//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
|
//
|
// The LLVM Compiler Infrastructure
|
//
|
// This file is distributed under the University of Illinois Open Source
|
// License. See LICENSE.TXT for details.
|
//
|
//===----------------------------------------------------------------------===//
|
/// \file
|
/// \brief C Language Family Type Representation
|
///
|
/// This file defines the clang::Type interface and subclasses, used to
|
/// represent types for languages in the C family.
|
///
|
//===----------------------------------------------------------------------===//
|
|
#ifndef LLVM_CLANG_AST_TYPE_H
|
#define LLVM_CLANG_AST_TYPE_H
|
|
#include "clang/AST/NestedNameSpecifier.h"
|
#include "clang/AST/TemplateName.h"
|
#include "clang/Basic/AddressSpaces.h"
|
#include "clang/Basic/Diagnostic.h"
|
#include "clang/Basic/ExceptionSpecificationType.h"
|
#include "clang/Basic/LLVM.h"
|
#include "clang/Basic/Linkage.h"
|
#include "clang/Basic/PartialDiagnostic.h"
|
#include "clang/Basic/Specifiers.h"
|
#include "clang/Basic/Visibility.h"
|
#include "llvm/ADT/APInt.h"
|
#include "llvm/ADT/FoldingSet.h"
|
#include "llvm/ADT/Optional.h"
|
#include "llvm/ADT/PointerIntPair.h"
|
#include "llvm/ADT/PointerUnion.h"
|
#include "llvm/ADT/Twine.h"
|
#include "llvm/ADT/iterator_range.h"
|
#include "llvm/Support/ErrorHandling.h"
|
|
namespace clang {
|
enum {
|
TypeAlignmentInBits = 4,
|
TypeAlignment = 1 << TypeAlignmentInBits
|
};
|
class Type;
|
class ExtQuals;
|
class QualType;
|
}
|
|
namespace llvm {
|
template <typename T>
|
class PointerLikeTypeTraits;
|
template<>
|
class PointerLikeTypeTraits< ::clang::Type*> {
|
public:
|
static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
|
static inline ::clang::Type *getFromVoidPointer(void *P) {
|
return static_cast< ::clang::Type*>(P);
|
}
|
enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
|
};
|
template<>
|
class PointerLikeTypeTraits< ::clang::ExtQuals*> {
|
public:
|
static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
|
static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
|
return static_cast< ::clang::ExtQuals*>(P);
|
}
|
enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
|
};
|
|
template <>
|
struct isPodLike<clang::QualType> { static const bool value = true; };
|
}
|
|
namespace clang {
|
class ASTContext;
|
class TypedefNameDecl;
|
class TemplateDecl;
|
class TemplateTypeParmDecl;
|
class NonTypeTemplateParmDecl;
|
class TemplateTemplateParmDecl;
|
class TagDecl;
|
class RecordDecl;
|
class CXXRecordDecl;
|
class EnumDecl;
|
class FieldDecl;
|
class FunctionDecl;
|
class ObjCInterfaceDecl;
|
class ObjCProtocolDecl;
|
class ObjCMethodDecl;
|
class UnresolvedUsingTypenameDecl;
|
class Expr;
|
class Stmt;
|
class SourceLocation;
|
class StmtIteratorBase;
|
class TemplateArgument;
|
class TemplateArgumentLoc;
|
class TemplateArgumentListInfo;
|
class ElaboratedType;
|
class ExtQuals;
|
class ExtQualsTypeCommonBase;
|
struct PrintingPolicy;
|
|
template <typename> class CanQual;
|
typedef CanQual<Type> CanQualType;
|
|
// Provide forward declarations for all of the *Type classes
|
#define TYPE(Class, Base) class Class##Type;
|
#include "clang/AST/TypeNodes.def"
|
|
/// The collection of all-type qualifiers we support.
|
/// Clang supports five independent qualifiers:
|
/// * C99: const, volatile, and restrict
|
/// * MS: __unaligned
|
/// * Embedded C (TR18037): address spaces
|
/// * Objective C: the GC attributes (none, weak, or strong)
|
class Qualifiers {
|
public:
|
enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
|
Const = 0x1,
|
Restrict = 0x2,
|
Volatile = 0x4,
|
CVRMask = Const | Volatile | Restrict
|
};
|
|
enum GC {
|
GCNone = 0,
|
Weak,
|
Strong
|
};
|
|
enum ObjCLifetime {
|
/// There is no lifetime qualification on this type.
|
OCL_None,
|
|
/// This object can be modified without requiring retains or
|
/// releases.
|
OCL_ExplicitNone,
|
|
/// Assigning into this object requires the old value to be
|
/// released and the new value to be retained. The timing of the
|
/// release of the old value is inexact: it may be moved to
|
/// immediately after the last known point where the value is
|
/// live.
|
OCL_Strong,
|
|
/// Reading or writing from this object requires a barrier call.
|
OCL_Weak,
|
|
/// Assigning into this object requires a lifetime extension.
|
OCL_Autoreleasing
|
};
|
|
enum {
|
/// The maximum supported address space number.
|
/// 23 bits should be enough for anyone.
|
MaxAddressSpace = 0x7fffffu,
|
|
/// The width of the "fast" qualifier mask.
|
FastWidth = 3,
|
|
/// The fast qualifier mask.
|
FastMask = (1 << FastWidth) - 1
|
};
|
|
Qualifiers() : Mask(0) {}
|
|
/// Returns the common set of qualifiers while removing them from
|
/// the given sets.
|
static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
|
// If both are only CVR-qualified, bit operations are sufficient.
|
if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
|
Qualifiers Q;
|
Q.Mask = L.Mask & R.Mask;
|
L.Mask &= ~Q.Mask;
|
R.Mask &= ~Q.Mask;
|
return Q;
|
}
|
|
Qualifiers Q;
|
unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
|
Q.addCVRQualifiers(CommonCRV);
|
L.removeCVRQualifiers(CommonCRV);
|
R.removeCVRQualifiers(CommonCRV);
|
|
if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
|
Q.setObjCGCAttr(L.getObjCGCAttr());
|
L.removeObjCGCAttr();
|
R.removeObjCGCAttr();
|
}
|
|
if (L.getObjCLifetime() == R.getObjCLifetime()) {
|
Q.setObjCLifetime(L.getObjCLifetime());
|
L.removeObjCLifetime();
|
R.removeObjCLifetime();
|
}
|
|
if (L.getAddressSpace() == R.getAddressSpace()) {
|
Q.setAddressSpace(L.getAddressSpace());
|
L.removeAddressSpace();
|
R.removeAddressSpace();
|
}
|
return Q;
|
}
|
|
static Qualifiers fromFastMask(unsigned Mask) {
|
Qualifiers Qs;
|
Qs.addFastQualifiers(Mask);
|
return Qs;
|
}
|
|
static Qualifiers fromCVRMask(unsigned CVR) {
|
Qualifiers Qs;
|
Qs.addCVRQualifiers(CVR);
|
return Qs;
|
}
|
|
static Qualifiers fromCVRUMask(unsigned CVRU) {
|
Qualifiers Qs;
|
Qs.addCVRUQualifiers(CVRU);
|
return Qs;
|
}
|
|
// Deserialize qualifiers from an opaque representation.
|
static Qualifiers fromOpaqueValue(unsigned opaque) {
|
Qualifiers Qs;
|
Qs.Mask = opaque;
|
return Qs;
|
}
|
|
// Serialize these qualifiers into an opaque representation.
|
unsigned getAsOpaqueValue() const {
|
return Mask;
|
}
|
|
bool hasConst() const { return Mask & Const; }
|
void setConst(bool flag) {
|
Mask = (Mask & ~Const) | (flag ? Const : 0);
|
}
|
void removeConst() { Mask &= ~Const; }
|
void addConst() { Mask |= Const; }
|
|
bool hasVolatile() const { return Mask & Volatile; }
|
void setVolatile(bool flag) {
|
Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
|
}
|
void removeVolatile() { Mask &= ~Volatile; }
|
void addVolatile() { Mask |= Volatile; }
|
|
bool hasRestrict() const { return Mask & Restrict; }
|
void setRestrict(bool flag) {
|
Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
|
}
|
void removeRestrict() { Mask &= ~Restrict; }
|
void addRestrict() { Mask |= Restrict; }
|
|
bool hasCVRQualifiers() const { return getCVRQualifiers(); }
|
unsigned getCVRQualifiers() const { return Mask & CVRMask; }
|
void setCVRQualifiers(unsigned mask) {
|
assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
|
Mask = (Mask & ~CVRMask) | mask;
|
}
|
void removeCVRQualifiers(unsigned mask) {
|
assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
|
Mask &= ~mask;
|
}
|
void removeCVRQualifiers() {
|
removeCVRQualifiers(CVRMask);
|
}
|
void addCVRQualifiers(unsigned mask) {
|
assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
|
Mask |= mask;
|
}
|
void addCVRUQualifiers(unsigned mask) {
|
assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits");
|
Mask |= mask;
|
}
|
|
bool hasUnaligned() const { return Mask & UMask; }
|
void setUnaligned(bool flag) {
|
Mask = (Mask & ~UMask) | (flag ? UMask : 0);
|
}
|
void removeUnaligned() { Mask &= ~UMask; }
|
void addUnaligned() { Mask |= UMask; }
|
|
bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
|
GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
|
void setObjCGCAttr(GC type) {
|
Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
|
}
|
void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
|
void addObjCGCAttr(GC type) {
|
assert(type);
|
setObjCGCAttr(type);
|
}
|
Qualifiers withoutObjCGCAttr() const {
|
Qualifiers qs = *this;
|
qs.removeObjCGCAttr();
|
return qs;
|
}
|
Qualifiers withoutObjCLifetime() const {
|
Qualifiers qs = *this;
|
qs.removeObjCLifetime();
|
return qs;
|
}
|
|
bool hasObjCLifetime() const { return Mask & LifetimeMask; }
|
ObjCLifetime getObjCLifetime() const {
|
return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
|
}
|
void setObjCLifetime(ObjCLifetime type) {
|
Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
|
}
|
void removeObjCLifetime() { setObjCLifetime(OCL_None); }
|
void addObjCLifetime(ObjCLifetime type) {
|
assert(type);
|
assert(!hasObjCLifetime());
|
Mask |= (type << LifetimeShift);
|
}
|
|
/// True if the lifetime is neither None or ExplicitNone.
|
bool hasNonTrivialObjCLifetime() const {
|
ObjCLifetime lifetime = getObjCLifetime();
|
return (lifetime > OCL_ExplicitNone);
|
}
|
|
/// True if the lifetime is either strong or weak.
|
bool hasStrongOrWeakObjCLifetime() const {
|
ObjCLifetime lifetime = getObjCLifetime();
|
return (lifetime == OCL_Strong || lifetime == OCL_Weak);
|
}
|
|
bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
|
unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
|
void setAddressSpace(unsigned space) {
|
assert(space <= MaxAddressSpace);
|
Mask = (Mask & ~AddressSpaceMask)
|
| (((uint32_t) space) << AddressSpaceShift);
|
}
|
void removeAddressSpace() { setAddressSpace(0); }
|
void addAddressSpace(unsigned space) {
|
assert(space);
|
setAddressSpace(space);
|
}
|
|
// Fast qualifiers are those that can be allocated directly
|
// on a QualType object.
|
bool hasFastQualifiers() const { return getFastQualifiers(); }
|
unsigned getFastQualifiers() const { return Mask & FastMask; }
|
void setFastQualifiers(unsigned mask) {
|
assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
|
Mask = (Mask & ~FastMask) | mask;
|
}
|
void removeFastQualifiers(unsigned mask) {
|
assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
|
Mask &= ~mask;
|
}
|
void removeFastQualifiers() {
|
removeFastQualifiers(FastMask);
|
}
|
void addFastQualifiers(unsigned mask) {
|
assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
|
Mask |= mask;
|
}
|
|
/// Return true if the set contains any qualifiers which require an ExtQuals
|
/// node to be allocated.
|
bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
|
Qualifiers getNonFastQualifiers() const {
|
Qualifiers Quals = *this;
|
Quals.setFastQualifiers(0);
|
return Quals;
|
}
|
|
/// Return true if the set contains any qualifiers.
|
bool hasQualifiers() const { return Mask; }
|
bool empty() const { return !Mask; }
|
|
/// Add the qualifiers from the given set to this set.
|
void addQualifiers(Qualifiers Q) {
|
// If the other set doesn't have any non-boolean qualifiers, just
|
// bit-or it in.
|
if (!(Q.Mask & ~CVRMask))
|
Mask |= Q.Mask;
|
else {
|
Mask |= (Q.Mask & CVRMask);
|
if (Q.hasAddressSpace())
|
addAddressSpace(Q.getAddressSpace());
|
if (Q.hasObjCGCAttr())
|
addObjCGCAttr(Q.getObjCGCAttr());
|
if (Q.hasObjCLifetime())
|
addObjCLifetime(Q.getObjCLifetime());
|
}
|
}
|
|
/// \brief Remove the qualifiers from the given set from this set.
|
void removeQualifiers(Qualifiers Q) {
|
// If the other set doesn't have any non-boolean qualifiers, just
|
// bit-and the inverse in.
|
if (!(Q.Mask & ~CVRMask))
|
Mask &= ~Q.Mask;
|
else {
|
Mask &= ~(Q.Mask & CVRMask);
|
if (getObjCGCAttr() == Q.getObjCGCAttr())
|
removeObjCGCAttr();
|
if (getObjCLifetime() == Q.getObjCLifetime())
|
removeObjCLifetime();
|
if (getAddressSpace() == Q.getAddressSpace())
|
removeAddressSpace();
|
}
|
}
|
|
/// Add the qualifiers from the given set to this set, given that
|
/// they don't conflict.
|
void addConsistentQualifiers(Qualifiers qs) {
|
assert(getAddressSpace() == qs.getAddressSpace() ||
|
!hasAddressSpace() || !qs.hasAddressSpace());
|
assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
|
!hasObjCGCAttr() || !qs.hasObjCGCAttr());
|
assert(getObjCLifetime() == qs.getObjCLifetime() ||
|
!hasObjCLifetime() || !qs.hasObjCLifetime());
|
Mask |= qs.Mask;
|
}
|
|
/// Returns true if this address space is a superset of the other one.
|
/// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
|
/// overlapping address spaces.
|
/// CL1.1 or CL1.2:
|
/// every address space is a superset of itself.
|
/// CL2.0 adds:
|
/// __generic is a superset of any address space except for __constant.
|
bool isAddressSpaceSupersetOf(Qualifiers other) const {
|
return
|
// Address spaces must match exactly.
|
getAddressSpace() == other.getAddressSpace() ||
|
// Otherwise in OpenCLC v2.0 s6.5.5: every address space except
|
// for __constant can be used as __generic.
|
(getAddressSpace() == LangAS::opencl_generic &&
|
other.getAddressSpace() != LangAS::opencl_constant);
|
}
|
|
/// Determines if these qualifiers compatibly include another set.
|
/// Generally this answers the question of whether an object with the other
|
/// qualifiers can be safely used as an object with these qualifiers.
|
bool compatiblyIncludes(Qualifiers other) const {
|
return isAddressSpaceSupersetOf(other) &&
|
// ObjC GC qualifiers can match, be added, or be removed, but can't
|
// be changed.
|
(getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
|
!other.hasObjCGCAttr()) &&
|
// ObjC lifetime qualifiers must match exactly.
|
getObjCLifetime() == other.getObjCLifetime() &&
|
// CVR qualifiers may subset.
|
(((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
|
// U qualifier may superset.
|
(!other.hasUnaligned() || hasUnaligned());
|
}
|
|
/// \brief Determines if these qualifiers compatibly include another set of
|
/// qualifiers from the narrow perspective of Objective-C ARC lifetime.
|
///
|
/// One set of Objective-C lifetime qualifiers compatibly includes the other
|
/// if the lifetime qualifiers match, or if both are non-__weak and the
|
/// including set also contains the 'const' qualifier, or both are non-__weak
|
/// and one is None (which can only happen in non-ARC modes).
|
bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
|
if (getObjCLifetime() == other.getObjCLifetime())
|
return true;
|
|
if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
|
return false;
|
|
if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
|
return true;
|
|
return hasConst();
|
}
|
|
/// \brief Determine whether this set of qualifiers is a strict superset of
|
/// another set of qualifiers, not considering qualifier compatibility.
|
bool isStrictSupersetOf(Qualifiers Other) const;
|
|
bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
|
bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
|
|
explicit operator bool() const { return hasQualifiers(); }
|
|
Qualifiers &operator+=(Qualifiers R) {
|
addQualifiers(R);
|
return *this;
|
}
|
|
// Union two qualifier sets. If an enumerated qualifier appears
|
// in both sets, use the one from the right.
|
friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
|
L += R;
|
return L;
|
}
|
|
Qualifiers &operator-=(Qualifiers R) {
|
removeQualifiers(R);
|
return *this;
|
}
|
|
/// \brief Compute the difference between two qualifier sets.
|
friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
|
L -= R;
|
return L;
|
}
|
|
std::string getAsString() const;
|
std::string getAsString(const PrintingPolicy &Policy) const;
|
|
bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
|
void print(raw_ostream &OS, const PrintingPolicy &Policy,
|
bool appendSpaceIfNonEmpty = false) const;
|
|
void Profile(llvm::FoldingSetNodeID &ID) const {
|
ID.AddInteger(Mask);
|
}
|
|
private:
|
|
// bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
|
// |C R V|U|GCAttr|Lifetime|AddressSpace|
|
uint32_t Mask;
|
|
static const uint32_t UMask = 0x8;
|
static const uint32_t UShift = 3;
|
static const uint32_t GCAttrMask = 0x30;
|
static const uint32_t GCAttrShift = 4;
|
static const uint32_t LifetimeMask = 0x1C0;
|
static const uint32_t LifetimeShift = 6;
|
static const uint32_t AddressSpaceMask =
|
~(CVRMask | UMask | GCAttrMask | LifetimeMask);
|
static const uint32_t AddressSpaceShift = 9;
|
};
|
|
/// A std::pair-like structure for storing a qualified type split
|
/// into its local qualifiers and its locally-unqualified type.
|
struct SplitQualType {
|
/// The locally-unqualified type.
|
const Type *Ty;
|
|
/// The local qualifiers.
|
Qualifiers Quals;
|
|
SplitQualType() : Ty(nullptr), Quals() {}
|
SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
|
|
SplitQualType getSingleStepDesugaredType() const; // end of this file
|
|
// Make std::tie work.
|
std::pair<const Type *,Qualifiers> asPair() const {
|
return std::pair<const Type *, Qualifiers>(Ty, Quals);
|
}
|
|
friend bool operator==(SplitQualType a, SplitQualType b) {
|
return a.Ty == b.Ty && a.Quals == b.Quals;
|
}
|
friend bool operator!=(SplitQualType a, SplitQualType b) {
|
return a.Ty != b.Ty || a.Quals != b.Quals;
|
}
|
};
|
|
/// The kind of type we are substituting Objective-C type arguments into.
|
///
|
/// The kind of substitution affects the replacement of type parameters when
|
/// no concrete type information is provided, e.g., when dealing with an
|
/// unspecialized type.
