lin
2025-04-23 399353eb5dc7e9c1db94cc97c380dc7f66c51a4c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
/*
 * Copyright (C) 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
 
#ifndef ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_
#define ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_
 
#include <cstring>
#include <map>
 
#include "arch/instruction_set.h"
#include "compiled_method.h"
#include "debug/method_debug_info.h"
#include "dwarf/debug_info_entry_writer.h"
#include "dwarf/register.h"
#include "stack_map.h"
 
namespace art {
namespace debug {
using Reg = dwarf::Reg;
 
static Reg GetDwarfCoreReg(InstructionSet isa, int machine_reg) {
  switch (isa) {
    case InstructionSet::kArm:
    case InstructionSet::kThumb2:
      return Reg::ArmCore(machine_reg);
    case InstructionSet::kArm64:
      return Reg::Arm64Core(machine_reg);
    case InstructionSet::kX86:
      return Reg::X86Core(machine_reg);
    case InstructionSet::kX86_64:
      return Reg::X86_64Core(machine_reg);
    case InstructionSet::kMips:
      return Reg::MipsCore(machine_reg);
    case InstructionSet::kMips64:
      return Reg::Mips64Core(machine_reg);
    case InstructionSet::kNone:
      LOG(FATAL) << "No instruction set";
  }
  UNREACHABLE();
}
 
static Reg GetDwarfFpReg(InstructionSet isa, int machine_reg) {
  switch (isa) {
    case InstructionSet::kArm:
    case InstructionSet::kThumb2:
      return Reg::ArmFp(machine_reg);
    case InstructionSet::kArm64:
      return Reg::Arm64Fp(machine_reg);
    case InstructionSet::kX86:
      return Reg::X86Fp(machine_reg);
    case InstructionSet::kX86_64:
      return Reg::X86_64Fp(machine_reg);
    case InstructionSet::kMips:
      return Reg::MipsFp(machine_reg);
    case InstructionSet::kMips64:
      return Reg::Mips64Fp(machine_reg);
    case InstructionSet::kNone:
      LOG(FATAL) << "No instruction set";
  }
  UNREACHABLE();
}
 
struct VariableLocation {
  uint32_t low_pc;  // Relative to compilation unit.
  uint32_t high_pc;  // Relative to compilation unit.
  DexRegisterLocation reg_lo;  // May be None if the location is unknown.
  DexRegisterLocation reg_hi;  // Most significant bits of 64-bit value.
};
 
// Get the location of given dex register (e.g. stack or machine register).
// Note that the location might be different based on the current pc.
// The result will cover all ranges where the variable is in scope.
// PCs corresponding to stackmap with dex register map are accurate,
// all other PCs are best-effort only.
static std::vector<VariableLocation> GetVariableLocations(
    const MethodDebugInfo* method_info,
    const std::vector<DexRegisterMap>& dex_register_maps,
    uint16_t vreg,
    bool is64bitValue,
    uint64_t compilation_unit_code_address,
    uint32_t dex_pc_low,
    uint32_t dex_pc_high,
    InstructionSet isa) {
  std::vector<VariableLocation> variable_locations;
 
  // Get stack maps sorted by pc (they might not be sorted internally).
  // TODO(dsrbecky) Remove this once stackmaps get sorted by pc.
  const CodeInfo code_info(method_info->code_info);
  std::map<uint32_t, uint32_t> stack_maps;  // low_pc -> stack_map_index.
  for (uint32_t s = 0; s < code_info.GetNumberOfStackMaps(); s++) {
    StackMap stack_map = code_info.GetStackMapAt(s);
    DCHECK(stack_map.IsValid());
    if (!stack_map.HasDexRegisterMap()) {
      // The compiler creates stackmaps without register maps at the start of
      // basic blocks in order to keep instruction-accurate line number mapping.
      // However, we never stop at those (breakpoint locations always have map).
      // Therefore, for the purpose of local variables, we ignore them.
      // The main reason for this is to save space by avoiding undefined gaps.
      continue;
    }
    const uint32_t pc_offset = stack_map.GetNativePcOffset(isa);
    DCHECK_LE(pc_offset, method_info->code_size);
    DCHECK_LE(compilation_unit_code_address, method_info->code_address);
    const uint32_t low_pc = dchecked_integral_cast<uint32_t>(
        method_info->code_address + pc_offset - compilation_unit_code_address);
    stack_maps.emplace(low_pc, s);
  }
 
