for this mapping. This
   is optional, the string can be empty. Drivers can set this to make it
   easier for userspace to find the correct mapping.
   </para>
</listitem>
<listitem>
   <para>
   <filename>addr</filename>: The address of memory that can be mapped.
   </para>
</listitem>
<listitem>
   <para>
   <filename>size</filename>: The size, in bytes, of the memory
   pointed to by addr.
   </para>
</listitem>
<listitem>
   <para>
   <filename>offset</filename>: The offset, in bytes, that has to be
   added to the pointer returned by <function>mmap()</function> to get
   to the actual device memory. This is important if the device's memory
   is not page aligned. Remember that pointers returned by
   <function>mmap()</function> are always page aligned, so it is good
   style to always add this offset.
   </para>
</listitem>
</itemizedlist>
 
<para>
   From userspace, the different mappings are distinguished by adjusting
   the <varname>offset</varname> parameter of the
   <function>mmap()</function> call. To map the memory of mapping N, you
   have to use N times the page size as your offset:
</para>
<programlisting format="linespecific">
offset = N * getpagesize();
</programlisting>
 
<para>
   Sometimes there is hardware with memory-like regions that can not be
   mapped with the technique described here, but there are still ways to
   access them from userspace. The most common example are x86 ioports.
   On x86 systems, userspace can access these ioports using
   <function>ioperm()</function>, <function>iopl()</function>,
   <function>inb()</function>, <function>outb()</function>, and similar
   functions.
</para>
<para>
   Since these ioport regions can not be mapped, they will not appear under
   <filename>/sys/class/uio/uioX/maps/</filename> like the normal memory
   described above. Without information about the port regions a hardware
   has to offer, it becomes difficult for the userspace part of the
   driver to find out which ports belong to which UIO device.
</para>
<para>
   To address this situation, the new directory
   <filename>/sys/class/uio/uioX/portio/</filename> was added. It only
   exists if the driver wants to pass information about one or more port
   regions to userspace. If that is the case, subdirectories named
   <filename>port0</filename>, <filename>port1</filename>, and so on,
   will appear underneath
   <filename>/sys/class/uio/uioX/portio/</filename>.
</para>
<para>
   Each <filename>portX/</filename> directory contains four read-only
   files that show name, start, size, and type of the port region:
</para>
<itemizedlist>
<listitem>
   <para>
   <filename>name</filename>: A string identifier for this port region.
   The string is optional and can be empty. Drivers can set it to make it
   easier for userspace to find a certain port region.
   </para>
</listitem>
<listitem>
   <para>
   <filename>start</filename>: The first port of this region.
   </para>
</listitem>
<listitem>
   <para>
   <filename>size</filename>: The number of ports in this region.
   </para>
</listitem>
<listitem>
   <para>
   <filename>porttype</filename>: A string describing the type of port.
   </para>
</listitem>
</itemizedlist>
 
 
</sect1>
</chapter>
 
<chapter id="custom_kernel_module" xreflabel="Writing your own kernel module">
<?dbhtml filename="custom_kernel_module.html"?>
<title>Writing your own kernel module</title>
   <para>
   Please have a look at <filename>uio_cif.c</filename> as an
   example. The following paragraphs explain the different
   sections of this file.
   </para>
 
<sect1 id="uio_info">
<title>struct uio_info</title>
   <para>
   This structure tells the framework the details of your driver,
   Some of the members are required, others are optional.
   </para>
 
<itemizedlist>
<listitem><para>
<varname>const char *name</varname>: Required. The name of your driver as
it will appear in sysfs. I recommend using the name of your module for this.
</para></listitem>
 
<listitem><para>
<varname>const char *version</varname>: Required. This string appears in
<filename>/sys/class/uio/uioX/version</filename>.
</para></listitem>
 
<listitem><para>
<varname>struct uio_mem mem[ MAX_UIO_MAPS ]</varname>: Required if you
have memory that can be mapped with <function>mmap()</function>. For each
mapping you need to fill one of the <varname>uio_mem</varname> structures.
See the description below for details.
</para></listitem>
 
<listitem><para>
<varname>struct uio_port port[ MAX_UIO_PORTS_REGIONS ]</varname>: Required
if you want to pass information about ioports to userspace. For each port
region you need to fill one of the <varname>uio_port</varname> structures.
See the description below for details.
</para></listitem>
 