|
enum class ObjCSubstitutionContext {
|
/// An ordinary type.
|
Ordinary,
|
/// The result type of a method or function.
|
Result,
|
/// The parameter type of a method or function.
|
Parameter,
|
/// The type of a property.
|
Property,
|
/// The superclass of a type.
|
Superclass,
|
};
|
|
/// A (possibly-)qualified type.
|
///
|
/// For efficiency, we don't store CV-qualified types as nodes on their
|
/// own: instead each reference to a type stores the qualifiers. This
|
/// greatly reduces the number of nodes we need to allocate for types (for
|
/// example we only need one for 'int', 'const int', 'volatile int',
|
/// 'const volatile int', etc).
|
///
|
/// As an added efficiency bonus, instead of making this a pair, we
|
/// just store the two bits we care about in the low bits of the
|
/// pointer. To handle the packing/unpacking, we make QualType be a
|
/// simple wrapper class that acts like a smart pointer. A third bit
|
/// indicates whether there are extended qualifiers present, in which
|
/// case the pointer points to a special structure.
|
class QualType {
|
// Thankfully, these are efficiently composable.
|
llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
|
Qualifiers::FastWidth> Value;
|
|
const ExtQuals *getExtQualsUnsafe() const {
|
return Value.getPointer().get<const ExtQuals*>();
|
}
|
|
const Type *getTypePtrUnsafe() const {
|
return Value.getPointer().get<const Type*>();
|
}
|
|
const ExtQualsTypeCommonBase *getCommonPtr() const {
|
assert(!isNull() && "Cannot retrieve a NULL type pointer");
|
uintptr_t CommonPtrVal
|
= reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
|
CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
|
return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
|
}
|
|
friend class QualifierCollector;
|
public:
|
QualType() {}
|
|
QualType(const Type *Ptr, unsigned Quals)
|
: Value(Ptr, Quals) {}
|
QualType(const ExtQuals *Ptr, unsigned Quals)
|
: Value(Ptr, Quals) {}
|
|
unsigned getLocalFastQualifiers() const { return Value.getInt(); }
|
void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
|
|
/// Retrieves a pointer to the underlying (unqualified) type.
|
///
|
/// This function requires that the type not be NULL. If the type might be
|
/// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
|
const Type *getTypePtr() const;
|
|
const Type *getTypePtrOrNull() const;
|
|
/// Retrieves a pointer to the name of the base type.
|
const IdentifierInfo *getBaseTypeIdentifier() const;
|
|
/// Divides a QualType into its unqualified type and a set of local
|
/// qualifiers.
|
SplitQualType split() const;
|
|
void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
|
static QualType getFromOpaquePtr(const void *Ptr) {
|
QualType T;
|
T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
|
return T;
|
}
|
|
const Type &operator*() const {
|
return *getTypePtr();
|
}
|
|
const Type *operator->() const {
|
return getTypePtr();
|
}
|
|
bool isCanonical() const;
|
bool isCanonicalAsParam() const;
|
|
/// Return true if this QualType doesn't point to a type yet.
|
bool isNull() const {
|
return Value.getPointer().isNull();
|
}
|
|
/// \brief Determine whether this particular QualType instance has the
|
/// "const" qualifier set, without looking through typedefs that may have
|
/// added "const" at a different level.
|
bool isLocalConstQualified() const {
|
return (getLocalFastQualifiers() & Qualifiers::Const);
|
}
|
|
/// \brief Determine whether this type is const-qualified.
|
bool isConstQualified() const;
|
|
/// \brief Determine whether this particular QualType instance has the
|
/// "restrict" qualifier set, without looking through typedefs that may have
|
/// added "restrict" at a different level.
|
bool isLocalRestrictQualified() const {
|
return (getLocalFastQualifiers() & Qualifiers::Restrict);
|
}
|
|
/// \brief Determine whether this type is restrict-qualified.
|
bool isRestrictQualified() const;
|
|
/// \brief Determine whether this particular QualType instance has the
|
/// "volatile" qualifier set, without looking through typedefs that may have
|
/// added "volatile" at a different level.
|
bool isLocalVolatileQualified() const {
|
return (getLocalFastQualifiers() & Qualifiers::Volatile);
|
}
|
|
/// \brief Determine whether this type is volatile-qualified.
|
bool isVolatileQualified() const;
|
|
/// \brief Determine whether this particular QualType instance has any
|
/// qualifiers, without looking through any typedefs that might add
|
/// qualifiers at a different level.
|
bool hasLocalQualifiers() const {
|
return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
|
}
|
|
/// \brief Determine whether this type has any qualifiers.
|
bool hasQualifiers() const;
|
|
/// \brief Determine whether this particular QualType instance has any
|
/// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
|
/// instance.
|
bool hasLocalNonFastQualifiers() const {
|
return Value.getPointer().is<const ExtQuals*>();
|
}
|
|
/// \brief Retrieve the set of qualifiers local to this particular QualType
|
/// instance, not including any qualifiers acquired through typedefs or
|
/// other sugar.
|
Qualifiers getLocalQualifiers() const;
|
|
/// \brief Retrieve the set of qualifiers applied to this type.
|
Qualifiers getQualifiers() const;
|
|
/// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
|
/// local to this particular QualType instance, not including any qualifiers
|
/// acquired through typedefs or other sugar.
|
unsigned getLocalCVRQualifiers() const {
|
return getLocalFastQualifiers();
|
}
|
|
/// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
|
/// applied to this type.
|
unsigned getCVRQualifiers() const;
|
|
bool isConstant(const ASTContext& Ctx) const {
|
return QualType::isConstant(*this, Ctx);
|
}
|
|
/// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
|
bool isPODType(const ASTContext &Context) const;
|
|
/// Return true if this is a POD type according to the rules of the C++98
|
/// standard, regardless of the current compilation's language.
|
bool isCXX98PODType(const ASTContext &Context) const;
|
|
/// Return true if this is a POD type according to the more relaxed rules
|
/// of the C++11 standard, regardless of the current compilation's language.
|
/// (C++0x [basic.types]p9)
|
bool isCXX11PODType(const ASTContext &Context) const;
|
|
/// Return true if this is a trivial type per (C++0x [basic.types]p9)
|
bool isTrivialType(const ASTContext &Context) const;
|
|
/// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
|
bool isTriviallyCopyableType(const ASTContext &Context) const;
|
|
// Don't promise in the API that anything besides 'const' can be
|
// easily added.
|
|
/// Add the `const` type qualifier to this QualType.
|
void addConst() {
|
addFastQualifiers(Qualifiers::Const);
|
}
|
QualType withConst() const {
|
return withFastQualifiers(Qualifiers::Const);
|
}
|
|
/// Add the `volatile` type qualifier to this QualType.
|
void addVolatile() {
|
addFastQualifiers(Qualifiers::Volatile);
|
}
|
QualType withVolatile() const {
|
return withFastQualifiers(Qualifiers::Volatile);
|
}
|
|
/// Add the `restrict` qualifier to this QualType.
|
void addRestrict() {
|
addFastQualifiers(Qualifiers::Restrict);
|
}
|
QualType withRestrict() const {
|
return withFastQualifiers(Qualifiers::Restrict);
|
}
|
|
QualType withCVRQualifiers(unsigned CVR) const {
|
return withFastQualifiers(CVR);
|
}
|
|
void addFastQualifiers(unsigned TQs) {
|
assert(!(TQs & ~Qualifiers::FastMask)
|
&& "non-fast qualifier bits set in mask!");
|
Value.setInt(Value.getInt() | TQs);
|
}
|
|
void removeLocalConst();
|
void removeLocalVolatile();
|
void removeLocalRestrict();
|
void removeLocalCVRQualifiers(unsigned Mask);
|
|
void removeLocalFastQualifiers() { Value.setInt(0); }
|
void removeLocalFastQualifiers(unsigned Mask) {
|
assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
|
Value.setInt(Value.getInt() & ~Mask);
|
}
|
|
// Creates a type with the given qualifiers in addition to any
|
// qualifiers already on this type.
|
QualType withFastQualifiers(unsigned TQs) const {
|
QualType T = *this;
|
T.addFastQualifiers(TQs);
|
return T;
|
}
|
|
// Creates a type with exactly the given fast qualifiers, removing
|
// any existing fast qualifiers.
|
QualType withExactLocalFastQualifiers(unsigned TQs) const {
|
return withoutLocalFastQualifiers().withFastQualifiers(TQs);
|
}
|
|
// Removes fast qualifiers, but leaves any extended qualifiers in place.
|
QualType withoutLocalFastQualifiers() const {
|
QualType T = *this;
|
T.removeLocalFastQualifiers();
|
return T;
|
}
|
|
QualType getCanonicalType() const;
|
|
/// \brief Return this type with all of the instance-specific qualifiers
|
/// removed, but without removing any qualifiers that may have been applied
|
/// through typedefs.
|
QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
|
|
/// \brief Retrieve the unqualified variant of the given type,
|
/// removing as little sugar as possible.
|
///
|
/// This routine looks through various kinds of sugar to find the
|
/// least-desugared type that is unqualified. For example, given:
|
///
|
/// \code
|
/// typedef int Integer;
|
/// typedef const Integer CInteger;
|
/// typedef CInteger DifferenceType;
|
/// \endcode
|
///
|
/// Executing \c getUnqualifiedType() on the type \c DifferenceType will
|
/// desugar until we hit the type \c Integer, which has no qualifiers on it.
|
///
|
/// The resulting type might still be qualified if it's sugar for an array
|
/// type. To strip qualifiers even from within a sugared array type, use
|
/// ASTContext::getUnqualifiedArrayType.
|
inline QualType getUnqualifiedType() const;
|
|
/// Retrieve the unqualified variant of the given type, removing as little
|
/// sugar as possible.
|
///
|
/// Like getUnqualifiedType(), but also returns the set of
|
/// qualifiers that were built up.
|
///
|
/// The resulting type might still be qualified if it's sugar for an array
|
/// type. To strip qualifiers even from within a sugared array type, use
|
/// ASTContext::getUnqualifiedArrayType.
|
inline SplitQualType getSplitUnqualifiedType() const;
|
|
/// \brief Determine whether this type is more qualified than the other
|
/// given type, requiring exact equality for non-CVR qualifiers.
|
bool isMoreQualifiedThan(QualType Other) const;
|
|
/// \brief Determine whether this type is at least as qualified as the other
|
/// given type, requiring exact equality for non-CVR qualifiers.
|
bool isAtLeastAsQualifiedAs(QualType Other) const;
|
|
QualType getNonReferenceType() const;
|
|
/// \brief Determine the type of a (typically non-lvalue) expression with the
|
/// specified result type.
|
///
|
/// This routine should be used for expressions for which the return type is
|
/// explicitly specified (e.g., in a cast or call) and isn't necessarily
|
/// an lvalue. It removes a top-level reference (since there are no
|
/// expressions of reference type) and deletes top-level cvr-qualifiers
|
/// from non-class types (in C++) or all types (in C).
|
QualType getNonLValueExprType(const ASTContext &Context) const;
|
|
/// Return the specified type with any "sugar" removed from
|
/// the type. This takes off typedefs, typeof's etc. If the outer level of
|
/// the type is already concrete, it returns it unmodified. This is similar
|
/// to getting the canonical type, but it doesn't remove *all* typedefs. For
|
/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
|
/// concrete.
|
///
|
/// Qualifiers are left in place.
|
QualType getDesugaredType(const ASTContext &Context) const {
|
return getDesugaredType(*this, Context);
|
}
|
|
SplitQualType getSplitDesugaredType() const {
|
return getSplitDesugaredType(*this);
|
}
|
|
/// \brief Return the specified type with one level of "sugar" removed from
|
/// the type.
|
///
|
/// This routine takes off the first typedef, typeof, etc. If the outer level
|
/// of the type is already concrete, it returns it unmodified.
|
QualType getSingleStepDesugaredType(const ASTContext &Context) const {
|
return getSingleStepDesugaredTypeImpl(*this, Context);
|
}
|
|
/// Returns the specified type after dropping any
|
/// outer-level parentheses.
|
QualType IgnoreParens() const {
|
if (isa<ParenType>(*this))
|
return QualType::IgnoreParens(*this);
|
return *this;
|
}
|
|
/// Indicate whether the specified types and qualifiers are identical.
|
friend bool operator==(const QualType &LHS, const QualType &RHS) {
|
return LHS.Value == RHS.Value;
|
}
|
friend bool operator!=(const QualType &LHS, const QualType &RHS) {
|
return LHS.Value != RHS.Value;
|
}
|
std::string getAsString() const {
|
return getAsString(split());
|
}
|
static std::string getAsString(SplitQualType split) {
|
return getAsString(split.Ty, split.Quals);
|
}
|
static std::string getAsString(const Type *ty, Qualifiers qs);
|
|
std::string getAsString(const PrintingPolicy &Policy) const;
|
|
void print(raw_ostream &OS, const PrintingPolicy &Policy,
|
const Twine &PlaceHolder = Twine(),
|
unsigned Indentation = 0) const {
|
print(split(), OS, Policy, PlaceHolder, Indentation);
|
}
|
static void print(SplitQualType split, raw_ostream &OS,
|
const PrintingPolicy &policy, const Twine &PlaceHolder,
|
unsigned Indentation = 0) {
|
return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
|
}
|
static void print(const Type *ty, Qualifiers qs,
|
raw_ostream &OS, const PrintingPolicy &policy,
|
const Twine &PlaceHolder,
|
unsigned Indentation = 0);
|
|
void getAsStringInternal(std::string &Str,
|
const PrintingPolicy &Policy) const {
|
return getAsStringInternal(split(), Str, Policy);
|
}
|
static void getAsStringInternal(SplitQualType split, std::string &out,
|
const PrintingPolicy &policy) {
|
return getAsStringInternal(split.Ty, split.Quals, out, policy);
|
}
|
static void getAsStringInternal(const Type *ty, Qualifiers qs,
|
std::string &out,
|
const PrintingPolicy &policy);
|
|
class StreamedQualTypeHelper {
|
const QualType &T;
|
const PrintingPolicy &Policy;
|
const Twine &PlaceHolder;
|
unsigned Indentation;
|
public:
|
StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
|
const Twine &PlaceHolder, unsigned Indentation)
|
: T(T), Policy(Policy), PlaceHolder(PlaceHolder),
|
Indentation(Indentation) { }
|
|
friend raw_ostream &operator<<(raw_ostream &OS,
|
const StreamedQualTypeHelper &SQT) {
|
SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
|
return OS;
|
}
|
};
|
|
StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
|
const Twine &PlaceHolder = Twine(),
|
unsigned Indentation = 0) const {
|
return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
|
}
|
|
void dump(const char *s) const;
|
void dump() const;
|
|
void Profile(llvm::FoldingSetNodeID &ID) const {
|
ID.AddPointer(getAsOpaquePtr());
|
}
|
|
/// Return the address space of this type.
|
inline unsigned getAddressSpace() const;
|
|
/// Returns gc attribute of this type.
|
inline Qualifiers::GC getObjCGCAttr() const;
|
|
/// true when Type is objc's weak.
|
bool isObjCGCWeak() const {
|
return getObjCGCAttr() == Qualifiers::Weak;
|
}
|
|
/// true when Type is objc's strong.
|
bool isObjCGCStrong() const {
|
return getObjCGCAttr() == Qualifiers::Strong;
|
}
|
|
/// Returns lifetime attribute of this type.
|
Qualifiers::ObjCLifetime getObjCLifetime() const {
|
return getQualifiers().getObjCLifetime();
|
}
|
|
bool hasNonTrivialObjCLifetime() const {
|
return getQualifiers().hasNonTrivialObjCLifetime();
|
}
|
|
bool hasStrongOrWeakObjCLifetime() const {
|
return getQualifiers().hasStrongOrWeakObjCLifetime();
|
}
|
|
enum DestructionKind {
|
DK_none,
|
DK_cxx_destructor,
|
DK_objc_strong_lifetime,
|
DK_objc_weak_lifetime
|
};
|
|
/// Returns a nonzero value if objects of this type require
|
/// non-trivial work to clean up after. Non-zero because it's
|
/// conceivable that qualifiers (objc_gc(weak)?) could make
|
/// something require destruction.
|
DestructionKind isDestructedType() const {
|
return isDestructedTypeImpl(*this);
|
}
|
|
/// Determine whether expressions of the given type are forbidden
|
/// from being lvalues in C.
|
///
|
/// The expression types that are forbidden to be lvalues are:
|
/// - 'void', but not qualified void
|
/// - function types
|
///
|
/// The exact rule here is C99 6.3.2.1:
|
/// An lvalue is an expression with an object type or an incomplete
|
/// type other than void.
|
bool isCForbiddenLValueType() const;
|
|
/// Substitute type arguments for the Objective-C type parameters used in the
|
/// subject type.
|
///
|
/// \param ctx ASTContext in which the type exists.
|
///
|
/// \param typeArgs The type arguments that will be substituted for the
|
/// Objective-C type parameters in the subject type, which are generally
|
/// computed via \c Type::getObjCSubstitutions. If empty, the type
|
/// parameters will be replaced with their bounds or id/Class, as appropriate
|
/// for the context.
|
///
|
/// \param context The context in which the subject type was written.
|
///
|
/// \returns the resulting type.
|
QualType substObjCTypeArgs(ASTContext &ctx,
|
ArrayRef<QualType> typeArgs,
|
ObjCSubstitutionContext context) const;
|
|
/// Substitute type arguments from an object type for the Objective-C type
|
/// parameters used in the subject type.
|
///
|
/// This operation combines the computation of type arguments for
|
/// substitution (\c Type::getObjCSubstitutions) with the actual process of
|
/// substitution (\c QualType::substObjCTypeArgs) for the convenience of
|
/// callers that need to perform a single substitution in isolation.
|
///
|
/// \param objectType The type of the object whose member type we're
|
/// substituting into. For example, this might be the receiver of a message
|
/// or the base of a property access.
|
///
|
/// \param dc The declaration context from which the subject type was
|
/// retrieved, which indicates (for example) which type parameters should
|
/// be substituted.
|
///
|
/// \param context The context in which the subject type was written.
|
///
|
/// \returns the subject type after replacing all of the Objective-C type
|
/// parameters with their corresponding arguments.
|
QualType substObjCMemberType(QualType objectType,
|
const DeclContext *dc,
|
ObjCSubstitutionContext context) const;
|
|
/// Strip Objective-C "__kindof" types from the given type.
|
QualType stripObjCKindOfType(const ASTContext &ctx) const;
|
|
/// Remove all qualifiers including _Atomic.
|
QualType getAtomicUnqualifiedType() const;
|
|
private:
|
// These methods are implemented in a separate translation unit;
|
// "static"-ize them to avoid creating temporary QualTypes in the
|
// caller.
|
static bool isConstant(QualType T, const ASTContext& Ctx);
|
static QualType getDesugaredType(QualType T, const ASTContext &Context);
|
static SplitQualType getSplitDesugaredType(QualType T);
|
static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
|
static QualType getSingleStepDesugaredTypeImpl(QualType type,
|
const ASTContext &C);
|
static QualType IgnoreParens(QualType T);
|
static DestructionKind isDestructedTypeImpl(QualType type);
|
};
|
|
} // end clang.