  // Create entries for the requested register based on stack map data.
  for (auto it = stack_maps.begin(); it != stack_maps.end(); it++) {
    const uint32_t low_pc = it->first;
    const uint32_t stack_map_index = it->second;
    const StackMap stack_map = code_info.GetStackMapAt(stack_map_index);
    auto next_it = it;
    next_it++;
    const uint32_t high_pc = next_it != stack_maps.end()
      ? next_it->first
      : method_info->code_address + method_info->code_size - compilation_unit_code_address;
    DCHECK_LE(low_pc, high_pc);
    if (low_pc == high_pc) {
      continue;  // Ignore if the address range is empty.
    }
 
    // Check that the stack map is in the requested range.
    uint32_t dex_pc = stack_map.GetDexPc();
    if (!(dex_pc_low <= dex_pc && dex_pc < dex_pc_high)) {
      // The variable is not in scope at this PC. Therefore omit the entry.
      // Note that this is different to None() entry which means in scope, but unknown location.
      continue;
    }
 
    // Find the location of the dex register.
    DexRegisterLocation reg_lo = DexRegisterLocation::None();
    DexRegisterLocation reg_hi = DexRegisterLocation::None();
    DCHECK_LT(stack_map_index, dex_register_maps.size());
    DexRegisterMap dex_register_map = dex_register_maps[stack_map_index];
    DCHECK(!dex_register_map.empty());
    CodeItemDataAccessor accessor(*method_info->dex_file, method_info->code_item);
    reg_lo = dex_register_map[vreg];
    if (is64bitValue) {
      reg_hi = dex_register_map[vreg + 1];
    }
 
    // Add location entry for this address range.
    if (!variable_locations.empty() &&
        variable_locations.back().reg_lo == reg_lo &&
        variable_locations.back().reg_hi == reg_hi &&
        variable_locations.back().high_pc == low_pc) {
      // Merge with the previous entry (extend its range).
      variable_locations.back().high_pc = high_pc;
    } else {
      variable_locations.push_back({low_pc, high_pc, reg_lo, reg_hi});
    }
  }
 
  return variable_locations;
}
 
// Write table into .debug_loc which describes location of dex register.
// The dex register might be valid only at some points and it might
// move between machine registers and stack.
static void WriteDebugLocEntry(const MethodDebugInfo* method_info,
                               const std::vector<DexRegisterMap>& dex_register_maps,
                               uint16_t vreg,
                               bool is64bitValue,
                               uint64_t compilation_unit_code_address,
                               uint32_t dex_pc_low,
                               uint32_t dex_pc_high,
                               InstructionSet isa,
                               dwarf::DebugInfoEntryWriter<>* debug_info,
                               std::vector<uint8_t>* debug_loc_buffer,
                               std::vector<uint8_t>* debug_ranges_buffer) {
  using Kind = DexRegisterLocation::Kind;
  if (method_info->code_info == nullptr || dex_register_maps.empty()) {
    return;
  }
 
  std::vector<VariableLocation> variable_locations = GetVariableLocations(
      method_info,
      dex_register_maps,
      vreg,
      is64bitValue,
      compilation_unit_code_address,
      dex_pc_low,
      dex_pc_high,
      isa);
 