<listitem><para>
<varname>long irq</varname>: Required. If your hardware generates an
interrupt, it's your modules task to determine the irq number during
initialization. If you don't have a hardware generated interrupt but
want to trigger the interrupt handler in some other way, set
<varname>irq</varname> to <varname>UIO_IRQ_CUSTOM</varname>.
If you had no interrupt at all, you could set
<varname>irq</varname> to <varname>UIO_IRQ_NONE</varname>, though this
rarely makes sense.
</para></listitem>
 
<listitem><para>
<varname>unsigned long irq_flags</varname>: Required if you've set
<varname>irq</varname> to a hardware interrupt number. The flags given
here will be used in the call to <function>request_irq()</function>.
</para></listitem>
 
<listitem><para>
<varname>int (*mmap)(struct uio_info *info, struct vm_area_struct
*vma)</varname>: Optional. If you need a special
<function>mmap()</function> function, you can set it here. If this
pointer is not NULL, your <function>mmap()</function> will be called
instead of the built-in one.
</para></listitem>
 
<listitem><para>
<varname>int (*open)(struct uio_info *info, struct inode *inode)
</varname>: Optional. You might want to have your own
<function>open()</function>, e.g. to enable interrupts only when your
device is actually used.
</para></listitem>
 
<listitem><para>
<varname>int (*release)(struct uio_info *info, struct inode *inode)
</varname>: Optional. If you define your own
<function>open()</function>, you will probably also want a custom
<function>release()</function> function.
</para></listitem>
 
<listitem><para>
<varname>int (*irqcontrol)(struct uio_info *info, s32 irq_on)
</varname>: Optional. If you need to be able to enable or disable
interrupts from userspace by writing to <filename>/dev/uioX</filename>,
you can implement this function. The parameter <varname>irq_on</varname>
will be 0 to disable interrupts and 1 to enable them.
</para></listitem>
</itemizedlist>
 
<para>
Usually, your device will have one or more memory regions that can be mapped
to user space. For each region, you have to set up a
<varname>struct uio_mem</varname> in the <varname>mem[]</varname> array.
Here's a description of the fields of <varname>struct uio_mem</varname>:
</para>
 
<itemizedlist>
<listitem><para>
<varname>const char *name</varname>: Optional. Set this to help identify
the memory region, it will show up in the corresponding sysfs node.
</para></listitem>
 
<listitem><para>
<varname>int memtype</varname>: Required if the mapping is used. Set this to
<varname>UIO_MEM_PHYS</varname> if you you have physical memory on your
card to be mapped. Use <varname>UIO_MEM_LOGICAL</varname> for logical
memory (e.g. allocated with <function>kmalloc()</function>). There's also
<varname>UIO_MEM_VIRTUAL</varname> for virtual memory.
</para></listitem>
 
<listitem><para>
<varname>phys_addr_t addr</varname>: Required if the mapping is used.
Fill in the address of your memory block. This address is the one that
appears in sysfs.
</para></listitem>
 
<listitem><para>
<varname>resource_size_t size</varname>: Fill in the size of the
memory block that <varname>addr</varname> points to. If <varname>size</varname>
is zero, the mapping is considered unused. Note that you
<emphasis>must</emphasis> initialize <varname>size</varname> with zero for
all unused mappings.
</para></listitem>
 
<listitem><para>
<varname>void *internal_addr</varname>: If you have to access this memory
region from within your kernel module, you will want to map it internally by
using something like <function>ioremap()</function>. Addresses
returned by this function cannot be mapped to user space, so you must not
store it in <varname>addr</varname>. Use <varname>internal_addr</varname>
instead to remember such an address.
</para></listitem>
</itemizedlist>
 
<para>
Please do not touch the <varname>map</varname> element of
<varname>struct uio_mem</varname>! It is used by the UIO framework
to set up sysfs files for this mapping. Simply leave it alone.
</para>
 
<para>
Sometimes, your device can have one or more port regions which can not be
mapped to userspace. But if there are other possibilities for userspace to
access these ports, it makes sense to make information about the ports
available in sysfs. For each region, you have to set up a
<varname>struct uio_port</varname> in the <varname>port[]</varname> array.
Here's a description of the fields of <varname>struct uio_port</varname>:
</para>
 