|
|
namespace llvm {
|
/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
|
/// to a specific Type class.
|
template<> struct simplify_type< ::clang::QualType> {
|
typedef const ::clang::Type *SimpleType;
|
static SimpleType getSimplifiedValue(::clang::QualType Val) {
|
return Val.getTypePtr();
|
}
|
};
|
|
// Teach SmallPtrSet that QualType is "basically a pointer".
|
template<>
|
class PointerLikeTypeTraits<clang::QualType> {
|
public:
|
static inline void *getAsVoidPointer(clang::QualType P) {
|
return P.getAsOpaquePtr();
|
}
|
static inline clang::QualType getFromVoidPointer(void *P) {
|
return clang::QualType::getFromOpaquePtr(P);
|
}
|
// Various qualifiers go in low bits.
|
enum { NumLowBitsAvailable = 0 };
|
};
|
|
} // end namespace llvm
|
|
namespace clang {
|
|
/// \brief Base class that is common to both the \c ExtQuals and \c Type
|
/// classes, which allows \c QualType to access the common fields between the
|
/// two.
|
///
|
class ExtQualsTypeCommonBase {
|
ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
|
: BaseType(baseType), CanonicalType(canon) {}
|
|
/// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
|
/// a self-referential pointer (for \c Type).
|
///
|
/// This pointer allows an efficient mapping from a QualType to its
|
/// underlying type pointer.
|
const Type *const BaseType;
|
|
/// \brief The canonical type of this type. A QualType.
|
QualType CanonicalType;
|
|
friend class QualType;
|
friend class Type;
|
friend class ExtQuals;
|
};
|
|
/// We can encode up to four bits in the low bits of a
|
/// type pointer, but there are many more type qualifiers that we want
|
/// to be able to apply to an arbitrary type. Therefore we have this
|
/// struct, intended to be heap-allocated and used by QualType to
|
/// store qualifiers.
|
///
|
/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
|
/// in three low bits on the QualType pointer; a fourth bit records whether
|
/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
|
/// Objective-C GC attributes) are much more rare.
|
class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
|
// NOTE: changing the fast qualifiers should be straightforward as
|
// long as you don't make 'const' non-fast.
|
// 1. Qualifiers:
|
// a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
|
// Fast qualifiers must occupy the low-order bits.
|
// b) Update Qualifiers::FastWidth and FastMask.
|
// 2. QualType:
|
// a) Update is{Volatile,Restrict}Qualified(), defined inline.
|
// b) Update remove{Volatile,Restrict}, defined near the end of
|
// this header.
|
// 3. ASTContext:
|
// a) Update get{Volatile,Restrict}Type.
|
|
/// The immutable set of qualifiers applied by this node. Always contains
|
/// extended qualifiers.
|
Qualifiers Quals;
|
|
ExtQuals *this_() { return this; }
|
|
public:
|
ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
|
: ExtQualsTypeCommonBase(baseType,
|
canon.isNull() ? QualType(this_(), 0) : canon),
|
Quals(quals)
|
{
|
assert(Quals.hasNonFastQualifiers()
|
&& "ExtQuals created with no fast qualifiers");
|
assert(!Quals.hasFastQualifiers()
|
&& "ExtQuals created with fast qualifiers");
|
}
|
|
Qualifiers getQualifiers() const { return Quals; }
|
|
bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
|
Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
|
|
bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
|
Qualifiers::ObjCLifetime getObjCLifetime() const {
|
return Quals.getObjCLifetime();
|
}
|
|
bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
|
unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
|
|
const Type *getBaseType() const { return BaseType; }
|
|
public:
|
void Profile(llvm::FoldingSetNodeID &ID) const {
|
Profile(ID, getBaseType(), Quals);
|
}
|
static void Profile(llvm::FoldingSetNodeID &ID,
|
const Type *BaseType,
|
Qualifiers Quals) {
|
assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
|
ID.AddPointer(BaseType);
|
Quals.Profile(ID);
|
}
|
};
|
|
/// The kind of C++11 ref-qualifier associated with a function type.
|
/// This determines whether a member function's "this" object can be an
|
/// lvalue, rvalue, or neither.
|
enum RefQualifierKind {
|
/// \brief No ref-qualifier was provided.
|
RQ_None = 0,
|
/// \brief An lvalue ref-qualifier was provided (\c &).
|
RQ_LValue,
|
/// \brief An rvalue ref-qualifier was provided (\c &&).
|
RQ_RValue
|
};
|
|
/// Which keyword(s) were used to create an AutoType.
|
enum class AutoTypeKeyword {
|
/// \brief auto
|
Auto,
|
/// \brief decltype(auto)
|
DecltypeAuto,
|
/// \brief __auto_type (GNU extension)
|
GNUAutoType
|
};
|
|
/// The base class of the type hierarchy.
|
///
|
/// A central concept with types is that each type always has a canonical
|
/// type. A canonical type is the type with any typedef names stripped out
|
/// of it or the types it references. For example, consider:
|
///
|
/// typedef int foo;
|
/// typedef foo* bar;
|
/// 'int *' 'foo *' 'bar'
|
///
|
/// There will be a Type object created for 'int'. Since int is canonical, its
|
/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
|
/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
|
/// there is a PointerType that represents 'int*', which, like 'int', is
|
/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
|
/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
|
/// is also 'int*'.
|
///
|
/// Non-canonical types are useful for emitting diagnostics, without losing
|
/// information about typedefs being used. Canonical types are useful for type
|
/// comparisons (they allow by-pointer equality tests) and useful for reasoning
|
/// about whether something has a particular form (e.g. is a function type),
|
/// because they implicitly, recursively, strip all typedefs out of a type.
|
///
|
/// Types, once created, are immutable.
|
///
|
class Type : public ExtQualsTypeCommonBase {
|
public:
|
enum TypeClass {
|
#define TYPE(Class, Base) Class,
|
#define LAST_TYPE(Class) TypeLast = Class,
|
#define ABSTRACT_TYPE(Class, Base)
|
#include "clang/AST/TypeNodes.def"
|
TagFirst = Record, TagLast = Enum
|
};
|
|
private:
|
Type(const Type &) = delete;
|
void operator=(const Type &) = delete;
|
|
/// Bitfields required by the Type class.
|
class TypeBitfields {
|
friend class Type;
|
template <class T> friend class TypePropertyCache;
|
|
/// TypeClass bitfield - Enum that specifies what subclass this belongs to.
|
unsigned TC : 8;
|
|
/// Whether this type is a dependent type (C++ [temp.dep.type]).
|
unsigned Dependent : 1;
|
|
/// Whether this type somehow involves a template parameter, even
|
/// if the resolution of the type does not depend on a template parameter.
|
unsigned InstantiationDependent : 1;
|
|
/// Whether this type is a variably-modified type (C99 6.7.5).
|
unsigned VariablyModified : 1;
|
|
/// \brief Whether this type contains an unexpanded parameter pack
|
/// (for C++11 variadic templates).
|
unsigned ContainsUnexpandedParameterPack : 1;
|
|
/// \brief True if the cache (i.e. the bitfields here starting with
|
/// 'Cache') is valid.
|
mutable unsigned CacheValid : 1;
|
|
/// \brief Linkage of this type.
|
mutable unsigned CachedLinkage : 3;
|
|
/// \brief Whether this type involves and local or unnamed types.
|
mutable unsigned CachedLocalOrUnnamed : 1;
|
|
/// \brief Whether this type comes from an AST file.
|
mutable unsigned FromAST : 1;
|
|
bool isCacheValid() const {
|
return CacheValid;
|
}
|
Linkage getLinkage() const {
|
assert(isCacheValid() && "getting linkage from invalid cache");
|
return static_cast<Linkage>(CachedLinkage);
|
}
|
bool hasLocalOrUnnamedType() const {
|
assert(isCacheValid() && "getting linkage from invalid cache");
|
return CachedLocalOrUnnamed;
|
}
|
};
|
enum { NumTypeBits = 18 };
|
|
protected:
|
// These classes allow subclasses to somewhat cleanly pack bitfields
|
// into Type.
|
|
class ArrayTypeBitfields {
|
friend class ArrayType;
|
|
unsigned : NumTypeBits;
|
|
/// CVR qualifiers from declarations like
|
/// 'int X[static restrict 4]'. For function parameters only.
|
unsigned IndexTypeQuals : 3;
|
|
/// Storage class qualifiers from declarations like
|
/// 'int X[static restrict 4]'. For function parameters only.
|
/// Actually an ArrayType::ArraySizeModifier.
|
unsigned SizeModifier : 3;
|
};
|
|
class BuiltinTypeBitfields {
|
friend class BuiltinType;
|
|
unsigned : NumTypeBits;
|
|
/// The kind (BuiltinType::Kind) of builtin type this is.
|
unsigned Kind : 8;
|
};
|
|
class FunctionTypeBitfields {
|
friend class FunctionType;
|
friend class FunctionProtoType;
|
|
unsigned : NumTypeBits;
|
|
/// Extra information which affects how the function is called, like
|
/// regparm and the calling convention.
|
unsigned ExtInfo : 9;
|
|
/// Used only by FunctionProtoType, put here to pack with the
|
/// other bitfields.
|
/// The qualifiers are part of FunctionProtoType because...
|
///
|
/// C++ 8.3.5p4: The return type, the parameter type list and the
|
/// cv-qualifier-seq, [...], are part of the function type.
|
unsigned TypeQuals : 4;
|
|
/// \brief The ref-qualifier associated with a \c FunctionProtoType.
|
///
|
/// This is a value of type \c RefQualifierKind.
|
unsigned RefQualifier : 2;
|
};
|
|
class ObjCObjectTypeBitfields {
|
friend class ObjCObjectType;
|
|
unsigned : NumTypeBits;
|
|
/// The number of type arguments stored directly on this object type.
|
unsigned NumTypeArgs : 7;
|
|
/// The number of protocols stored directly on this object type.
|
unsigned NumProtocols : 6;
|
|
/// Whether this is a "kindof" type.
|
unsigned IsKindOf : 1;
|
};
|
static_assert(NumTypeBits + 7 + 6 + 1 <= 32, "Does not fit in an unsigned");
|
|
class ReferenceTypeBitfields {
|
friend class ReferenceType;
|
|
unsigned : NumTypeBits;
|
|
/// True if the type was originally spelled with an lvalue sigil.
|
/// This is never true of rvalue references but can also be false
|
/// on lvalue references because of C++0x [dcl.typedef]p9,
|
/// as follows:
|
///
|
/// typedef int &ref; // lvalue, spelled lvalue
|
/// typedef int &&rvref; // rvalue
|
/// ref &a; // lvalue, inner ref, spelled lvalue
|
/// ref &&a; // lvalue, inner ref
|
/// rvref &a; // lvalue, inner ref, spelled lvalue
|
/// rvref &&a; // rvalue, inner ref
|
unsigned SpelledAsLValue : 1;
|
|
/// True if the inner type is a reference type. This only happens
|
/// in non-canonical forms.
|
unsigned InnerRef : 1;
|
};
|
|
class TypeWithKeywordBitfields {
|
friend class TypeWithKeyword;
|
|
unsigned : NumTypeBits;
|
|
/// An ElaboratedTypeKeyword. 8 bits for efficient access.
|
unsigned Keyword : 8;
|
};
|
|
class VectorTypeBitfields {
|
friend class VectorType;
|
|
unsigned : NumTypeBits;
|
|
/// The kind of vector, either a generic vector type or some
|
/// target-specific vector type such as for AltiVec or Neon.
|
unsigned VecKind : 3;
|
|
/// The number of elements in the vector.
|
unsigned NumElements : 29 - NumTypeBits;
|
|
enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
|
};
|
|
class AttributedTypeBitfields {
|
friend class AttributedType;
|
|
unsigned : NumTypeBits;
|
|
/// An AttributedType::Kind
|
unsigned AttrKind : 32 - NumTypeBits;
|
};
|
|
class AutoTypeBitfields {
|
friend class AutoType;
|
|
unsigned : NumTypeBits;
|
|
/// Was this placeholder type spelled as 'auto', 'decltype(auto)',
|
/// or '__auto_type'? AutoTypeKeyword value.
|
unsigned Keyword : 2;
|
};
|
|
union {
|
TypeBitfields TypeBits;
|
ArrayTypeBitfields ArrayTypeBits;
|
AttributedTypeBitfields AttributedTypeBits;
|
AutoTypeBitfields AutoTypeBits;
|
BuiltinTypeBitfields BuiltinTypeBits;
|
FunctionTypeBitfields FunctionTypeBits;
|
ObjCObjectTypeBitfields ObjCObjectTypeBits;
|
ReferenceTypeBitfields ReferenceTypeBits;
|
TypeWithKeywordBitfields TypeWithKeywordBits;
|
VectorTypeBitfields VectorTypeBits;
|
};
|
|
private:
|
/// \brief Set whether this type comes from an AST file.
|
void setFromAST(bool V = true) const {
|
TypeBits.FromAST = V;
|
}
|
|
template <class T> friend class TypePropertyCache;
|
|
protected:
|
// silence VC++ warning C4355: 'this' : used in base member initializer list
|
Type *this_() { return this; }
|
Type(TypeClass tc, QualType canon, bool Dependent,
|
bool InstantiationDependent, bool VariablyModified,
|
bool ContainsUnexpandedParameterPack)
|
: ExtQualsTypeCommonBase(this,
|
canon.isNull() ? QualType(this_(), 0) : canon) {
|
TypeBits.TC = tc;
|
TypeBits.Dependent = Dependent;
|
TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
|
TypeBits.VariablyModified = VariablyModified;
|
TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
|
TypeBits.CacheValid = false;
|
TypeBits.CachedLocalOrUnnamed = false;
|
TypeBits.CachedLinkage = NoLinkage;
|
TypeBits.FromAST = false;
|
}
|
friend class ASTContext;
|
|
void setDependent(bool D = true) {
|
TypeBits.Dependent = D;
|
if (D)
|
TypeBits.InstantiationDependent = true;
|
}
|
void setInstantiationDependent(bool D = true) {
|
TypeBits.InstantiationDependent = D; }
|
void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
|
}
|
void setContainsUnexpandedParameterPack(bool PP = true) {
|
TypeBits.ContainsUnexpandedParameterPack = PP;
|
}
|
|
public:
|
TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
|
|
/// \brief Whether this type comes from an AST file.
|
bool isFromAST() const { return TypeBits.FromAST; }
|
|
/// \brief Whether this type is or contains an unexpanded parameter
|
/// pack, used to support C++0x variadic templates.
|
///
|
/// A type that contains a parameter pack shall be expanded by the
|
/// ellipsis operator at some point. For example, the typedef in the
|
/// following example contains an unexpanded parameter pack 'T':
|
///
|
/// \code
|
/// template<typename ...T>
|
/// struct X {
|
/// typedef T* pointer_types; // ill-formed; T is a parameter pack.
|
/// };
|
/// \endcode
|
///
|
/// Note that this routine does not specify which
|
bool containsUnexpandedParameterPack() const {
|
return TypeBits.ContainsUnexpandedParameterPack;
|
}
|
|
/// Determines if this type would be canonical if it had no further
|
/// qualification.
|
bool isCanonicalUnqualified() const {
|
return CanonicalType == QualType(this, 0);
|
}
|
|
/// Pull a single level of sugar off of this locally-unqualified type.
|
/// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
|
/// or QualType::getSingleStepDesugaredType(const ASTContext&).
|
QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
|
|
/// Types are partitioned into 3 broad categories (C99 6.2.5p1):
|
/// object types, function types, and incomplete types.
|
|
/// Return true if this is an incomplete type.
|
/// A type that can describe objects, but which lacks information needed to
|
/// determine its size (e.g. void, or a fwd declared struct). Clients of this
|
/// routine will need to determine if the size is actually required.
|
///
|
/// \brief Def If non-null, and the type refers to some kind of declaration
|
/// that can be completed (such as a C struct, C++ class, or Objective-C
|
/// class), will be set to the declaration.
|
bool isIncompleteType(NamedDecl **Def = nullptr) const;
|
|
/// Return true if this is an incomplete or object
|
/// type, in other words, not a function type.
|
bool isIncompleteOrObjectType() const {
|
return !isFunctionType();
|
}
|
|
/// \brief Determine whether this type is an object type.
|
bool isObjectType() const {
|
// C++ [basic.types]p8:
|
// An object type is a (possibly cv-qualified) type that is not a
|
// function type, not a reference type, and not a void type.
|
return !isReferenceType() && !isFunctionType() && !isVoidType();
|
}
|
|
/// Return true if this is a literal type
|
/// (C++11 [basic.types]p10)
|
bool isLiteralType(const ASTContext &Ctx) const;
|
|
/// Test if this type is a standard-layout type.
|
/// (C++0x [basic.type]p9)
|
bool isStandardLayoutType() const;
|
|
/// Helper methods to distinguish type categories. All type predicates
|
/// operate on the canonical type, ignoring typedefs and qualifiers.
|
|
/// Returns true if the type is a builtin type.
|
bool isBuiltinType() const;
|
|
/// Test for a particular builtin type.
|
bool isSpecificBuiltinType(unsigned K) const;
|
|
/// Test for a type which does not represent an actual type-system type but
|
/// is instead used as a placeholder for various convenient purposes within
|
/// Clang. All such types are BuiltinTypes.
|
bool isPlaceholderType() const;
|
const BuiltinType *getAsPlaceholderType() const;
|
|
/// Test for a specific placeholder type.
|
bool isSpecificPlaceholderType(unsigned K) const;
|
|
/// Test for a placeholder type other than Overload; see
|
/// BuiltinType::isNonOverloadPlaceholderType.
|
bool isNonOverloadPlaceholderType() const;
|
|
/// isIntegerType() does *not* include complex integers (a GCC extension).
|
/// isComplexIntegerType() can be used to test for complex integers.
|
bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
|
bool isEnumeralType() const;
|
bool isBooleanType() const;
|
bool isCharType() const;
|
bool isWideCharType() const;
|
bool isChar16Type() const;
|
bool isChar32Type() const;
|
bool isAnyCharacterType() const;
|
bool isIntegralType(const ASTContext &Ctx) const;
|
|
/// Determine whether this type is an integral or enumeration type.
|
bool isIntegralOrEnumerationType() const;
|
/// Determine whether this type is an integral or unscoped enumeration type.
|
bool isIntegralOrUnscopedEnumerationType() const;
|
|
/// Floating point categories.
|
bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
|
/// isComplexType() does *not* include complex integers (a GCC extension).
|
/// isComplexIntegerType() can be used to test for complex integers.
|
bool isComplexType() const; // C99 6.2.5p11 (complex)
|
bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
|
bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
|
bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
|
bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
|
bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
|
bool isVoidType() const; // C99 6.2.5p19
|
bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
|
bool isAggregateType() const;
|
bool isFundamentalType() const;
|
bool isCompoundType() const;
|
|
// Type Predicates: Check to see if this type is structurally the specified
|
// type, ignoring typedefs and qualifiers.