  // Write .debug_loc entries.
  dwarf::Writer<> debug_loc(debug_loc_buffer);
  const size_t debug_loc_offset = debug_loc.size();
  const bool is64bit = Is64BitInstructionSet(isa);
  std::vector<uint8_t> expr_buffer;
  for (const VariableLocation& variable_location : variable_locations) {
    // Translate dex register location to DWARF expression.
    // Note that 64-bit value might be split to two distinct locations.
    // (for example, two 32-bit machine registers, or even stack and register)
    dwarf::Expression expr(&expr_buffer);
    DexRegisterLocation reg_lo = variable_location.reg_lo;
    DexRegisterLocation reg_hi = variable_location.reg_hi;
    for (int piece = 0; piece < (is64bitValue ? 2 : 1); piece++) {
      DexRegisterLocation reg_loc = (piece == 0 ? reg_lo : reg_hi);
      const Kind kind = reg_loc.GetKind();
      const int32_t value = reg_loc.GetValue();
      if (kind == Kind::kInStack) {
        // The stack offset is relative to SP. Make it relative to CFA.
        expr.WriteOpFbreg(value - method_info->frame_size_in_bytes);
        if (piece == 0 && reg_hi.GetKind() == Kind::kInStack &&
            reg_hi.GetValue() == value + 4) {
          break;  // the high word is correctly implied by the low word.
        }
      } else if (kind == Kind::kInRegister) {
        expr.WriteOpReg(GetDwarfCoreReg(isa, value).num());
        if (piece == 0 && reg_hi.GetKind() == Kind::kInRegisterHigh &&
            reg_hi.GetValue() == value) {
          break;  // the high word is correctly implied by the low word.
        }
      } else if (kind == Kind::kInFpuRegister) {
        if ((isa == InstructionSet::kArm || isa == InstructionSet::kThumb2) &&
            piece == 0 && reg_hi.GetKind() == Kind::kInFpuRegister &&
            reg_hi.GetValue() == value + 1 && value % 2 == 0) {
          // Translate S register pair to D register (e.g. S4+S5 to D2).
          expr.WriteOpReg(Reg::ArmDp(value / 2).num());
          break;
        }
        expr.WriteOpReg(GetDwarfFpReg(isa, value).num());
        if (piece == 0 && reg_hi.GetKind() == Kind::kInFpuRegisterHigh &&
            reg_hi.GetValue() == reg_lo.GetValue()) {
          break;  // the high word is correctly implied by the low word.
        }
      } else if (kind == Kind::kConstant) {
        expr.WriteOpConsts(value);
        expr.WriteOpStackValue();
      } else if (kind == Kind::kNone) {
        break;
      } else {
        // kInStackLargeOffset and kConstantLargeValue are hidden by GetKind().
        // kInRegisterHigh and kInFpuRegisterHigh should be handled by
        // the special cases above and they should not occur alone.
        LOG(WARNING) << "Unexpected register location: " << kind
                     << " (This can indicate either a bug in the dexer when generating"
                     << " local variable information, or a bug in ART compiler."
                     << " Please file a bug at go/art-bug)";
        break;
      }
      if (is64bitValue) {
        // Write the marker which is needed by split 64-bit values.
        // This code is skipped by the special cases.
        expr.WriteOpPiece(4);
      }
    }
 
    if (expr.size() > 0) {
      if (is64bit) {
        debug_loc.PushUint64(variable_location.low_pc);
        debug_loc.PushUint64(variable_location.high_pc);
      } else {
        debug_loc.PushUint32(variable_location.low_pc);
        debug_loc.PushUint32(variable_location.high_pc);
      }
      // Write the expression.
      debug_loc.PushUint16(expr.size());
      debug_loc.PushData(expr.data());
    } else {
      // Do not generate .debug_loc if the location is not known.
    }
  }
  // Write end-of-list entry.
  if (is64bit) {
    debug_loc.PushUint64(0);
    debug_loc.PushUint64(0);
  } else {
    debug_loc.PushUint32(0);
    debug_loc.PushUint32(0);
  }
 
  // Write .debug_ranges entries.
  // This includes ranges where the variable is in scope but the location is not known.
  dwarf::Writer<> debug_ranges(debug_ranges_buffer);
  size_t debug_ranges_offset = debug_ranges.size();
  for (size_t i = 0; i < variable_locations.size(); i++) {
    uint32_t low_pc = variable_locations[i].low_pc;
    uint32_t high_pc = variable_locations[i].high_pc;
    while (i + 1 < variable_locations.size() && variable_locations[i+1].low_pc == high_pc) {
      // Merge address range with the next entry.
      high_pc = variable_locations[++i].high_pc;
    }
    if (is64bit) {
      debug_ranges.PushUint64(low_pc);
      debug_ranges.PushUint64(high_pc);
    } else {
      debug_ranges.PushUint32(low_pc);
      debug_ranges.PushUint32(high_pc);
    }
  }
  // Write end-of-list entry.
  if (is64bit) {
    debug_ranges.PushUint64(0);
    debug_ranges.PushUint64(0);
  } else {
    debug_ranges.PushUint32(0);
    debug_ranges.PushUint32(0);
  }
 
  // Simple de-duplication - check whether this entry is same as the last one (or tail of it).
  size_t debug_ranges_entry_size = debug_ranges.size() - debug_ranges_offset;
  if (debug_ranges_offset >= debug_ranges_entry_size) {
    size_t previous_offset = debug_ranges_offset - debug_ranges_entry_size;
    if (memcmp(debug_ranges_buffer->data() + previous_offset,
               debug_ranges_buffer->data() + debug_ranges_offset,
               debug_ranges_entry_size) == 0) {
      // Remove what we have just written and use the last entry instead.
      debug_ranges_buffer->resize(debug_ranges_offset);
      debug_ranges_offset = previous_offset;
    }
  }
 
  // Write attributes to .debug_info.
  debug_info->WriteSecOffset(dwarf::DW_AT_location, debug_loc_offset);
  debug_info->WriteSecOffset(dwarf::DW_AT_start_scope, debug_ranges_offset);
}
 
}  // namespace debug
}  // namespace art
 
#endif  // ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_