<itemizedlist>
<listitem><para>
<varname>char *porttype</varname>: Required. Set this to one of the predefined
constants. Use <varname>UIO_PORT_X86</varname> for the ioports found in x86
architectures.
</para></listitem>
 
<listitem><para>
<varname>unsigned long start</varname>: Required if the port region is used.
Fill in the number of the first port of this region.
</para></listitem>
 
<listitem><para>
<varname>unsigned long size</varname>: Fill in the number of ports in this
region. If <varname>size</varname> is zero, the region is considered unused.
Note that you <emphasis>must</emphasis> initialize <varname>size</varname>
with zero for all unused regions.
</para></listitem>
</itemizedlist>
 
<para>
Please do not touch the <varname>portio</varname> element of
<varname>struct uio_port</varname>! It is used internally by the UIO
framework to set up sysfs files for this region. Simply leave it alone.
</para>
 
</sect1>
 
<sect1 id="adding_irq_handler">
<title>Adding an interrupt handler</title>
   <para>
   What you need to do in your interrupt handler depends on your
   hardware and on how you want to    handle it. You should try to
   keep the amount of code in your kernel interrupt handler low.
   If your hardware requires no action that you
   <emphasis>have</emphasis> to perform after each interrupt,
   then your handler can be empty.</para> <para>If, on the other
   hand, your hardware <emphasis>needs</emphasis> some action to
   be performed after each interrupt, then you
   <emphasis>must</emphasis> do it in your kernel module. Note
   that you cannot rely on the userspace part of your driver. Your
   userspace program can terminate at any time, possibly leaving
   your hardware in a state where proper interrupt handling is
   still required.
   </para>
 
   <para>
   There might also be applications where you want to read data
   from your hardware at each interrupt and buffer it in a piece
   of kernel memory you've allocated for that purpose.  With this
   technique you could avoid loss of data if your userspace
   program misses an interrupt.
   </para>
 
   <para>
   A note on shared interrupts: Your driver should support
   interrupt sharing whenever this is possible. It is possible if
   and only if your driver can detect whether your hardware has
   triggered the interrupt or not. This is usually done by looking
   at an interrupt status register. If your driver sees that the
   IRQ bit is actually set, it will perform its actions, and the
   handler returns IRQ_HANDLED. If the driver detects that it was
   not your hardware that caused the interrupt, it will do nothing
   and return IRQ_NONE, allowing the kernel to call the next
   possible interrupt handler.
   </para>
 
   <para>
   If you decide not to support shared interrupts, your card
   won't work in computers with no free interrupts. As this
   frequently happens on the PC platform, you can save yourself a
   lot of trouble by supporting interrupt sharing.
   </para>
</sect1>
 
<sect1 id="using_uio_pdrv">
<title>Using uio_pdrv for platform devices</title>
   <para>
   In many cases, UIO drivers for platform devices can be handled in a
   generic way. In the same place where you define your
   <varname>struct platform_device</varname>, you simply also implement
   your interrupt handler and fill your
   <varname>struct uio_info</varname>. A pointer to this
   <varname>struct uio_info</varname> is then used as
   <varname>platform_data</varname> for your platform device.
   </para>
   <para>
   You also need to set up an array of <varname>struct resource</varname>
   containing addresses and sizes of your memory mappings. This
   information is passed to the driver using the
   <varname>.resource</varname> and <varname>.num_resources</varname>
   elements of <varname>struct platform_device</varname>.
   </para>
   <para>
   You now have to set the <varname>.name</varname> element of
   <varname>struct platform_device</varname> to
   <varname>"uio_pdrv"</varname> to use the generic UIO platform device
   driver. This driver will fill the <varname>mem[]</varname> array
   according to the resources given, and register the device.
   </para>
   <para>
   The advantage of this approach is that you only have to edit a file
   you need to edit anyway. You do not have to create an extra driver.
   </para>
</sect1>
 