|
bool isFunctionType() const;
|
bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
|
bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
|
bool isPointerType() const;
|
bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
|
bool isBlockPointerType() const;
|
bool isVoidPointerType() const;
|
bool isReferenceType() const;
|
bool isLValueReferenceType() const;
|
bool isRValueReferenceType() const;
|
bool isFunctionPointerType() const;
|
bool isMemberPointerType() const;
|
bool isMemberFunctionPointerType() const;
|
bool isMemberDataPointerType() const;
|
bool isArrayType() const;
|
bool isConstantArrayType() const;
|
bool isIncompleteArrayType() const;
|
bool isVariableArrayType() const;
|
bool isDependentSizedArrayType() const;
|
bool isRecordType() const;
|
bool isClassType() const;
|
bool isStructureType() const;
|
bool isObjCBoxableRecordType() const;
|
bool isInterfaceType() const;
|
bool isStructureOrClassType() const;
|
bool isUnionType() const;
|
bool isComplexIntegerType() const; // GCC _Complex integer type.
|
bool isVectorType() const; // GCC vector type.
|
bool isExtVectorType() const; // Extended vector type.
|
bool isObjCObjectPointerType() const; // pointer to ObjC object
|
bool isObjCRetainableType() const; // ObjC object or block pointer
|
bool isObjCLifetimeType() const; // (array of)* retainable type
|
bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
|
bool isObjCNSObjectType() const; // __attribute__((NSObject))
|
bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
|
// FIXME: change this to 'raw' interface type, so we can used 'interface' type
|
// for the common case.
|
bool isObjCObjectType() const; // NSString or typeof(*(id)0)
|
bool isObjCQualifiedInterfaceType() const; // NSString<foo>
|
bool isObjCQualifiedIdType() const; // id<foo>
|
bool isObjCQualifiedClassType() const; // Class<foo>
|
bool isObjCObjectOrInterfaceType() const;
|
bool isObjCIdType() const; // id
|
bool isObjCInertUnsafeUnretainedType() const;
|
|
/// Whether the type is Objective-C 'id' or a __kindof type of an
|
/// object type, e.g., __kindof NSView * or __kindof id
|
/// <NSCopying>.
|
///
|
/// \param bound Will be set to the bound on non-id subtype types,
|
/// which will be (possibly specialized) Objective-C class type, or
|
/// null for 'id.
|
bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
|
const ObjCObjectType *&bound) const;
|
|
bool isObjCClassType() const; // Class
|
|
/// Whether the type is Objective-C 'Class' or a __kindof type of an
|
/// Class type, e.g., __kindof Class <NSCopying>.
|
///
|
/// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
|
/// here because Objective-C's type system cannot express "a class
|
/// object for a subclass of NSFoo".
|
bool isObjCClassOrClassKindOfType() const;
|
|
bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
|
bool isObjCSelType() const; // Class
|
bool isObjCBuiltinType() const; // 'id' or 'Class'
|
bool isObjCARCBridgableType() const;
|
bool isCARCBridgableType() const;
|
bool isTemplateTypeParmType() const; // C++ template type parameter
|
bool isNullPtrType() const; // C++0x nullptr_t
|
bool isAtomicType() const; // C11 _Atomic()
|
|
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
|
bool is##Id##Type() const;
|
#include "clang/Basic/OpenCLImageTypes.def"
|
|
bool isImageType() const; // Any OpenCL image type
|
|
bool isSamplerT() const; // OpenCL sampler_t
|
bool isEventT() const; // OpenCL event_t
|
bool isClkEventT() const; // OpenCL clk_event_t
|
bool isQueueT() const; // OpenCL queue_t
|
bool isNDRangeT() const; // OpenCL ndrange_t
|
bool isReserveIDT() const; // OpenCL reserve_id_t
|
|
bool isPipeType() const; // OpenCL pipe type
|
bool isOpenCLSpecificType() const; // Any OpenCL specific type
|
|
/// Determines if this type, which must satisfy
|
/// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
|
/// than implicitly __strong.
|
bool isObjCARCImplicitlyUnretainedType() const;
|
|
/// Return the implicit lifetime for this type, which must not be dependent.
|
Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
|
|
enum ScalarTypeKind {
|
STK_CPointer,
|
STK_BlockPointer,
|
STK_ObjCObjectPointer,
|
STK_MemberPointer,
|
STK_Bool,
|
STK_Integral,
|
STK_Floating,
|
STK_IntegralComplex,
|
STK_FloatingComplex
|
};
|
/// Given that this is a scalar type, classify it.
|
ScalarTypeKind getScalarTypeKind() const;
|
|
/// Whether this type is a dependent type, meaning that its definition
|
/// somehow depends on a template parameter (C++ [temp.dep.type]).
|
bool isDependentType() const { return TypeBits.Dependent; }
|
|
/// \brief Determine whether this type is an instantiation-dependent type,
|
/// meaning that the type involves a template parameter (even if the
|
/// definition does not actually depend on the type substituted for that
|
/// template parameter).
|
bool isInstantiationDependentType() const {
|
return TypeBits.InstantiationDependent;
|
}
|
|
/// \brief Determine whether this type is an undeduced type, meaning that
|
/// it somehow involves a C++11 'auto' type which has not yet been deduced.
|
bool isUndeducedType() const;
|
|
/// \brief Whether this type is a variably-modified type (C99 6.7.5).
|
bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
|
|
/// \brief Whether this type involves a variable-length array type
|
/// with a definite size.
|
bool hasSizedVLAType() const;
|
|
/// \brief Whether this type is or contains a local or unnamed type.
|
bool hasUnnamedOrLocalType() const;
|
|
bool isOverloadableType() const;
|
|
/// \brief Determine wither this type is a C++ elaborated-type-specifier.
|
bool isElaboratedTypeSpecifier() const;
|
|
bool canDecayToPointerType() const;
|
|
/// Whether this type is represented natively as a pointer. This includes
|
/// pointers, references, block pointers, and Objective-C interface,
|
/// qualified id, and qualified interface types, as well as nullptr_t.
|
bool hasPointerRepresentation() const;
|
|
/// Whether this type can represent an objective pointer type for the
|
/// purpose of GC'ability
|
bool hasObjCPointerRepresentation() const;
|
|
/// \brief Determine whether this type has an integer representation
|
/// of some sort, e.g., it is an integer type or a vector.
|
bool hasIntegerRepresentation() const;
|
|
/// \brief Determine whether this type has an signed integer representation
|
/// of some sort, e.g., it is an signed integer type or a vector.
|
bool hasSignedIntegerRepresentation() const;
|
|
/// \brief Determine whether this type has an unsigned integer representation
|
/// of some sort, e.g., it is an unsigned integer type or a vector.
|
bool hasUnsignedIntegerRepresentation() const;
|
|
/// \brief Determine whether this type has a floating-point representation
|
/// of some sort, e.g., it is a floating-point type or a vector thereof.
|
bool hasFloatingRepresentation() const;
|
|
// Type Checking Functions: Check to see if this type is structurally the
|
// specified type, ignoring typedefs and qualifiers, and return a pointer to
|
// the best type we can.
|
const RecordType *getAsStructureType() const;
|
/// NOTE: getAs*ArrayType are methods on ASTContext.
|
const RecordType *getAsUnionType() const;
|
const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
|
const ObjCObjectType *getAsObjCInterfaceType() const;
|
// The following is a convenience method that returns an ObjCObjectPointerType
|
// for object declared using an interface.
|
const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
|
const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
|
const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
|
const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
|
|
/// \brief Retrieves the CXXRecordDecl that this type refers to, either
|
/// because the type is a RecordType or because it is the injected-class-name
|
/// type of a class template or class template partial specialization.
|
CXXRecordDecl *getAsCXXRecordDecl() const;
|
|
/// \brief Retrieves the TagDecl that this type refers to, either
|
/// because the type is a TagType or because it is the injected-class-name
|
/// type of a class template or class template partial specialization.
|
TagDecl *getAsTagDecl() const;
|
|
/// If this is a pointer or reference to a RecordType, return the
|
/// CXXRecordDecl that that type refers to.
|
///
|
/// If this is not a pointer or reference, or the type being pointed to does
|
/// not refer to a CXXRecordDecl, returns NULL.
|
const CXXRecordDecl *getPointeeCXXRecordDecl() const;
|
|
/// Get the AutoType whose type will be deduced for a variable with
|
/// an initializer of this type. This looks through declarators like pointer
|
/// types, but not through decltype or typedefs.
|
AutoType *getContainedAutoType() const;
|
|
/// Member-template getAs<specific type>'. Look through sugar for
|
/// an instance of \<specific type>. This scheme will eventually
|
/// replace the specific getAsXXXX methods above.
|
///
|
/// There are some specializations of this member template listed
|
/// immediately following this class.
|
template <typename T> const T *getAs() const;
|
|
/// A variant of getAs<> for array types which silently discards
|
/// qualifiers from the outermost type.
|
const ArrayType *getAsArrayTypeUnsafe() const;
|
|
/// Member-template castAs<specific type>. Look through sugar for
|
/// the underlying instance of \<specific type>.
|
///
|
/// This method has the same relationship to getAs<T> as cast<T> has
|
/// to dyn_cast<T>; which is to say, the underlying type *must*
|
/// have the intended type, and this method will never return null.
|
template <typename T> const T *castAs() const;
|
|
/// A variant of castAs<> for array type which silently discards
|
/// qualifiers from the outermost type.
|
const ArrayType *castAsArrayTypeUnsafe() const;
|
|
/// Get the base element type of this type, potentially discarding type
|
/// qualifiers. This should never be used when type qualifiers
|
/// are meaningful.
|
const Type *getBaseElementTypeUnsafe() const;
|
|
/// If this is an array type, return the element type of the array,
|
/// potentially with type qualifiers missing.
|
/// This should never be used when type qualifiers are meaningful.
|
const Type *getArrayElementTypeNoTypeQual() const;
|
|
/// If this is a pointer type, return the pointee type.
|
/// If this is an array type, return the array element type.
|
/// This should never be used when type qualifiers are meaningful.
|
const Type *getPointeeOrArrayElementType() const;
|
|
/// If this is a pointer, ObjC object pointer, or block
|
/// pointer, this returns the respective pointee.
|
QualType getPointeeType() const;
|
|
/// Return the specified type with any "sugar" removed from the type,
|
/// removing any typedefs, typeofs, etc., as well as any qualifiers.
|
const Type *getUnqualifiedDesugaredType() const;
|
|
/// More type predicates useful for type checking/promotion
|
bool isPromotableIntegerType() const; // C99 6.3.1.1p2
|
|
/// Return true if this is an integer type that is
|
/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
|
/// or an enum decl which has a signed representation.
|
bool isSignedIntegerType() const;
|
|
/// Return true if this is an integer type that is
|
/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
|
/// or an enum decl which has an unsigned representation.
|
bool isUnsignedIntegerType() const;
|
|
/// Determines whether this is an integer type that is signed or an
|
/// enumeration types whose underlying type is a signed integer type.
|
bool isSignedIntegerOrEnumerationType() const;
|
|
/// Determines whether this is an integer type that is unsigned or an
|
/// enumeration types whose underlying type is a unsigned integer type.
|
bool isUnsignedIntegerOrEnumerationType() const;
|
|
/// Return true if this is not a variable sized type,
|
/// according to the rules of C99 6.7.5p3. It is not legal to call this on
|
/// incomplete types.
|
bool isConstantSizeType() const;
|
|
/// Returns true if this type can be represented by some
|
/// set of type specifiers.
|
bool isSpecifierType() const;
|
|
/// Determine the linkage of this type.
|
Linkage getLinkage() const;
|
|
/// Determine the visibility of this type.
|
Visibility getVisibility() const {
|
return getLinkageAndVisibility().getVisibility();
|
}
|
|
/// Return true if the visibility was explicitly set is the code.
|
bool isVisibilityExplicit() const {
|
return getLinkageAndVisibility().isVisibilityExplicit();
|
}
|
|
/// Determine the linkage and visibility of this type.
|
LinkageInfo getLinkageAndVisibility() const;
|
|
/// True if the computed linkage is valid. Used for consistency
|
/// checking. Should always return true.
|
bool isLinkageValid() const;
|
|
/// Determine the nullability of the given type.
|
///
|
/// Note that nullability is only captured as sugar within the type
|
/// system, not as part of the canonical type, so nullability will
|
/// be lost by canonicalization and desugaring.
|
Optional<NullabilityKind> getNullability(const ASTContext &context) const;
|
|
/// Determine whether the given type can have a nullability
|
/// specifier applied to it, i.e., if it is any kind of pointer type
|
/// or a dependent type that could instantiate to any kind of
|
/// pointer type.
|
bool canHaveNullability() const;
|
|
/// Retrieve the set of substitutions required when accessing a member
|
/// of the Objective-C receiver type that is declared in the given context.
|
///
|
/// \c *this is the type of the object we're operating on, e.g., the
|
/// receiver for a message send or the base of a property access, and is
|
/// expected to be of some object or object pointer type.
|
///
|
/// \param dc The declaration context for which we are building up a
|
/// substitution mapping, which should be an Objective-C class, extension,
|
/// category, or method within.
|
///
|
/// \returns an array of type arguments that can be substituted for
|
/// the type parameters of the given declaration context in any type described
|
/// within that context, or an empty optional to indicate that no
|
/// substitution is required.
|
Optional<ArrayRef<QualType>>
|
getObjCSubstitutions(const DeclContext *dc) const;
|
|
/// Determines if this is an ObjC interface type that may accept type
|
/// parameters.
|
bool acceptsObjCTypeParams() const;
|
|
const char *getTypeClassName() const;
|
|
QualType getCanonicalTypeInternal() const {
|
return CanonicalType;
|
}
|
CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
|
void dump() const;
|
|
friend class ASTReader;
|
friend class ASTWriter;
|
};
|
|
/// \brief This will check for a TypedefType by removing any existing sugar
|
/// until it reaches a TypedefType or a non-sugared type.
|
template <> const TypedefType *Type::getAs() const;
|
|
/// \brief This will check for a TemplateSpecializationType by removing any
|
/// existing sugar until it reaches a TemplateSpecializationType or a
|
/// non-sugared type.
|
template <> const TemplateSpecializationType *Type::getAs() const;
|
|
/// \brief This will check for an AttributedType by removing any existing sugar
|
/// until it reaches an AttributedType or a non-sugared type.
|
template <> const AttributedType *Type::getAs() const;
|
|
// We can do canonical leaf types faster, because we don't have to
|
// worry about preserving child type decoration.
|
#define TYPE(Class, Base)
|
#define LEAF_TYPE(Class) \
|
template <> inline const Class##Type *Type::getAs() const { \
|
return dyn_cast<Class##Type>(CanonicalType); \
|
} \
|
template <> inline const Class##Type *Type::castAs() const { \
|
return cast<Class##Type>(CanonicalType); \
|
}
|
#include "clang/AST/TypeNodes.def"
|
|
|
/// This class is used for builtin types like 'int'. Builtin
|
/// types are always canonical and have a literal name field.
|
class BuiltinType : public Type {
|
public:
|
enum Kind {
|
// OpenCL image types
|
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
|
#include "clang/Basic/OpenCLImageTypes.def"
|
// All other builtin types
|
#define BUILTIN_TYPE(Id, SingletonId) Id,
|
#define LAST_BUILTIN_TYPE(Id) LastKind = Id
|
#include "clang/AST/BuiltinTypes.def"
|
};
|
|
public:
|
BuiltinType(Kind K)
|
: Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
|
/*InstantiationDependent=*/(K == Dependent),
|
/*VariablyModified=*/false,
|
/*Unexpanded paramter pack=*/false) {
|
BuiltinTypeBits.Kind = K;
|
}
|
|
Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
|
StringRef getName(const PrintingPolicy &Policy) const;
|
const char *getNameAsCString(const PrintingPolicy &Policy) const {
|
// The StringRef is null-terminated.
|
StringRef str = getName(Policy);
|
assert(!str.empty() && str.data()[str.size()] == '\0');
|
return str.data();
|
}
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
bool isInteger() const {
|
return getKind() >= Bool && getKind() <= Int128;
|
}
|
|
bool isSignedInteger() const {
|
return getKind() >= Char_S && getKind() <= Int128;
|
}
|
|
bool isUnsignedInteger() const {
|
return getKind() >= Bool && getKind() <= UInt128;
|
}
|
|
bool isFloatingPoint() const {
|
return getKind() >= Half && getKind() <= Float128;
|
}
|
|
/// Determines whether the given kind corresponds to a placeholder type.
|
static bool isPlaceholderTypeKind(Kind K) {
|
return K >= Overload;
|
}
|
|
/// Determines whether this type is a placeholder type, i.e. a type
|
/// which cannot appear in arbitrary positions in a fully-formed
|
/// expression.
|
bool isPlaceholderType() const {
|
return isPlaceholderTypeKind(getKind());
|
}
|
|
/// Determines whether this type is a placeholder type other than
|
/// Overload. Most placeholder types require only syntactic
|
/// information about their context in order to be resolved (e.g.
|
/// whether it is a call expression), which means they can (and
|
/// should) be resolved in an earlier "phase" of analysis.
|
/// Overload expressions sometimes pick up further information
|
/// from their context, like whether the context expects a
|
/// specific function-pointer type, and so frequently need
|
/// special treatment.
|
bool isNonOverloadPlaceholderType() const {
|
return getKind() > Overload;
|
}
|
|
static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
|
};
|
|
/// Complex values, per C99 6.2.5p11. This supports the C99 complex
|
/// types (_Complex float etc) as well as the GCC integer complex extensions.
|
///
|
class ComplexType : public Type, public llvm::FoldingSetNode {
|
QualType ElementType;
|
ComplexType(QualType Element, QualType CanonicalPtr) :
|
Type(Complex, CanonicalPtr, Element->isDependentType(),
|
Element->isInstantiationDependentType(),
|
Element->isVariablyModifiedType(),
|
Element->containsUnexpandedParameterPack()),
|
ElementType(Element) {
|
}
|
friend class ASTContext; // ASTContext creates these.
|
|
public:
|
QualType getElementType() const { return ElementType; }
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getElementType());
|
}
|
static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
|
ID.AddPointer(Element.getAsOpaquePtr());
|
}
|
|
static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
|
};
|
|
/// Sugar for parentheses used when specifying types.
|
///
|
class ParenType : public Type, public llvm::FoldingSetNode {
|
QualType Inner;
|
|
ParenType(QualType InnerType, QualType CanonType) :
|
Type(Paren, CanonType, InnerType->isDependentType(),
|
InnerType->isInstantiationDependentType(),
|
InnerType->isVariablyModifiedType(),
|
InnerType->containsUnexpandedParameterPack()),
|
Inner(InnerType) {
|
}
|
friend class ASTContext; // ASTContext creates these.
|
|
public:
|
|
QualType getInnerType() const { return Inner; }
|
|
bool isSugared() const { return true; }
|
QualType desugar() const { return getInnerType(); }
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getInnerType());
|
}
|
static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
|
Inner.Profile(ID);
|
}
|
|
static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
|
};
|
|
/// PointerType - C99 6.7.5.1 - Pointer Declarators.
|
///
|
class PointerType : public Type, public llvm::FoldingSetNode {
|
QualType PointeeType;
|
|
PointerType(QualType Pointee, QualType CanonicalPtr) :
|
Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
|
Pointee->isInstantiationDependentType(),
|
Pointee->isVariablyModifiedType(),
|
Pointee->containsUnexpandedParameterPack()),
|
PointeeType(Pointee) {
|
}
|
friend class ASTContext; // ASTContext creates these.
|
|
public:
|
|
QualType getPointeeType() const { return PointeeType; }
|
|
/// Returns true if address spaces of pointers overlap.
|
/// OpenCL v2.0 defines conversion rules for pointers to different
|
/// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
|
/// address spaces.
|
/// CL1.1 or CL1.2:
|
/// address spaces overlap iff they are they same.
|
/// CL2.0 adds:
|
/// __generic overlaps with any address space except for __constant.
|
bool isAddressSpaceOverlapping(const PointerType &other) const {
|
Qualifiers thisQuals = PointeeType.getQualifiers();
|
Qualifiers otherQuals = other.getPointeeType().getQualifiers();
|
// Address spaces overlap if at least one of them is a superset of another
|
return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
|
otherQuals.isAddressSpaceSupersetOf(thisQuals);
|
}
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getPointeeType());
|
}
|
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
|
ID.AddPointer(Pointee.getAsOpaquePtr());
|
}
|
|
static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
|
};
|
|
/// Represents a type which was implicitly adjusted by the semantic
|
/// engine for arbitrary reasons. For example, array and function types can
|
/// decay, and function types can have their calling conventions adjusted.
|
class AdjustedType : public Type, public llvm::FoldingSetNode {
|
QualType OriginalTy;
|
QualType AdjustedTy;
|
|
protected:
|
AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
|
QualType CanonicalPtr)
|
: Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
|
OriginalTy->isInstantiationDependentType(),
|
OriginalTy->isVariablyModifiedType(),
|
OriginalTy->containsUnexpandedParameterPack()),
|
OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
|
|
friend class ASTContext; // ASTContext creates these.
|
|
public:
|
QualType getOriginalType() const { return OriginalTy; }
|
QualType getAdjustedType() const { return AdjustedTy; }
|
|
bool isSugared() const { return true; }
|
QualType desugar() const { return AdjustedTy; }
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, OriginalTy, AdjustedTy);
|
}
|
static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
|
ID.AddPointer(Orig.getAsOpaquePtr());
|
ID.AddPointer(New.getAsOpaquePtr());
|
}
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
|
}
|
};
|
|
/// Represents a pointer type decayed from an array or function type.
|
class DecayedType : public AdjustedType {
|
|
DecayedType(QualType OriginalType, QualType DecayedPtr, QualType CanonicalPtr)
|
: AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
|
assert(isa<PointerType>(getAdjustedType()));
|
}
|
|
friend class ASTContext; // ASTContext creates these.
|
|
public:
|
QualType getDecayedType() const { return getAdjustedType(); }
|
|
QualType getPointeeType() const {
|
return cast<PointerType>(getDecayedType())->getPointeeType();
|
}
|
|
static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
|
};
|
|
/// Pointer to a block type.
|
/// This type is to represent types syntactically represented as
|
/// "void (^)(int)", etc. Pointee is required to always be a function type.
|
///
|
class BlockPointerType : public Type, public llvm::FoldingSetNode {
|
QualType PointeeType; // Block is some kind of pointer type
|
BlockPointerType(QualType Pointee, QualType CanonicalCls) :
|
Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
|
Pointee->isInstantiationDependentType(),
|
Pointee->isVariablyModifiedType(),
|
Pointee->containsUnexpandedParameterPack()),
|
PointeeType(Pointee) {
|
}
|
friend class ASTContext; // ASTContext creates these.
|
|
public:
|
|
// Get the pointee type. Pointee is required to always be a function type.
|
QualType getPointeeType() const { return PointeeType; }
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getPointeeType());
|
}
|
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
|
ID.AddPointer(Pointee.getAsOpaquePtr());
|
}
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == BlockPointer;
|
}
|
};
|
|
/// Base for LValueReferenceType and RValueReferenceType
|
///
|
class ReferenceType : public Type, public llvm::FoldingSetNode {
|
QualType PointeeType;
|
|
protected:
|
ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
|
bool SpelledAsLValue) :
|
Type(tc, CanonicalRef, Referencee->isDependentType(),
|
Referencee->isInstantiationDependentType(),
|
Referencee->isVariablyModifiedType(),
|
Referencee->containsUnexpandedParameterPack()),
|
PointeeType(Referencee)
|
{
|
ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
|
ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
|
}
|
|
public:
|
bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
|
bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
|
|
QualType getPointeeTypeAsWritten() const { return PointeeType; }
|
QualType getPointeeType() const {
|
// FIXME: this might strip inner qualifiers; okay?
|
const ReferenceType *T = this;
|
while (T->isInnerRef())
|
T = T->PointeeType->castAs<ReferenceType>();
|
return T->PointeeType;
|
}
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, PointeeType, isSpelledAsLValue());
|
}
|
static void Profile(llvm::FoldingSetNodeID &ID,
|
QualType Referencee,
|
bool SpelledAsLValue) {
|
ID.AddPointer(Referencee.getAsOpaquePtr());
|
ID.AddBoolean(SpelledAsLValue);
|
}
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == LValueReference ||
|
T->getTypeClass() == RValueReference;
|
}
|
};
|
|
/// An lvalue reference type, per C++11 [dcl.ref].
|
///
|
class LValueReferenceType : public ReferenceType {
|
LValueReferenceType(QualType Referencee, QualType CanonicalRef,
|
bool SpelledAsLValue) :
|
ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
|
{}
|
friend class ASTContext; // ASTContext creates these
|
public:
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == LValueReference;
|
}
|
};
|
|
/// An rvalue reference type, per C++11 [dcl.ref].
|
///
|
class RValueReferenceType : public ReferenceType {
|
RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
|
ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
|
}
|
friend class ASTContext; // ASTContext creates these
|
public:
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == RValueReference;
|
}
|
};
|
|
/// A pointer to member type per C++ 8.3.3 - Pointers to members.
|
///
|
/// This includes both pointers to data members and pointer to member functions.
|
///
|
class MemberPointerType : public Type, public llvm::FoldingSetNode {
|
QualType PointeeType;
|
/// The class of which the pointee is a member. Must ultimately be a
|
/// RecordType, but could be a typedef or a template parameter too.
|
const Type *Class;
|
|
MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
|
Type(MemberPointer, CanonicalPtr,
|
Cls->isDependentType() || Pointee->isDependentType(),
|
(Cls->isInstantiationDependentType() ||
|
Pointee->isInstantiationDependentType()),
|
Pointee->isVariablyModifiedType(),
|
(Cls->containsUnexpandedParameterPack() ||
|
Pointee->containsUnexpandedParameterPack())),
|
PointeeType(Pointee), Class(Cls) {
|
}
|
friend class ASTContext; // ASTContext creates these.
|
|
public:
|
QualType getPointeeType() const { return PointeeType; }
|
|
/// Returns true if the member type (i.e. the pointee type) is a
|
/// function type rather than a data-member type.
|
bool isMemberFunctionPointer() const {
|
return PointeeType->isFunctionProtoType();
|
}
|
|
/// Returns true if the member type (i.e. the pointee type) is a
|
/// data type rather than a function type.
|
bool isMemberDataPointer() const {
|
return !PointeeType->isFunctionProtoType();
|
}
|
|
const Type *getClass() const { return Class; }
|
CXXRecordDecl *getMostRecentCXXRecordDecl() const;
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getPointeeType(), getClass());
|
}
|
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
|
const Type *Class) {
|
ID.AddPointer(Pointee.getAsOpaquePtr());
|
ID.AddPointer(Class);
|
}
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == MemberPointer;
|
}
|
};
|
|
/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
|
///
|
class ArrayType : public Type, public llvm::FoldingSetNode {
|
public:
|
/// Capture whether this is a normal array (e.g. int X[4])
|
/// an array with a static size (e.g. int X[static 4]), or an array
|
/// with a star size (e.g. int X[*]).
|
/// 'static' is only allowed on function parameters.
|
enum ArraySizeModifier {
|
Normal, Static, Star
|
};
|
private:
|
/// The element type of the array.
|
QualType ElementType;
|
|
protected:
|
// C++ [temp.dep.type]p1:
|
// A type is dependent if it is...
|
// - an array type constructed from any dependent type or whose
|
// size is specified by a constant expression that is
|
// value-dependent,
|
ArrayType(TypeClass tc, QualType et, QualType can,
|
ArraySizeModifier sm, unsigned tq,
|
bool ContainsUnexpandedParameterPack)
|
: Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
|
et->isInstantiationDependentType() || tc == DependentSizedArray,
|
(tc == VariableArray || et->isVariablyModifiedType()),
|
ContainsUnexpandedParameterPack),
|
ElementType(et) {
|
ArrayTypeBits.IndexTypeQuals = tq;
|
ArrayTypeBits.SizeModifier = sm;
|
}
|
|
friend class ASTContext; // ASTContext creates these.
|
|
public:
|
QualType getElementType() const { return ElementType; }
|
ArraySizeModifier getSizeModifier() const {
|
return ArraySizeModifier(ArrayTypeBits.SizeModifier);
|
}
|
Qualifiers getIndexTypeQualifiers() const {
|
return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
|
}
|
unsigned getIndexTypeCVRQualifiers() const {
|
return ArrayTypeBits.IndexTypeQuals;
|
}
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == ConstantArray ||
|
T->getTypeClass() == VariableArray ||
|
T->getTypeClass() == IncompleteArray ||
|
T->getTypeClass() == DependentSizedArray;
|
}
|
};
|
|
/// Represents the canonical version of C arrays with a specified constant size.
|
/// For example, the canonical type for 'int A[4 + 4*100]' is a
|
/// ConstantArrayType where the element type is 'int' and the size is 404.
|
class ConstantArrayType : public ArrayType {
|
llvm::APInt Size; // Allows us to unique the type.
|
|
ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
|
ArraySizeModifier sm, unsigned tq)
|
: ArrayType(ConstantArray, et, can, sm, tq,
|
et->containsUnexpandedParameterPack()),
|
Size(size) {}
|
protected:
|
ConstantArrayType(TypeClass tc, QualType et, QualType can,
|
const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
|
: ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
|
Size(size) {}
|
friend class ASTContext; // ASTContext creates these.
|
public:
|
const llvm::APInt &getSize() const { return Size; }
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
|
/// \brief Determine the number of bits required to address a member of
|
// an array with the given element type and number of elements.
|
static unsigned getNumAddressingBits(const ASTContext &Context,
|
QualType ElementType,
|
const llvm::APInt &NumElements);
|
|
/// \brief Determine the maximum number of active bits that an array's size
|
/// can require, which limits the maximum size of the array.
|
static unsigned getMaxSizeBits(const ASTContext &Context);
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getElementType(), getSize(),
|
getSizeModifier(), getIndexTypeCVRQualifiers());
|
}
|
static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
|
const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
|
unsigned TypeQuals) {
|
ID.AddPointer(ET.getAsOpaquePtr());
|
ID.AddInteger(ArraySize.getZExtValue());
|
ID.AddInteger(SizeMod);
|
ID.AddInteger(TypeQuals);
|
}
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == ConstantArray;
|
}
|
};
|
|
/// Represents a C array with an unspecified size. For example 'int A[]' has
|
/// an IncompleteArrayType where the element type is 'int' and the size is
|
/// unspecified.
|
class IncompleteArrayType : public ArrayType {
|
|
IncompleteArrayType(QualType et, QualType can,
|
ArraySizeModifier sm, unsigned tq)
|
: ArrayType(IncompleteArray, et, can, sm, tq,
|
et->containsUnexpandedParameterPack()) {}
|
friend class ASTContext; // ASTContext creates these.
|
public:
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == IncompleteArray;
|
}
|
|
friend class StmtIteratorBase;
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getElementType(), getSizeModifier(),
|
getIndexTypeCVRQualifiers());
|
}
|
|
static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
|
ArraySizeModifier SizeMod, unsigned TypeQuals) {
|
ID.AddPointer(ET.getAsOpaquePtr());
|
ID.AddInteger(SizeMod);
|
ID.AddInteger(TypeQuals);
|
}
|
};
|
|
/// Represents a C array with a specified size that is not an
|
/// integer-constant-expression. For example, 'int s[x+foo()]'.
|
/// Since the size expression is an arbitrary expression, we store it as such.
|
///
|
/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
|
/// should not be: two lexically equivalent variable array types could mean
|
/// different things, for example, these variables do not have the same type
|
/// dynamically:
|
///
|
/// void foo(int x) {
|
/// int Y[x];
|
/// ++x;
|
/// int Z[x];
|
/// }
|
///
|
class VariableArrayType : public ArrayType {
|
/// An assignment-expression. VLA's are only permitted within
|
/// a function block.
|
Stmt *SizeExpr;
|
/// The range spanned by the left and right array brackets.
|
SourceRange Brackets;
|
|
VariableArrayType(QualType et, QualType can, Expr *e,
|
ArraySizeModifier sm, unsigned tq,
|
SourceRange brackets)
|
: ArrayType(VariableArray, et, can, sm, tq,
|
et->containsUnexpandedParameterPack()),
|
SizeExpr((Stmt*) e), Brackets(brackets) {}
|
friend class ASTContext; // ASTContext creates these.
|
|
public:
|
Expr *getSizeExpr() const {
|
// We use C-style casts instead of cast<> here because we do not wish
|
// to have a dependency of Type.h on Stmt.h/Expr.h.
|
return (Expr*) SizeExpr;
|
}
|
SourceRange getBracketsRange() const { return Brackets; }
|
SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
|
SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == VariableArray;
|
}
|
|
friend class StmtIteratorBase;
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
llvm_unreachable("Cannot unique VariableArrayTypes.");
|
}
|
};
|
|
/// Represents an array type in C++ whose size is a value-dependent expression.
|
///
|
/// For example:
|
/// \code
|
/// template<typename T, int Size>
|
/// class array {
|
/// T data[Size];
|
/// };
|
/// \endcode
|
///
|
/// For these types, we won't actually know what the array bound is
|
/// until template instantiation occurs, at which point this will
|
/// become either a ConstantArrayType or a VariableArrayType.
|
class DependentSizedArrayType : public ArrayType {
|
const ASTContext &Context;
|
|
/// \brief An assignment expression that will instantiate to the
|
/// size of the array.
|
///
|
/// The expression itself might be null, in which case the array
|
/// type will have its size deduced from an initializer.
|
Stmt *SizeExpr;
|
|
/// The range spanned by the left and right array brackets.
|
SourceRange Brackets;
|
|
DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
|
Expr *e, ArraySizeModifier sm, unsigned tq,
|
SourceRange brackets);
|
|
friend class ASTContext; // ASTContext creates these.
|
|
public:
|
Expr *getSizeExpr() const {
|
// We use C-style casts instead of cast<> here because we do not wish
|
// to have a dependency of Type.h on Stmt.h/Expr.h.
|
return (Expr*) SizeExpr;
|
}
|
SourceRange getBracketsRange() const { return Brackets; }
|
SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
|
SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == DependentSizedArray;
|
}
|
|
friend class StmtIteratorBase;
|
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, Context, getElementType(),
|
getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
|
}
|
|
static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
|
QualType ET, ArraySizeModifier SizeMod,
|
unsigned TypeQuals, Expr *E);
|
};
|
|
/// Represents an extended vector type where either the type or size is
|
/// dependent.
|
///
|
/// For example:
|
/// \code
|
/// template<typename T, int Size>
|
/// class vector {
|
/// typedef T __attribute__((ext_vector_type(Size))) type;
|
/// }
|
/// \endcode
|
class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
|
const ASTContext &Context;
|
Expr *SizeExpr;
|
/// The element type of the array.
|
QualType ElementType;
|
SourceLocation loc;
|
|
DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
|
QualType can, Expr *SizeExpr, SourceLocation loc);
|
|
friend class ASTContext;
|
|
public:
|
Expr *getSizeExpr() const { return SizeExpr; }
|
QualType getElementType() const { return ElementType; }
|
SourceLocation getAttributeLoc() const { return loc; }
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == DependentSizedExtVector;
|
}
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, Context, getElementType(), getSizeExpr());
|
}
|
|
static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
|
QualType ElementType, Expr *SizeExpr);
|
};
|
|
|
/// Represents a GCC generic vector type. This type is created using
|
/// __attribute__((vector_size(n)), where "n" specifies the vector size in
|
/// bytes; or from an Altivec __vector or vector declaration.
|
/// Since the constructor takes the number of vector elements, the
|
/// client is responsible for converting the size into the number of elements.
|
class VectorType : public Type, public llvm::FoldingSetNode {
|
public:
|
enum VectorKind {
|
GenericVector, ///< not a target-specific vector type
|
AltiVecVector, ///< is AltiVec vector
|
AltiVecPixel, ///< is AltiVec 'vector Pixel'
|
AltiVecBool, ///< is AltiVec 'vector bool ...'
|
NeonVector, ///< is ARM Neon vector
|
NeonPolyVector ///< is ARM Neon polynomial vector
|
};
|
protected:
|
/// The element type of the vector.
|
QualType ElementType;
|
|
VectorType(QualType vecType, unsigned nElements, QualType canonType,
|
VectorKind vecKind);
|
|
VectorType(TypeClass tc, QualType vecType, unsigned nElements,
|
QualType canonType, VectorKind vecKind);
|
|
friend class ASTContext; // ASTContext creates these.
|
|
public:
|
|
QualType getElementType() const { return ElementType; }
|
unsigned getNumElements() const { return VectorTypeBits.NumElements; }
|
static bool isVectorSizeTooLarge(unsigned NumElements) {
|
return NumElements > VectorTypeBitfields::MaxNumElements;
|
}
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
VectorKind getVectorKind() const {
|
return VectorKind(VectorTypeBits.VecKind);
|
}
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getElementType(), getNumElements(),
|
getTypeClass(), getVectorKind());
|
}
|
static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
|
unsigned NumElements, TypeClass TypeClass,
|
VectorKind VecKind) {
|
ID.AddPointer(ElementType.getAsOpaquePtr());
|
ID.AddInteger(NumElements);
|
ID.AddInteger(TypeClass);
|
ID.AddInteger(VecKind);
|
}
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
|
}
|
};
|
|
/// ExtVectorType - Extended vector type. This type is created using
|
/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
|
/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
|
/// class enables syntactic extensions, like Vector Components for accessing
|
/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
|
/// Shading Language).
|
class ExtVectorType : public VectorType {
|
ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
|
VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
|
friend class ASTContext; // ASTContext creates these.
|
public:
|
static int getPointAccessorIdx(char c) {
|
switch (c) {
|
default: return -1;
|
case 'x': case 'r': return 0;
|
case 'y': case 'g': return 1;
|
case 'z': case 'b': return 2;
|
case 'w': case 'a': return 3;
|
}
|
}
|
static int getNumericAccessorIdx(char c) {
|
switch (c) {
|
default: return -1;
|
case '0': return 0;
|
case '1': return 1;
|
case '2': return 2;
|
case '3': return 3;
|
case '4': return 4;
|
case '5': return 5;
|
case '6': return 6;
|
case '7': return 7;
|
case '8': return 8;
|
case '9': return 9;
|
case 'A':
|
case 'a': return 10;
|
case 'B':
|
case 'b': return 11;
|
case 'C':
|
case 'c': return 12;
|
case 'D':
|
case 'd': return 13;
|
case 'E':
|
case 'e': return 14;
|
case 'F':
|
case 'f': return 15;
|
}
|
}
|
|
static int getAccessorIdx(char c, bool isNumericAccessor) {
|
if (isNumericAccessor)
|
return getNumericAccessorIdx(c);
|
else
|
return getPointAccessorIdx(c);
|
}
|
|
bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
|
if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
|
return unsigned(idx-1) < getNumElements();
|
return false;
|
}
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == ExtVector;
|
}
|
};
|
|
/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
|
/// class of FunctionNoProtoType and FunctionProtoType.