<sect1 id="using_uio_pdrv_genirq">
<title>Using uio_pdrv_genirq for platform devices</title>
   <para>
   Especially in embedded devices, you frequently find chips where the
   irq pin is tied to its own dedicated interrupt line. In such cases,
   where you can be really sure the interrupt is not shared, we can take
   the concept of <varname>uio_pdrv</varname> one step further and use a
   generic interrupt handler. That's what
   <varname>uio_pdrv_genirq</varname> does.
   </para>
   <para>
   The setup for this driver is the same as described above for
   <varname>uio_pdrv</varname>, except that you do not implement an
   interrupt handler. The <varname>.handler</varname> element of
   <varname>struct uio_info</varname> must remain
   <varname>NULL</varname>. The  <varname>.irq_flags</varname> element
   must not contain <varname>IRQF_SHARED</varname>.
   </para>
   <para>
   You will set the <varname>.name</varname> element of
   <varname>struct platform_device</varname> to
   <varname>"uio_pdrv_genirq"</varname> to use this driver.
   </para>
   <para>
   The generic interrupt handler of <varname>uio_pdrv_genirq</varname>
   will simply disable the interrupt line using
   <function>disable_irq_nosync()</function>. After doing its work,
   userspace can reenable the interrupt by writing 0x00000001 to the UIO
   device file. The driver already implements an
   <function>irq_control()</function> to make this possible, you must not
   implement your own.
   </para>
   <para>
   Using <varname>uio_pdrv_genirq</varname> not only saves a few lines of
   interrupt handler code. You also do not need to know anything about
   the chip's internal registers to create the kernel part of the driver.
   All you need to know is the irq number of the pin the chip is
   connected to.
   </para>
</sect1>
 
<sect1 id="using-uio_dmem_genirq">
<title>Using uio_dmem_genirq for platform devices</title>
   <para>
   In addition to statically allocated memory ranges, they may also be
   a desire to use dynamically allocated regions in a user space driver.
   In particular, being able to access memory made available through the
   dma-mapping API, may be particularly useful.  The
   <varname>uio_dmem_genirq</varname> driver provides a way to accomplish
   this.
   </para>
   <para>
   This driver is used in a similar manner to the
   <varname>"uio_pdrv_genirq"</varname> driver with respect to interrupt
   configuration and handling.
   </para>
   <para>
   Set the <varname>.name</varname> element of
   <varname>struct platform_device</varname> to
   <varname>"uio_dmem_genirq"</varname> to use this driver.
   </para>
   <para>
   When using this driver, fill in the <varname>.platform_data</varname>
   element of <varname>struct platform_device</varname>, which is of type
   <varname>struct uio_dmem_genirq_pdata</varname> and which contains the
   following elements:
   </para>
   <itemizedlist>
   <listitem><para><varname>struct uio_info uioinfo</varname>: The same
   structure used as the  <varname>uio_pdrv_genirq</varname> platform
   data</para></listitem>
   <listitem><para><varname>unsigned int *dynamic_region_sizes</varname>:
   Pointer to list of sizes of dynamic memory regions to be mapped into
   user space.
   </para></listitem>
   <listitem><para><varname>unsigned int num_dynamic_regions</varname>:
   Number of elements in <varname>dynamic_region_sizes</varname> array.
   </para></listitem>
   </itemizedlist>
   <para>
   The dynamic regions defined in the platform data will be appended to
   the <varname> mem[] </varname> array after the platform device
   resources, which implies that the total number of static and dynamic
   memory regions cannot exceed <varname>MAX_UIO_MAPS</varname>.
   </para>
   <para>
   The dynamic memory regions will be allocated when the UIO device file,
   <varname>/dev/uioX</varname> is opened.
   Similar to static memory resources, the memory region information for
   dynamic regions is then visible via sysfs at
   <varname>/sys/class/uio/uioX/maps/mapY/*</varname>.
   The dynamic memory regions will be freed when the UIO device file is
   closed. When no processes are holding the device file open, the address
   returned to userspace is ~0.
   </para>
</sect1>
 
</chapter>
 
<chapter id="userspace_driver" xreflabel="Writing a driver in user space">
<?dbhtml filename="userspace_driver.html"?>
<title>Writing a driver in userspace</title>
   <para>
   Once you have a working kernel module for your hardware, you can
   write the userspace part of your driver. You don't need any special
   libraries, your driver can be written in any reasonable language,
   you can use floating point numbers and so on. In short, you can
   use all the tools and libraries you'd normally use for writing a
   userspace application.
   </para>
 