|
///
|
class FunctionType : public Type {
|
// The type returned by the function.
|
QualType ResultType;
|
|
public:
|
/// A class which abstracts out some details necessary for
|
/// making a call.
|
///
|
/// It is not actually used directly for storing this information in
|
/// a FunctionType, although FunctionType does currently use the
|
/// same bit-pattern.
|
///
|
// If you add a field (say Foo), other than the obvious places (both,
|
// constructors, compile failures), what you need to update is
|
// * Operator==
|
// * getFoo
|
// * withFoo
|
// * functionType. Add Foo, getFoo.
|
// * ASTContext::getFooType
|
// * ASTContext::mergeFunctionTypes
|
// * FunctionNoProtoType::Profile
|
// * FunctionProtoType::Profile
|
// * TypePrinter::PrintFunctionProto
|
// * AST read and write
|
// * Codegen
|
class ExtInfo {
|
// Feel free to rearrange or add bits, but if you go over 9,
|
// you'll need to adjust both the Bits field below and
|
// Type::FunctionTypeBitfields.
|
|
// | CC |noreturn|produces|regparm|
|
// |0 .. 3| 4 | 5 | 6 .. 8|
|
//
|
// regparm is either 0 (no regparm attribute) or the regparm value+1.
|
enum { CallConvMask = 0xF };
|
enum { NoReturnMask = 0x10 };
|
enum { ProducesResultMask = 0x20 };
|
enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
|
RegParmOffset = 6 }; // Assumed to be the last field
|
|
uint16_t Bits;
|
|
ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
|
|
friend class FunctionType;
|
|
public:
|
// Constructor with no defaults. Use this when you know that you
|
// have all the elements (when reading an AST file for example).
|
ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
|
bool producesResult) {
|
assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
|
Bits = ((unsigned) cc) |
|
(noReturn ? NoReturnMask : 0) |
|
(producesResult ? ProducesResultMask : 0) |
|
(hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
|
}
|
|
// Constructor with all defaults. Use when for example creating a
|
// function known to use defaults.
|
ExtInfo() : Bits(CC_C) { }
|
|
// Constructor with just the calling convention, which is an important part
|
// of the canonical type.
|
ExtInfo(CallingConv CC) : Bits(CC) { }
|
|
bool getNoReturn() const { return Bits & NoReturnMask; }
|
bool getProducesResult() const { return Bits & ProducesResultMask; }
|
bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
|
unsigned getRegParm() const {
|
unsigned RegParm = Bits >> RegParmOffset;
|
if (RegParm > 0)
|
--RegParm;
|
return RegParm;
|
}
|
CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
|
|
bool operator==(ExtInfo Other) const {
|
return Bits == Other.Bits;
|
}
|
bool operator!=(ExtInfo Other) const {
|
return Bits != Other.Bits;
|
}
|
|
// Note that we don't have setters. That is by design, use
|
// the following with methods instead of mutating these objects.
|
|
ExtInfo withNoReturn(bool noReturn) const {
|
if (noReturn)
|
return ExtInfo(Bits | NoReturnMask);
|
else
|
return ExtInfo(Bits & ~NoReturnMask);
|
}
|
|
ExtInfo withProducesResult(bool producesResult) const {
|
if (producesResult)
|
return ExtInfo(Bits | ProducesResultMask);
|
else
|
return ExtInfo(Bits & ~ProducesResultMask);
|
}
|
|
ExtInfo withRegParm(unsigned RegParm) const {
|
assert(RegParm < 7 && "Invalid regparm value");
|
return ExtInfo((Bits & ~RegParmMask) |
|
((RegParm + 1) << RegParmOffset));
|
}
|
|
ExtInfo withCallingConv(CallingConv cc) const {
|
return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
|
}
|
|
void Profile(llvm::FoldingSetNodeID &ID) const {
|
ID.AddInteger(Bits);
|
}
|
};
|
|
protected:
|
FunctionType(TypeClass tc, QualType res,
|
QualType Canonical, bool Dependent,
|
bool InstantiationDependent,
|
bool VariablyModified, bool ContainsUnexpandedParameterPack,
|
ExtInfo Info)
|
: Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
|
ContainsUnexpandedParameterPack),
|
ResultType(res) {
|
FunctionTypeBits.ExtInfo = Info.Bits;
|
}
|
unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
|
|
public:
|
QualType getReturnType() const { return ResultType; }
|
|
bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
|
unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
|
/// Determine whether this function type includes the GNU noreturn
|
/// attribute. The C++11 [[noreturn]] attribute does not affect the function
|
/// type.
|
bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
|
CallingConv getCallConv() const { return getExtInfo().getCC(); }
|
ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
|
bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
|
bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
|
bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
|
|
/// \brief Determine the type of an expression that calls a function of
|
/// this type.
|
QualType getCallResultType(const ASTContext &Context) const {
|
return getReturnType().getNonLValueExprType(Context);
|
}
|
|
static StringRef getNameForCallConv(CallingConv CC);
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == FunctionNoProto ||
|
T->getTypeClass() == FunctionProto;
|
}
|
};
|
|
/// Represents a K&R-style 'int foo()' function, which has
|
/// no information available about its arguments.
|
class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
|
FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
|
: FunctionType(FunctionNoProto, Result, Canonical,
|
/*Dependent=*/false, /*InstantiationDependent=*/false,
|
Result->isVariablyModifiedType(),
|
/*ContainsUnexpandedParameterPack=*/false, Info) {}
|
|
friend class ASTContext; // ASTContext creates these.
|
|
public:
|
// No additional state past what FunctionType provides.
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getReturnType(), getExtInfo());
|
}
|
static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
|
ExtInfo Info) {
|
Info.Profile(ID);
|
ID.AddPointer(ResultType.getAsOpaquePtr());
|
}
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == FunctionNoProto;
|
}
|
};
|
|
/// Represents a prototype with parameter type info, e.g.
|
/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
|
/// parameters, not as having a single void parameter. Such a type can have an
|
/// exception specification, but this specification is not part of the canonical
|
/// type.
|
class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
|
public:
|
/// Interesting information about a specific parameter that can't simply
|
/// be reflected in parameter's type.
|
///
|
/// It makes sense to model language features this way when there's some
|
/// sort of parameter-specific override (such as an attribute) that
|
/// affects how the function is called. For example, the ARC ns_consumed
|
/// attribute changes whether a parameter is passed at +0 (the default)
|
/// or +1 (ns_consumed). This must be reflected in the function type,
|
/// but isn't really a change to the parameter type.
|
///
|
/// One serious disadvantage of modelling language features this way is
|
/// that they generally do not work with language features that attempt
|
/// to destructure types. For example, template argument deduction will
|
/// not be able to match a parameter declared as
|
/// T (*)(U)
|
/// against an argument of type
|
/// void (*)(__attribute__((ns_consumed)) id)
|
/// because the substitution of T=void, U=id into the former will
|
/// not produce the latter.
|
class ExtParameterInfo {
|
enum {
|
ABIMask = 0x0F,
|
IsConsumed = 0x10
|
};
|
unsigned char Data;
|
public:
|
ExtParameterInfo() : Data(0) {}
|
|
/// Return the ABI treatment of this parameter.
|
ParameterABI getABI() const {
|
return ParameterABI(Data & ABIMask);
|
}
|
ExtParameterInfo withABI(ParameterABI kind) const {
|
ExtParameterInfo copy = *this;
|
copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
|
return copy;
|
}
|
|
/// Is this parameter considered "consumed" by Objective-C ARC?
|
/// Consumed parameters must have retainable object type.
|
bool isConsumed() const {
|
return (Data & IsConsumed);
|
}
|
ExtParameterInfo withIsConsumed(bool consumed) const {
|
ExtParameterInfo copy = *this;
|
if (consumed) {
|
copy.Data |= IsConsumed;
|
} else {
|
copy.Data &= ~IsConsumed;
|
}
|
return copy;
|
}
|
|
unsigned char getOpaqueValue() const { return Data; }
|
static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
|
ExtParameterInfo result;
|
result.Data = data;
|
return result;
|
}
|
|
friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
|
return lhs.Data == rhs.Data;
|
}
|
friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
|
return lhs.Data != rhs.Data;
|
}
|
};
|
|
struct ExceptionSpecInfo {
|
ExceptionSpecInfo()
|
: Type(EST_None), NoexceptExpr(nullptr),
|
SourceDecl(nullptr), SourceTemplate(nullptr) {}
|
|
ExceptionSpecInfo(ExceptionSpecificationType EST)
|
: Type(EST), NoexceptExpr(nullptr), SourceDecl(nullptr),
|
SourceTemplate(nullptr) {}
|
|
/// The kind of exception specification this is.
|
ExceptionSpecificationType Type;
|
/// Explicitly-specified list of exception types.
|
ArrayRef<QualType> Exceptions;
|
/// Noexcept expression, if this is EST_ComputedNoexcept.
|
Expr *NoexceptExpr;
|
/// The function whose exception specification this is, for
|
/// EST_Unevaluated and EST_Uninstantiated.
|
FunctionDecl *SourceDecl;
|
/// The function template whose exception specification this is instantiated
|
/// from, for EST_Uninstantiated.
|
FunctionDecl *SourceTemplate;
|
};
|
|
/// Extra information about a function prototype.
|
struct ExtProtoInfo {
|
ExtProtoInfo()
|
: Variadic(false), HasTrailingReturn(false), TypeQuals(0),
|
RefQualifier(RQ_None), ExtParameterInfos(nullptr) {}
|
|
ExtProtoInfo(CallingConv CC)
|
: ExtInfo(CC), Variadic(false), HasTrailingReturn(false), TypeQuals(0),
|
RefQualifier(RQ_None), ExtParameterInfos(nullptr) {}
|
|
ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &O) {
|
ExtProtoInfo Result(*this);
|
Result.ExceptionSpec = O;
|
return Result;
|
}
|
|
FunctionType::ExtInfo ExtInfo;
|
bool Variadic : 1;
|
bool HasTrailingReturn : 1;
|
unsigned char TypeQuals;
|
RefQualifierKind RefQualifier;
|
ExceptionSpecInfo ExceptionSpec;
|
const ExtParameterInfo *ExtParameterInfos;
|
};
|
|
private:
|
/// \brief Determine whether there are any argument types that
|
/// contain an unexpanded parameter pack.
|
static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
|
unsigned numArgs) {
|
for (unsigned Idx = 0; Idx < numArgs; ++Idx)
|
if (ArgArray[Idx]->containsUnexpandedParameterPack())
|
return true;
|
|
return false;
|
}
|
|
FunctionProtoType(QualType result, ArrayRef<QualType> params,
|
QualType canonical, const ExtProtoInfo &epi);
|
|
/// The number of parameters this function has, not counting '...'.
|
unsigned NumParams : 15;
|
|
/// The number of types in the exception spec, if any.
|
unsigned NumExceptions : 9;
|
|
/// The type of exception specification this function has.
|
unsigned ExceptionSpecType : 4;
|
|
/// Whether this function has extended parameter information.
|
unsigned HasExtParameterInfos : 1;
|
|
/// Whether the function is variadic.
|
unsigned Variadic : 1;
|
|
/// Whether this function has a trailing return type.
|
unsigned HasTrailingReturn : 1;
|
|
// ParamInfo - There is an variable size array after the class in memory that
|
// holds the parameter types.
|
|
// Exceptions - There is another variable size array after ArgInfo that
|
// holds the exception types.
|
|
// NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
|
// to the expression in the noexcept() specifier.
|
|
// ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
|
// be a pair of FunctionDecl* pointing to the function which should be used to
|
// instantiate this function type's exception specification, and the function
|
// from which it should be instantiated.
|
|
// ExtParameterInfos - A variable size array, following the exception
|
// specification and of length NumParams, holding an ExtParameterInfo
|
// for each of the parameters. This only appears if HasExtParameterInfos
|
// is true.
|
|
friend class ASTContext; // ASTContext creates these.
|
|
const ExtParameterInfo *getExtParameterInfosBuffer() const {
|
assert(hasExtParameterInfos());
|
|
// Find the end of the exception specification.
|
const char *ptr = reinterpret_cast<const char *>(exception_begin());
|
ptr += getExceptionSpecSize();
|
|
return reinterpret_cast<const ExtParameterInfo *>(ptr);
|
}
|
|
size_t getExceptionSpecSize() const {
|
switch (getExceptionSpecType()) {
|
case EST_None: return 0;
|
case EST_DynamicNone: return 0;
|
case EST_MSAny: return 0;
|
case EST_BasicNoexcept: return 0;
|
case EST_Unparsed: return 0;
|
case EST_Dynamic: return getNumExceptions() * sizeof(QualType);
|
case EST_ComputedNoexcept: return sizeof(Expr*);
|
case EST_Uninstantiated: return 2 * sizeof(FunctionDecl*);
|
case EST_Unevaluated: return sizeof(FunctionDecl*);
|
}
|
llvm_unreachable("bad exception specification kind");
|
}
|
|
public:
|
unsigned getNumParams() const { return NumParams; }
|
QualType getParamType(unsigned i) const {
|
assert(i < NumParams && "invalid parameter index");
|
return param_type_begin()[i];
|
}
|
ArrayRef<QualType> getParamTypes() const {
|
return llvm::makeArrayRef(param_type_begin(), param_type_end());
|
}
|
|
ExtProtoInfo getExtProtoInfo() const {
|
ExtProtoInfo EPI;
|
EPI.ExtInfo = getExtInfo();
|
EPI.Variadic = isVariadic();
|
EPI.HasTrailingReturn = hasTrailingReturn();
|
EPI.ExceptionSpec.Type = getExceptionSpecType();
|
EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
|
EPI.RefQualifier = getRefQualifier();
|
if (EPI.ExceptionSpec.Type == EST_Dynamic) {
|
EPI.ExceptionSpec.Exceptions = exceptions();
|
} else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
|
EPI.ExceptionSpec.NoexceptExpr = getNoexceptExpr();
|
} else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
|
EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
|
EPI.ExceptionSpec.SourceTemplate = getExceptionSpecTemplate();
|
} else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
|
EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
|
}
|
if (hasExtParameterInfos())
|
EPI.ExtParameterInfos = getExtParameterInfosBuffer();
|
return EPI;
|
}
|
|
/// Get the kind of exception specification on this function.
|
ExceptionSpecificationType getExceptionSpecType() const {
|
return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
|
}
|
/// Return whether this function has any kind of exception spec.
|
bool hasExceptionSpec() const {
|
return getExceptionSpecType() != EST_None;
|
}
|
/// Return whether this function has a dynamic (throw) exception spec.
|
bool hasDynamicExceptionSpec() const {
|
return isDynamicExceptionSpec(getExceptionSpecType());
|
}
|
/// Return whether this function has a noexcept exception spec.
|
bool hasNoexceptExceptionSpec() const {
|
return isNoexceptExceptionSpec(getExceptionSpecType());
|
}
|
/// Return whether this function has a dependent exception spec.
|
bool hasDependentExceptionSpec() const;
|
/// Result type of getNoexceptSpec().
|
enum NoexceptResult {
|
NR_NoNoexcept, ///< There is no noexcept specifier.
|
NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
|
NR_Dependent, ///< The noexcept specifier is dependent.
|
NR_Throw, ///< The noexcept specifier evaluates to false.
|
NR_Nothrow ///< The noexcept specifier evaluates to true.
|
};
|
/// Get the meaning of the noexcept spec on this function, if any.
|
NoexceptResult getNoexceptSpec(const ASTContext &Ctx) const;
|
unsigned getNumExceptions() const { return NumExceptions; }
|
QualType getExceptionType(unsigned i) const {
|
assert(i < NumExceptions && "Invalid exception number!");
|
return exception_begin()[i];
|
}
|
Expr *getNoexceptExpr() const {
|
if (getExceptionSpecType() != EST_ComputedNoexcept)
|
return nullptr;
|
// NoexceptExpr sits where the arguments end.
|
return *reinterpret_cast<Expr *const *>(param_type_end());
|
}
|
/// \brief If this function type has an exception specification which hasn't
|
/// been determined yet (either because it has not been evaluated or because
|
/// it has not been instantiated), this is the function whose exception
|
/// specification is represented by this type.
|
FunctionDecl *getExceptionSpecDecl() const {
|
if (getExceptionSpecType() != EST_Uninstantiated &&
|
getExceptionSpecType() != EST_Unevaluated)
|
return nullptr;
|
return reinterpret_cast<FunctionDecl *const *>(param_type_end())[0];
|
}
|
/// \brief If this function type has an uninstantiated exception
|
/// specification, this is the function whose exception specification
|
/// should be instantiated to find the exception specification for
|
/// this type.
|
FunctionDecl *getExceptionSpecTemplate() const {
|
if (getExceptionSpecType() != EST_Uninstantiated)
|
return nullptr;
|
return reinterpret_cast<FunctionDecl *const *>(param_type_end())[1];
|
}
|
/// Determine whether this function type has a non-throwing exception
|
/// specification. If this depends on template arguments, returns
|
/// \c ResultIfDependent.
|
bool isNothrow(const ASTContext &Ctx, bool ResultIfDependent = false) const;
|
|
bool isVariadic() const { return Variadic; }
|
|
/// Determines whether this function prototype contains a
|
/// parameter pack at the end.
|
///
|
/// A function template whose last parameter is a parameter pack can be
|
/// called with an arbitrary number of arguments, much like a variadic
|
/// function.
|
bool isTemplateVariadic() const;
|
|
bool hasTrailingReturn() const { return HasTrailingReturn; }
|
|
unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
|
|
|
/// Retrieve the ref-qualifier associated with this function type.
|
RefQualifierKind getRefQualifier() const {
|
return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
|
}
|
|
typedef const QualType *param_type_iterator;
|
typedef llvm::iterator_range<param_type_iterator> param_type_range;
|
|
param_type_range param_types() const {
|
return param_type_range(param_type_begin(), param_type_end());
|
}
|
param_type_iterator param_type_begin() const {
|
return reinterpret_cast<const QualType *>(this+1);
|
}
|
param_type_iterator param_type_end() const {
|
return param_type_begin() + NumParams;
|
}
|
|
typedef const QualType *exception_iterator;
|
|
ArrayRef<QualType> exceptions() const {
|
return llvm::makeArrayRef(exception_begin(), exception_end());
|
}
|
exception_iterator exception_begin() const {
|
// exceptions begin where arguments end
|
return param_type_end();
|
}
|
exception_iterator exception_end() const {
|
if (getExceptionSpecType() != EST_Dynamic)
|
return exception_begin();
|
return exception_begin() + NumExceptions;
|
}
|
|
/// Is there any interesting extra information for any of the parameters
|
/// of this function type?
|
bool hasExtParameterInfos() const { return HasExtParameterInfos; }
|
ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
|
assert(hasExtParameterInfos());
|
return ArrayRef<ExtParameterInfo>(getExtParameterInfosBuffer(),
|
getNumParams());
|
}
|
/// Return a pointer to the beginning of the array of extra parameter
|
/// information, if present, or else null if none of the parameters
|
/// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
|
const ExtParameterInfo *getExtParameterInfosOrNull() const {
|
if (!hasExtParameterInfos())
|
return nullptr;
|
return getExtParameterInfosBuffer();
|
}
|
|
ExtParameterInfo getExtParameterInfo(unsigned I) const {
|
assert(I < getNumParams() && "parameter index out of range");
|
if (hasExtParameterInfos())
|
return getExtParameterInfosBuffer()[I];
|
return ExtParameterInfo();
|
}
|
|
ParameterABI getParameterABI(unsigned I) const {
|
assert(I < getNumParams() && "parameter index out of range");
|
if (hasExtParameterInfos())
|
return getExtParameterInfosBuffer()[I].getABI();
|
return ParameterABI::Ordinary;
|
}
|
|
bool isParamConsumed(unsigned I) const {
|
assert(I < getNumParams() && "parameter index out of range");
|
if (hasExtParameterInfos())
|
return getExtParameterInfosBuffer()[I].isConsumed();
|
return false;
|
}
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
void printExceptionSpecification(raw_ostream &OS,
|
const PrintingPolicy &Policy) const;
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == FunctionProto;
|
}
|
|
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
|
static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
|
param_type_iterator ArgTys, unsigned NumArgs,
|
const ExtProtoInfo &EPI, const ASTContext &Context);
|
};
|
|
/// \brief Represents the dependent type named by a dependently-scoped
|
/// typename using declaration, e.g.
|
/// using typename Base<T>::foo;
|
///
|
/// Template instantiation turns these into the underlying type.
|
class UnresolvedUsingType : public Type {
|
UnresolvedUsingTypenameDecl *Decl;
|
|
UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
|
: Type(UnresolvedUsing, QualType(), true, true, false,
|
/*ContainsUnexpandedParameterPack=*/false),
|
Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
|
friend class ASTContext; // ASTContext creates these.
|
public:
|
|
UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == UnresolvedUsing;
|
}
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
return Profile(ID, Decl);
|
}
|
static void Profile(llvm::FoldingSetNodeID &ID,
|
UnresolvedUsingTypenameDecl *D) {
|
ID.AddPointer(D);
|
}
|
};
|
|
|
class TypedefType : public Type {
|
TypedefNameDecl *Decl;
|
protected:
|
TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
|
: Type(tc, can, can->isDependentType(),
|
can->isInstantiationDependentType(),
|
can->isVariablyModifiedType(),
|
/*ContainsUnexpandedParameterPack=*/false),
|
Decl(const_cast<TypedefNameDecl*>(D)) {
|
assert(!isa<TypedefType>(can) && "Invalid canonical type");
|
}
|
friend class ASTContext; // ASTContext creates these.
|
public:
|
|
TypedefNameDecl *getDecl() const { return Decl; }
|
|
bool isSugared() const { return true; }
|
QualType desugar() const;
|
|
static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
|
};
|
|
/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
|
class TypeOfExprType : public Type {
|
Expr *TOExpr;
|
|
protected:
|
TypeOfExprType(Expr *E, QualType can = QualType());
|
friend class ASTContext; // ASTContext creates these.
|
public:
|
Expr *getUnderlyingExpr() const { return TOExpr; }
|
|
/// \brief Remove a single level of sugar.
|
QualType desugar() const;
|
|
/// \brief Returns whether this type directly provides sugar.
|
bool isSugared() const;
|
|
static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
|
};
|
|
/// \brief Internal representation of canonical, dependent
|
/// `typeof(expr)` types.
|
///
|
/// This class is used internally by the ASTContext to manage
|
/// canonical, dependent types, only. Clients will only see instances
|
/// of this class via TypeOfExprType nodes.
|
class DependentTypeOfExprType
|
: public TypeOfExprType, public llvm::FoldingSetNode {
|
const ASTContext &Context;
|
|
public:
|
DependentTypeOfExprType(const ASTContext &Context, Expr *E)
|
: TypeOfExprType(E), Context(Context) { }
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, Context, getUnderlyingExpr());
|
}
|
|
static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
|
Expr *E);
|
};
|
|
/// Represents `typeof(type)`, a GCC extension.
|
class TypeOfType : public Type {
|
QualType TOType;
|
TypeOfType(QualType T, QualType can)
|
: Type(TypeOf, can, T->isDependentType(),
|
T->isInstantiationDependentType(),
|
T->isVariablyModifiedType(),
|
T->containsUnexpandedParameterPack()),
|
TOType(T) {
|
assert(!isa<TypedefType>(can) && "Invalid canonical type");
|
}
|
friend class ASTContext; // ASTContext creates these.
|
public:
|
QualType getUnderlyingType() const { return TOType; }
|
|
/// \brief Remove a single level of sugar.
|
QualType desugar() const { return getUnderlyingType(); }
|
|
/// \brief Returns whether this type directly provides sugar.
|
bool isSugared() const { return true; }
|
|
static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
|
};
|
|
/// Represents the type `decltype(expr)` (C++11).
|
class DecltypeType : public Type {
|
Expr *E;
|
QualType UnderlyingType;
|
|
protected:
|
DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
|
friend class ASTContext; // ASTContext creates these.
|
public:
|
Expr *getUnderlyingExpr() const { return E; }
|
QualType getUnderlyingType() const { return UnderlyingType; }
|
|
/// \brief Remove a single level of sugar.
|
QualType desugar() const;
|
|
/// \brief Returns whether this type directly provides sugar.
|
bool isSugared() const;
|
|
static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
|
};
|
|
/// \brief Internal representation of canonical, dependent
|
/// decltype(expr) types.
|
///
|
/// This class is used internally by the ASTContext to manage
|
/// canonical, dependent types, only. Clients will only see instances
|
/// of this class via DecltypeType nodes.
|
class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
|
const ASTContext &Context;
|
|
public:
|
DependentDecltypeType(const ASTContext &Context, Expr *E);
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, Context, getUnderlyingExpr());
|
}
|
|
static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
|
Expr *E);
|
};
|
|
/// A unary type transform, which is a type constructed from another.
|
class UnaryTransformType : public Type {
|
public:
|
enum UTTKind {
|
EnumUnderlyingType
|
};
|
|
private:
|
/// The untransformed type.
|
QualType BaseType;
|
/// The transformed type if not dependent, otherwise the same as BaseType.
|
QualType UnderlyingType;
|
|
UTTKind UKind;
|
protected:
|
UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
|
QualType CanonicalTy);
|
friend class ASTContext;
|
public:
|
bool isSugared() const { return !isDependentType(); }
|
QualType desugar() const { return UnderlyingType; }
|
|
QualType getUnderlyingType() const { return UnderlyingType; }
|
QualType getBaseType() const { return BaseType; }
|
|
UTTKind getUTTKind() const { return UKind; }
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == UnaryTransform;
|
}
|
};
|
|
/// \brief Internal representation of canonical, dependent
|
/// __underlying_type(type) types.
|
///
|
/// This class is used internally by the ASTContext to manage
|
/// canonical, dependent types, only. Clients will only see instances
|
/// of this class via UnaryTransformType nodes.
|
class DependentUnaryTransformType : public UnaryTransformType,
|
public llvm::FoldingSetNode {
|
public:
|
DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
|
UTTKind UKind);
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getBaseType(), getUTTKind());
|
}
|
|
static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
|
UTTKind UKind) {
|
ID.AddPointer(BaseType.getAsOpaquePtr());
|
ID.AddInteger((unsigned)UKind);
|
}
|
};
|
|
class TagType : public Type {
|
/// Stores the TagDecl associated with this type. The decl may point to any
|
/// TagDecl that declares the entity.
|
TagDecl * decl;
|
|
friend class ASTReader;
|
|
protected:
|
TagType(TypeClass TC, const TagDecl *D, QualType can);
|
|
public:
|
TagDecl *getDecl() const;
|
|
/// Determines whether this type is in the process of being defined.
|
bool isBeingDefined() const;
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
|
}
|
};
|
|
/// A helper class that allows the use of isa/cast/dyncast
|
/// to detect TagType objects of structs/unions/classes.
|
class RecordType : public TagType {
|
protected:
|
explicit RecordType(const RecordDecl *D)
|
: TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
|
explicit RecordType(TypeClass TC, RecordDecl *D)
|
: TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
|
friend class ASTContext; // ASTContext creates these.
|
public:
|
|
RecordDecl *getDecl() const {
|
return reinterpret_cast<RecordDecl*>(TagType::getDecl());
|
}
|
|
// FIXME: This predicate is a helper to QualType/Type. It needs to
|
// recursively check all fields for const-ness. If any field is declared
|
// const, it needs to return false.
|
bool hasConstFields() const { return false; }
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
static bool classof(const Type *T) { return T->getTypeClass() == Record; }
|
};
|
|
/// A helper class that allows the use of isa/cast/dyncast
|
/// to detect TagType objects of enums.
|
class EnumType : public TagType {
|
explicit EnumType(const EnumDecl *D)
|
: TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
|
friend class ASTContext; // ASTContext creates these.
|
public:
|
|
EnumDecl *getDecl() const {
|
return reinterpret_cast<EnumDecl*>(TagType::getDecl());
|
}
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
|
};
|
|
/// An attributed type is a type to which a type attribute has been applied.
|
///
|
/// The "modified type" is the fully-sugared type to which the attributed
|
/// type was applied; generally it is not canonically equivalent to the
|
/// attributed type. The "equivalent type" is the minimally-desugared type
|
/// which the type is canonically equivalent to.
|
///
|
/// For example, in the following attributed type:
|
/// int32_t __attribute__((vector_size(16)))
|
/// - the modified type is the TypedefType for int32_t
|
/// - the equivalent type is VectorType(16, int32_t)
|
/// - the canonical type is VectorType(16, int)
|
class AttributedType : public Type, public llvm::FoldingSetNode {
|
public:
|
// It is really silly to have yet another attribute-kind enum, but
|
// clang::attr::Kind doesn't currently cover the pure type attrs.
|
enum Kind {
|
// Expression operand.
|
attr_address_space,
|
attr_regparm,
|
attr_vector_size,
|
attr_neon_vector_type,
|
attr_neon_polyvector_type,
|
|
FirstExprOperandKind = attr_address_space,
|
LastExprOperandKind = attr_neon_polyvector_type,
|
|
// Enumerated operand (string or keyword).
|
attr_objc_gc,
|
attr_objc_ownership,
|
attr_pcs,
|
attr_pcs_vfp,
|
|
FirstEnumOperandKind = attr_objc_gc,
|
LastEnumOperandKind = attr_pcs_vfp,
|
|
// No operand.
|
attr_noreturn,
|
attr_cdecl,
|
attr_fastcall,
|
attr_stdcall,
|
attr_thiscall,
|
attr_pascal,
|
attr_swiftcall,
|
attr_vectorcall,
|
attr_inteloclbicc,
|
attr_ms_abi,
|
attr_sysv_abi,
|
attr_preserve_most,
|
attr_preserve_all,
|
attr_ptr32,
|
attr_ptr64,
|
attr_sptr,
|
attr_uptr,
|
attr_nonnull,
|
attr_nullable,
|
attr_null_unspecified,
|
attr_objc_kindof,
|
attr_objc_inert_unsafe_unretained,
|
};
|
|
private:
|
QualType ModifiedType;
|
QualType EquivalentType;
|
|
friend class ASTContext; // creates these
|
|
AttributedType(QualType canon, Kind attrKind,
|
QualType modified, QualType equivalent)
|
: Type(Attributed, canon, canon->isDependentType(),
|
canon->isInstantiationDependentType(),
|
canon->isVariablyModifiedType(),
|
canon->containsUnexpandedParameterPack()),
|
ModifiedType(modified), EquivalentType(equivalent) {
|
AttributedTypeBits.AttrKind = attrKind;
|
}
|
|
public:
|
Kind getAttrKind() const {
|
return static_cast<Kind>(AttributedTypeBits.AttrKind);
|
}
|
|
QualType getModifiedType() const { return ModifiedType; }
|
QualType getEquivalentType() const { return EquivalentType; }
|
|
bool isSugared() const { return true; }
|
QualType desugar() const { return getEquivalentType(); }
|
|
/// Does this attribute behave like a type qualifier?
|
///
|
/// A type qualifier adjusts a type to provide specialized rules for
|
/// a specific object, like the standard const and volatile qualifiers.
|
/// This includes attributes controlling things like nullability,
|
/// address spaces, and ARC ownership. The value of the object is still
|
/// largely described by the modified type.
|
///
|
/// In contrast, many type attributes "rewrite" their modified type to
|
/// produce a fundamentally different type, not necessarily related in any
|
/// formalizable way to the original type. For example, calling convention
|
/// and vector attributes are not simple type qualifiers.
|
///
|
/// Type qualifiers are often, but not always, reflected in the canonical
|
/// type.
|
bool isQualifier() const;
|
|
bool isMSTypeSpec() const;
|
|
bool isCallingConv() const;
|
|
llvm::Optional<NullabilityKind> getImmediateNullability() const;
|
|
/// Retrieve the attribute kind corresponding to the given
|
/// nullability kind.
|
static Kind getNullabilityAttrKind(NullabilityKind kind) {
|
switch (kind) {
|
case NullabilityKind::NonNull:
|
return attr_nonnull;
|
|
case NullabilityKind::Nullable:
|
return attr_nullable;
|
|
case NullabilityKind::Unspecified:
|
return attr_null_unspecified;
|
}
|
llvm_unreachable("Unknown nullability kind.");
|
}
|
|
/// Strip off the top-level nullability annotation on the given
|
/// type, if it's there.
|
///
|
/// \param T The type to strip. If the type is exactly an
|
/// AttributedType specifying nullability (without looking through
|
/// type sugar), the nullability is returned and this type changed
|
/// to the underlying modified type.
|
///
|
/// \returns the top-level nullability, if present.
|
static Optional<NullabilityKind> stripOuterNullability(QualType &T);
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
|
}
|
|
static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
|
QualType modified, QualType equivalent) {
|
ID.AddInteger(attrKind);
|
ID.AddPointer(modified.getAsOpaquePtr());
|
ID.AddPointer(equivalent.getAsOpaquePtr());
|
}
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == Attributed;
|
}
|
};
|
|
class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
|
// Helper data collector for canonical types.
|
struct CanonicalTTPTInfo {
|
unsigned Depth : 15;
|
unsigned ParameterPack : 1;
|
unsigned Index : 16;
|
};
|
|
union {
|
// Info for the canonical type.
|
CanonicalTTPTInfo CanTTPTInfo;
|
// Info for the non-canonical type.
|
TemplateTypeParmDecl *TTPDecl;
|
};
|
|
/// Build a non-canonical type.
|
TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
|
: Type(TemplateTypeParm, Canon, /*Dependent=*/true,
|
/*InstantiationDependent=*/true,
|
/*VariablyModified=*/false,
|
Canon->containsUnexpandedParameterPack()),
|
TTPDecl(TTPDecl) { }
|
|
/// Build the canonical type.
|
TemplateTypeParmType(unsigned D, unsigned I, bool PP)
|
: Type(TemplateTypeParm, QualType(this, 0),
|
/*Dependent=*/true,
|
/*InstantiationDependent=*/true,
|
/*VariablyModified=*/false, PP) {
|
CanTTPTInfo.Depth = D;
|
CanTTPTInfo.Index = I;
|
CanTTPTInfo.ParameterPack = PP;
|
}
|
|
friend class ASTContext; // ASTContext creates these
|
|
const CanonicalTTPTInfo& getCanTTPTInfo() const {
|
QualType Can = getCanonicalTypeInternal();
|
return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
|
}
|
|
public:
|
unsigned getDepth() const { return getCanTTPTInfo().Depth; }
|
unsigned getIndex() const { return getCanTTPTInfo().Index; }
|
bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
|
|
TemplateTypeParmDecl *getDecl() const {
|
return isCanonicalUnqualified() ? nullptr : TTPDecl;
|
}
|
|
IdentifierInfo *getIdentifier() const;
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
|
}
|
|
static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
|
unsigned Index, bool ParameterPack,
|
TemplateTypeParmDecl *TTPDecl) {
|
ID.AddInteger(Depth);
|
ID.AddInteger(Index);
|
ID.AddBoolean(ParameterPack);
|
ID.AddPointer(TTPDecl);
|
}
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == TemplateTypeParm;
|
}
|
};
|
|
/// \brief Represents the result of substituting a type for a template
|
/// type parameter.
|
///
|
/// Within an instantiated template, all template type parameters have
|
/// been replaced with these. They are used solely to record that a
|
/// type was originally written as a template type parameter;
|
/// therefore they are never canonical.
|
class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
|
// The original type parameter.
|
const TemplateTypeParmType *Replaced;
|
|
SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
|
: Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
|
Canon->isInstantiationDependentType(),
|
Canon->isVariablyModifiedType(),
|
Canon->containsUnexpandedParameterPack()),
|
Replaced(Param) { }
|
|
friend class ASTContext;
|
|
public:
|
/// Gets the template parameter that was substituted for.
|
const TemplateTypeParmType *getReplacedParameter() const {
|
return Replaced;
|
}
|
|
/// Gets the type that was substituted for the template
|
/// parameter.
|
QualType getReplacementType() const {
|
return getCanonicalTypeInternal();
|
}
|
|
bool isSugared() const { return true; }
|
QualType desugar() const { return getReplacementType(); }
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getReplacedParameter(), getReplacementType());
|
}
|
static void Profile(llvm::FoldingSetNodeID &ID,
|
const TemplateTypeParmType *Replaced,
|
QualType Replacement) {
|
ID.AddPointer(Replaced);
|
ID.AddPointer(Replacement.getAsOpaquePtr());
|
}
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == SubstTemplateTypeParm;
|
}
|
};
|
|
/// \brief Represents the result of substituting a set of types for a template
|
/// type parameter pack.
|
///
|
/// When a pack expansion in the source code contains multiple parameter packs
|
/// and those parameter packs correspond to different levels of template
|
/// parameter lists, this type node is used to represent a template type
|
/// parameter pack from an outer level, which has already had its argument pack
|
/// substituted but that still lives within a pack expansion that itself
|
/// could not be instantiated. When actually performing a substitution into
|
/// that pack expansion (e.g., when all template parameters have corresponding
|
/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
|
/// at the current pack substitution index.
|
class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
|
/// \brief The original type parameter.
|
const TemplateTypeParmType *Replaced;
|
|
/// \brief A pointer to the set of template arguments that this
|
/// parameter pack is instantiated with.
|
const TemplateArgument *Arguments;
|
|
/// \brief The number of template arguments in \c Arguments.
|
unsigned NumArguments;
|
|
SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
|
QualType Canon,
|
const TemplateArgument &ArgPack);
|
|
friend class ASTContext;
|
|
public:
|
IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
|
|
/// Gets the template parameter that was substituted for.