<sect1 id="getting_uio_information">
<title>Getting information about your UIO device</title>
   <para>
   Information about all UIO devices is available in sysfs. The
   first thing you should do in your driver is check
   <varname>name</varname> and <varname>version</varname> to
   make sure your talking to the right device and that its kernel
   driver has the version you expect.
   </para>
   <para>
   You should also make sure that the memory mapping you need
   exists and has the size you expect.
   </para>
   <para>
   There is a tool called <varname>lsuio</varname> that lists
   UIO devices and their attributes. It is available here:
   </para>
   <para>
   <ulink url="http://www.osadl.org/projects/downloads/UIO/user/">
       http://www.osadl.org/projects/downloads/UIO/user/</ulink>
   </para>
   <para>
   With <varname>lsuio</varname> you can quickly check if your
   kernel module is loaded and which attributes it exports.
   Have a look at the manpage for details.
   </para>
   <para>
   The source code of <varname>lsuio</varname> can serve as an
   example for getting information about an UIO device.
   The file <filename>uio_helper.c</filename> contains a lot of
   functions you could use in your userspace driver code.
   </para>
</sect1>
 
<sect1 id="mmap_device_memory">
<title>mmap() device memory</title>
   <para>
   After you made sure you've got the right device with the
   memory mappings you need, all you have to do is to call
   <function>mmap()</function> to map the device's memory
   to userspace.
   </para>
   <para>
   The parameter <varname>offset</varname> of the
   <function>mmap()</function> call has a special meaning
   for UIO devices: It is used to select which mapping of
   your device you want to map. To map the memory of
   mapping N, you have to use N times the page size as
   your offset:
   </para>
<programlisting format="linespecific">
   offset = N * getpagesize();
</programlisting>
   <para>
   N starts from zero, so if you've got only one memory
   range to map, set <varname>offset = 0</varname>.
   A drawback of this technique is that memory is always
   mapped beginning with its start address.
   </para>
</sect1>
 
<sect1 id="wait_for_interrupts">
<title>Waiting for interrupts</title>
   <para>
   After you successfully mapped your devices memory, you
   can access it like an ordinary array. Usually, you will
   perform some initialization. After that, your hardware
   starts working and will generate an interrupt as soon
   as it's finished, has some data available, or needs your
   attention because an error occurred.
   </para>
   <para>
   <filename>/dev/uioX</filename> is a read-only file. A
   <function>read()</function> will always block until an
   interrupt occurs. There is only one legal value for the
   <varname>count</varname> parameter of
   <function>read()</function>, and that is the size of a
   signed 32 bit integer (4). Any other value for
   <varname>count</varname> causes <function>read()</function>
   to fail. The signed 32 bit integer read is the interrupt
   count of your device. If the value is one more than the value
   you read the last time, everything is OK. If the difference
   is greater than one, you missed interrupts.
   </para>
   <para>
   You can also use <function>select()</function> on
   <filename>/dev/uioX</filename>.
   </para>
</sect1>
 
</chapter>
 
<chapter id="uio_pci_generic" xreflabel="Using Generic driver for PCI cards">
<?dbhtml filename="uio_pci_generic.html"?>
<title>Generic PCI UIO driver</title>
   <para>
   The generic driver is a kernel module named uio_pci_generic.
   It can work with any device compliant to PCI 2.3 (circa 2002) and
   any compliant PCI Express device. Using this, you only need to
        write the userspace driver, removing the need to write
        a hardware-specific kernel module.
   </para>
 
<sect1 id="uio_pci_generic_binding">
<title>Making the driver recognize the device</title>
   <para>
Since the driver does not declare any device ids, it will not get loaded
automatically and will not automatically bind to any devices, you must load it
and allocate id to the driver yourself. For example:
   <programlisting>
 modprobe uio_pci_generic
 echo &quot;8086 10f5&quot; &gt; /sys/bus/pci/drivers/uio_pci_generic/new_id
   </programlisting>
   </para>
   <para>
If there already is a hardware specific kernel driver for your device, the
generic driver still won't bind to it, in this case if you want to use the
generic driver (why would you?) you'll have to manually unbind the hardware
specific driver and bind the generic driver, like this:
   <programlisting>
    echo -n 0000:00:19.0 &gt; /sys/bus/pci/drivers/e1000e/unbind
    echo -n 0000:00:19.0 &gt; /sys/bus/pci/drivers/uio_pci_generic/bind
   </programlisting>
   </para>
   <para>
You can verify that the device has been bound to the driver
by looking for it in sysfs, for example like the following:
   <programlisting>
    ls -l /sys/bus/pci/devices/0000:00:19.0/driver
   </programlisting>
Which if successful should print
   <programlisting>
  .../0000:00:19.0/driver -&gt; ../../../bus/pci/drivers/uio_pci_generic
   </programlisting>
Note that the generic driver will not bind to old PCI 2.2 devices.
If binding the device failed, run the following command:
   <programlisting>
  dmesg
   </programlisting>
and look in the output for failure reasons
   </para>
</sect1>
 
<sect1 id="uio_pci_generic_internals">
<title>Things to know about uio_pci_generic</title>
   <para>
Interrupts are handled using the Interrupt Disable bit in the PCI command
register and Interrupt Status bit in the PCI status register.  All devices
compliant to PCI 2.3 (circa 2002) and all compliant PCI Express devices should
support these bits.  uio_pci_generic detects this support, and won't bind to
devices which do not support the Interrupt Disable Bit in the command register.
   </para>
   <para>
On each interrupt, uio_pci_generic sets the Interrupt Disable bit.
This prevents the device from generating further interrupts
until the bit is cleared. The userspace driver should clear this
bit before blocking and waiting for more interrupts.
   </para>
</sect1>
<sect1 id="uio_pci_generic_userspace">
<title>Writing userspace driver using uio_pci_generic</title>
   <para>
Userspace driver can use pci sysfs interface, or the
libpci libray that wraps it, to talk to the device and to
re-enable interrupts by writing to the command register.
   </para>
</sect1>
<sect1 id="uio_pci_generic_example">
<title>Example code using uio_pci_generic</title>
   <para>
Here is some sample userspace driver code using uio_pci_generic:
<programlisting>
#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;unistd.h&gt;
#include &lt;sys/types.h&gt;
#include &lt;sys/stat.h&gt;
#include &lt;fcntl.h&gt;
#include &lt;errno.h&gt;
 
int main()
{
   int uiofd;
   int configfd;
   int err;
   int i;
   unsigned icount;
   unsigned char command_high;
 
   uiofd = open(&quot;/dev/uio0&quot;, O_RDONLY);
   if (uiofd &lt; 0) {
       perror(&quot;uio open:&quot;);
       return errno;
   }
   configfd = open(&quot;/sys/class/uio/uio0/device/config&quot;, O_RDWR);
   if (configfd &lt; 0) {
       perror(&quot;config open:&quot;);
       return errno;
   }
 
   /* Read and cache command value */
   err = pread(configfd, &amp;command_high, 1, 5);
   if (err != 1) {
       perror(&quot;command config read:&quot;);
       return errno;
   }
   command_high &amp;= ~0x4;
 
   for(i = 0;; ++i) {
       /* Print out a message, for debugging. */
       if (i == 0)
           fprintf(stderr, &quot;Started uio test driver.\n&quot;);
       else
           fprintf(stderr, &quot;Interrupts: %d\n&quot;, icount);
 
       /****************************************/
       /* Here we got an interrupt from the
          device. Do something to it. */
       /****************************************/
 
       /* Re-enable interrupts. */
       err = pwrite(configfd, &amp;command_high, 1, 5);
       if (err != 1) {
           perror(&quot;config write:&quot;);
           break;
       }
 
       /* Wait for next interrupt. */
       err = read(uiofd, &amp;icount, 4);
       if (err != 4) {
           perror(&quot;uio read:&quot;);
           break;
       }
 
   }
   return errno;
}
 
</programlisting>
   </para>
</sect1>
 
</chapter>
 
<appendix id="app1">
<title>Further information</title>
<itemizedlist>
   <listitem><para>
           <ulink url="http://www.osadl.org">
               OSADL homepage.</ulink>
       </para></listitem>
   <listitem><para>
       <ulink url="http://www.linutronix.de">
        Linutronix homepage.</ulink>
       </para></listitem>
</itemizedlist>
</appendix>
 
</book>