|
const TemplateTypeParmType *getReplacedParameter() const {
|
return Replaced;
|
}
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
TemplateArgument getArgumentPack() const;
|
|
void Profile(llvm::FoldingSetNodeID &ID);
|
static void Profile(llvm::FoldingSetNodeID &ID,
|
const TemplateTypeParmType *Replaced,
|
const TemplateArgument &ArgPack);
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == SubstTemplateTypeParmPack;
|
}
|
};
|
|
/// \brief Represents a C++11 auto or C++14 decltype(auto) type.
|
///
|
/// These types are usually a placeholder for a deduced type. However, before
|
/// the initializer is attached, or if the initializer is type-dependent, there
|
/// is no deduced type and an auto type is canonical. In the latter case, it is
|
/// also a dependent type.
|
class AutoType : public Type, public llvm::FoldingSetNode {
|
AutoType(QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent)
|
: Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
|
/*Dependent=*/IsDependent, /*InstantiationDependent=*/IsDependent,
|
/*VariablyModified=*/false,
|
/*ContainsParameterPack=*/DeducedType.isNull()
|
? false : DeducedType->containsUnexpandedParameterPack()) {
|
assert((DeducedType.isNull() || !IsDependent) &&
|
"auto deduced to dependent type");
|
AutoTypeBits.Keyword = (unsigned)Keyword;
|
}
|
|
friend class ASTContext; // ASTContext creates these
|
|
public:
|
bool isDecltypeAuto() const {
|
return getKeyword() == AutoTypeKeyword::DecltypeAuto;
|
}
|
AutoTypeKeyword getKeyword() const {
|
return (AutoTypeKeyword)AutoTypeBits.Keyword;
|
}
|
|
bool isSugared() const { return !isCanonicalUnqualified(); }
|
QualType desugar() const { return getCanonicalTypeInternal(); }
|
|
/// \brief Get the type deduced for this auto type, or null if it's either
|
/// not been deduced or was deduced to a dependent type.
|
QualType getDeducedType() const {
|
return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
|
}
|
bool isDeduced() const {
|
return !isCanonicalUnqualified() || isDependentType();
|
}
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getDeducedType(), getKeyword(), isDependentType());
|
}
|
|
static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
|
AutoTypeKeyword Keyword, bool IsDependent) {
|
ID.AddPointer(Deduced.getAsOpaquePtr());
|
ID.AddInteger((unsigned)Keyword);
|
ID.AddBoolean(IsDependent);
|
}
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == Auto;
|
}
|
};
|
|
/// \brief Represents a type template specialization; the template
|
/// must be a class template, a type alias template, or a template
|
/// template parameter. A template which cannot be resolved to one of
|
/// these, e.g. because it is written with a dependent scope
|
/// specifier, is instead represented as a
|
/// @c DependentTemplateSpecializationType.
|
///
|
/// A non-dependent template specialization type is always "sugar",
|
/// typically for a \c RecordType. For example, a class template
|
/// specialization type of \c vector<int> will refer to a tag type for
|
/// the instantiation \c std::vector<int, std::allocator<int>>
|
///
|
/// Template specializations are dependent if either the template or
|
/// any of the template arguments are dependent, in which case the
|
/// type may also be canonical.
|
///
|
/// Instances of this type are allocated with a trailing array of
|
/// TemplateArguments, followed by a QualType representing the
|
/// non-canonical aliased type when the template is a type alias
|
/// template.
|
class LLVM_ALIGNAS(/*alignof(uint64_t)*/ 8) TemplateSpecializationType
|
: public Type,
|
public llvm::FoldingSetNode {
|
/// The name of the template being specialized. This is
|
/// either a TemplateName::Template (in which case it is a
|
/// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
|
/// TypeAliasTemplateDecl*), a
|
/// TemplateName::SubstTemplateTemplateParmPack, or a
|
/// TemplateName::SubstTemplateTemplateParm (in which case the
|
/// replacement must, recursively, be one of these).
|
TemplateName Template;
|
|
/// The number of template arguments named in this class template
|
/// specialization.
|
unsigned NumArgs : 31;
|
|
/// Whether this template specialization type is a substituted type alias.
|
unsigned TypeAlias : 1;
|
|
TemplateSpecializationType(TemplateName T,
|
ArrayRef<TemplateArgument> Args,
|
QualType Canon,
|
QualType Aliased);
|
|
friend class ASTContext; // ASTContext creates these
|
|
public:
|
/// Determine whether any of the given template arguments are dependent.
|
static bool anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
|
bool &InstantiationDependent);
|
|
static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
|
bool &InstantiationDependent);
|
|
/// \brief Print a template argument list, including the '<' and '>'
|
/// enclosing the template arguments.
|
static void PrintTemplateArgumentList(raw_ostream &OS,
|
ArrayRef<TemplateArgument> Args,
|
const PrintingPolicy &Policy,
|
bool SkipBrackets = false);
|
|
static void PrintTemplateArgumentList(raw_ostream &OS,
|
ArrayRef<TemplateArgumentLoc> Args,
|
const PrintingPolicy &Policy);
|
|
static void PrintTemplateArgumentList(raw_ostream &OS,
|
const TemplateArgumentListInfo &,
|
const PrintingPolicy &Policy);
|
|
/// True if this template specialization type matches a current
|
/// instantiation in the context in which it is found.
|
bool isCurrentInstantiation() const {
|
return isa<InjectedClassNameType>(getCanonicalTypeInternal());
|
}
|
|
/// \brief Determine if this template specialization type is for a type alias
|
/// template that has been substituted.
|
///
|
/// Nearly every template specialization type whose template is an alias
|
/// template will be substituted. However, this is not the case when
|
/// the specialization contains a pack expansion but the template alias
|
/// does not have a corresponding parameter pack, e.g.,
|
///
|
/// \code
|
/// template<typename T, typename U, typename V> struct S;
|
/// template<typename T, typename U> using A = S<T, int, U>;
|
/// template<typename... Ts> struct X {
|
/// typedef A<Ts...> type; // not a type alias
|
/// };
|
/// \endcode
|
bool isTypeAlias() const { return TypeAlias; }
|
|
/// Get the aliased type, if this is a specialization of a type alias
|
/// template.
|
QualType getAliasedType() const {
|
assert(isTypeAlias() && "not a type alias template specialization");
|
return *reinterpret_cast<const QualType*>(end());
|
}
|
|
typedef const TemplateArgument * iterator;
|
|
iterator begin() const { return getArgs(); }
|
iterator end() const; // defined inline in TemplateBase.h
|
|
/// Retrieve the name of the template that we are specializing.
|
TemplateName getTemplateName() const { return Template; }
|
|
/// Retrieve the template arguments.
|
const TemplateArgument *getArgs() const {
|
return reinterpret_cast<const TemplateArgument *>(this + 1);
|
}
|
|
/// Retrieve the number of template arguments.
|
unsigned getNumArgs() const { return NumArgs; }
|
|
/// Retrieve a specific template argument as a type.
|
/// \pre \c isArgType(Arg)
|
const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
|
|
ArrayRef<TemplateArgument> template_arguments() const {
|
return {getArgs(), NumArgs};
|
}
|
|
bool isSugared() const {
|
return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
|
}
|
QualType desugar() const { return getCanonicalTypeInternal(); }
|
|
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
|
Profile(ID, Template, template_arguments(), Ctx);
|
if (isTypeAlias())
|
getAliasedType().Profile(ID);
|
}
|
|
static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
|
ArrayRef<TemplateArgument> Args,
|
const ASTContext &Context);
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == TemplateSpecialization;
|
}
|
};
|
|
/// The injected class name of a C++ class template or class
|
/// template partial specialization. Used to record that a type was
|
/// spelled with a bare identifier rather than as a template-id; the
|
/// equivalent for non-templated classes is just RecordType.
|
///
|
/// Injected class name types are always dependent. Template
|
/// instantiation turns these into RecordTypes.
|
///
|
/// Injected class name types are always canonical. This works
|
/// because it is impossible to compare an injected class name type
|
/// with the corresponding non-injected template type, for the same
|
/// reason that it is impossible to directly compare template
|
/// parameters from different dependent contexts: injected class name
|
/// types can only occur within the scope of a particular templated
|
/// declaration, and within that scope every template specialization
|
/// will canonicalize to the injected class name (when appropriate
|
/// according to the rules of the language).
|
class InjectedClassNameType : public Type {
|
CXXRecordDecl *Decl;
|
|
/// The template specialization which this type represents.
|
/// For example, in
|
/// template <class T> class A { ... };
|
/// this is A<T>, whereas in
|
/// template <class X, class Y> class A<B<X,Y> > { ... };
|
/// this is A<B<X,Y> >.
|
///
|
/// It is always unqualified, always a template specialization type,
|
/// and always dependent.
|
QualType InjectedType;
|
|
friend class ASTContext; // ASTContext creates these.
|
friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
|
// currently suitable for AST reading, too much
|
// interdependencies.
|
friend class ASTNodeImporter;
|
|
InjectedClassNameType(CXXRecordDecl *D, QualType TST)
|
: Type(InjectedClassName, QualType(), /*Dependent=*/true,
|
/*InstantiationDependent=*/true,
|
/*VariablyModified=*/false,
|
/*ContainsUnexpandedParameterPack=*/false),
|
Decl(D), InjectedType(TST) {
|
assert(isa<TemplateSpecializationType>(TST));
|
assert(!TST.hasQualifiers());
|
assert(TST->isDependentType());
|
}
|
|
public:
|
QualType getInjectedSpecializationType() const { return InjectedType; }
|
const TemplateSpecializationType *getInjectedTST() const {
|
return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
|
}
|
|
CXXRecordDecl *getDecl() const;
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == InjectedClassName;
|
}
|
};
|
|
/// \brief The kind of a tag type.
|
enum TagTypeKind {
|
/// \brief The "struct" keyword.
|
TTK_Struct,
|
/// \brief The "__interface" keyword.
|
TTK_Interface,
|
/// \brief The "union" keyword.
|
TTK_Union,
|
/// \brief The "class" keyword.
|
TTK_Class,
|
/// \brief The "enum" keyword.
|
TTK_Enum
|
};
|
|
/// \brief The elaboration keyword that precedes a qualified type name or
|
/// introduces an elaborated-type-specifier.
|
enum ElaboratedTypeKeyword {
|
/// \brief The "struct" keyword introduces the elaborated-type-specifier.
|
ETK_Struct,
|
/// \brief The "__interface" keyword introduces the elaborated-type-specifier.
|
ETK_Interface,
|
/// \brief The "union" keyword introduces the elaborated-type-specifier.
|
ETK_Union,
|
/// \brief The "class" keyword introduces the elaborated-type-specifier.
|
ETK_Class,
|
/// \brief The "enum" keyword introduces the elaborated-type-specifier.
|
ETK_Enum,
|
/// \brief The "typename" keyword precedes the qualified type name, e.g.,
|
/// \c typename T::type.
|
ETK_Typename,
|
/// \brief No keyword precedes the qualified type name.
|
ETK_None
|
};
|
|
/// A helper class for Type nodes having an ElaboratedTypeKeyword.
|
/// The keyword in stored in the free bits of the base class.
|
/// Also provides a few static helpers for converting and printing
|
/// elaborated type keyword and tag type kind enumerations.
|
class TypeWithKeyword : public Type {
|
protected:
|
TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
|
QualType Canonical, bool Dependent,
|
bool InstantiationDependent, bool VariablyModified,
|
bool ContainsUnexpandedParameterPack)
|
: Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
|
ContainsUnexpandedParameterPack) {
|
TypeWithKeywordBits.Keyword = Keyword;
|
}
|
|
public:
|
ElaboratedTypeKeyword getKeyword() const {
|
return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
|
}
|
|
/// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
|
static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
|
|
/// Converts a type specifier (DeclSpec::TST) into a tag type kind.
|
/// It is an error to provide a type specifier which *isn't* a tag kind here.
|
static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
|
|
/// Converts a TagTypeKind into an elaborated type keyword.
|
static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
|
|
/// Converts an elaborated type keyword into a TagTypeKind.
|
/// It is an error to provide an elaborated type keyword
|
/// which *isn't* a tag kind here.
|
static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
|
|
static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
|
|
static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
|
|
static StringRef getTagTypeKindName(TagTypeKind Kind) {
|
return getKeywordName(getKeywordForTagTypeKind(Kind));
|
}
|
|
class CannotCastToThisType {};
|
static CannotCastToThisType classof(const Type *);
|
};
|
|
/// \brief Represents a type that was referred to using an elaborated type
|
/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
|
/// or both.
|
///
|
/// This type is used to keep track of a type name as written in the
|
/// source code, including tag keywords and any nested-name-specifiers.
|
/// The type itself is always "sugar", used to express what was written
|
/// in the source code but containing no additional semantic information.
|
class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
|
|
/// The nested name specifier containing the qualifier.
|
NestedNameSpecifier *NNS;
|
|
/// The type that this qualified name refers to.
|
QualType NamedType;
|
|
ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
|
QualType NamedType, QualType CanonType)
|
: TypeWithKeyword(Keyword, Elaborated, CanonType,
|
NamedType->isDependentType(),
|
NamedType->isInstantiationDependentType(),
|
NamedType->isVariablyModifiedType(),
|
NamedType->containsUnexpandedParameterPack()),
|
NNS(NNS), NamedType(NamedType) {
|
assert(!(Keyword == ETK_None && NNS == nullptr) &&
|
"ElaboratedType cannot have elaborated type keyword "
|
"and name qualifier both null.");
|
}
|
|
friend class ASTContext; // ASTContext creates these
|
|
public:
|
~ElaboratedType();
|
|
/// Retrieve the qualification on this type.
|
NestedNameSpecifier *getQualifier() const { return NNS; }
|
|
/// Retrieve the type named by the qualified-id.
|
QualType getNamedType() const { return NamedType; }
|
|
/// Remove a single level of sugar.
|
QualType desugar() const { return getNamedType(); }
|
|
/// Returns whether this type directly provides sugar.
|
bool isSugared() const { return true; }
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getKeyword(), NNS, NamedType);
|
}
|
|
static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
|
NestedNameSpecifier *NNS, QualType NamedType) {
|
ID.AddInteger(Keyword);
|
ID.AddPointer(NNS);
|
NamedType.Profile(ID);
|
}
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == Elaborated;
|
}
|
};
|
|
/// \brief Represents a qualified type name for which the type name is
|
/// dependent.
|
///
|
/// DependentNameType represents a class of dependent types that involve a
|
/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
|
/// name of a type. The DependentNameType may start with a "typename" (for a
|
/// typename-specifier), "class", "struct", "union", or "enum" (for a
|
/// dependent elaborated-type-specifier), or nothing (in contexts where we
|
/// know that we must be referring to a type, e.g., in a base class specifier).
|
/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
|
/// mode, this type is used with non-dependent names to delay name lookup until
|
/// instantiation.
|
class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
|
|
/// \brief The nested name specifier containing the qualifier.
|
NestedNameSpecifier *NNS;
|
|
/// \brief The type that this typename specifier refers to.
|
const IdentifierInfo *Name;
|
|
DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
|
const IdentifierInfo *Name, QualType CanonType)
|
: TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
|
/*InstantiationDependent=*/true,
|
/*VariablyModified=*/false,
|
NNS->containsUnexpandedParameterPack()),
|
NNS(NNS), Name(Name) {}
|
|
friend class ASTContext; // ASTContext creates these
|
|
public:
|
/// Retrieve the qualification on this type.
|
NestedNameSpecifier *getQualifier() const { return NNS; }
|
|
/// Retrieve the type named by the typename specifier as an identifier.
|
///
|
/// This routine will return a non-NULL identifier pointer when the
|
/// form of the original typename was terminated by an identifier,
|
/// e.g., "typename T::type".
|
const IdentifierInfo *getIdentifier() const {
|
return Name;
|
}
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getKeyword(), NNS, Name);
|
}
|
|
static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
|
NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
|
ID.AddInteger(Keyword);
|
ID.AddPointer(NNS);
|
ID.AddPointer(Name);
|
}
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == DependentName;
|
}
|
};
|
|
/// Represents a template specialization type whose template cannot be
|
/// resolved, e.g.
|
/// A<T>::template B<T>
|
class LLVM_ALIGNAS(/*alignof(uint64_t)*/ 8) DependentTemplateSpecializationType
|
: public TypeWithKeyword,
|
public llvm::FoldingSetNode {
|
|
/// The nested name specifier containing the qualifier.
|
NestedNameSpecifier *NNS;
|
|
/// The identifier of the template.
|
const IdentifierInfo *Name;
|
|
/// \brief The number of template arguments named in this class template
|
/// specialization.
|
unsigned NumArgs;
|
|
const TemplateArgument *getArgBuffer() const {
|
return reinterpret_cast<const TemplateArgument*>(this+1);
|
}
|
TemplateArgument *getArgBuffer() {
|
return reinterpret_cast<TemplateArgument*>(this+1);
|
}
|
|
DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
|
NestedNameSpecifier *NNS,
|
const IdentifierInfo *Name,
|
ArrayRef<TemplateArgument> Args,
|
QualType Canon);
|
|
friend class ASTContext; // ASTContext creates these
|
|
public:
|
NestedNameSpecifier *getQualifier() const { return NNS; }
|
const IdentifierInfo *getIdentifier() const { return Name; }
|
|
/// \brief Retrieve the template arguments.
|
const TemplateArgument *getArgs() const {
|
return getArgBuffer();
|
}
|
|
/// \brief Retrieve the number of template arguments.
|
unsigned getNumArgs() const { return NumArgs; }
|
|
const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
|
|
ArrayRef<TemplateArgument> template_arguments() const {
|
return {getArgs(), NumArgs};
|
}
|
|
typedef const TemplateArgument * iterator;
|
iterator begin() const { return getArgs(); }
|
iterator end() const; // inline in TemplateBase.h
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
|
Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), NumArgs});
|
}
|
|
static void Profile(llvm::FoldingSetNodeID &ID,
|
const ASTContext &Context,
|
ElaboratedTypeKeyword Keyword,
|
NestedNameSpecifier *Qualifier,
|
const IdentifierInfo *Name,
|
ArrayRef<TemplateArgument> Args);
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == DependentTemplateSpecialization;
|
}
|
};
|
|
/// \brief Represents a pack expansion of types.
|
///
|
/// Pack expansions are part of C++11 variadic templates. A pack
|
/// expansion contains a pattern, which itself contains one or more
|
/// "unexpanded" parameter packs. When instantiated, a pack expansion
|
/// produces a series of types, each instantiated from the pattern of
|
/// the expansion, where the Ith instantiation of the pattern uses the
|
/// Ith arguments bound to each of the unexpanded parameter packs. The
|
/// pack expansion is considered to "expand" these unexpanded
|
/// parameter packs.
|
///
|
/// \code
|
/// template<typename ...Types> struct tuple;
|
///
|
/// template<typename ...Types>
|
/// struct tuple_of_references {
|
/// typedef tuple<Types&...> type;
|
/// };
|
/// \endcode
|
///
|
/// Here, the pack expansion \c Types&... is represented via a
|
/// PackExpansionType whose pattern is Types&.
|
class PackExpansionType : public Type, public llvm::FoldingSetNode {
|
/// \brief The pattern of the pack expansion.
|
QualType Pattern;
|
|
/// \brief The number of expansions that this pack expansion will
|
/// generate when substituted (+1), or indicates that
|
///
|
/// This field will only have a non-zero value when some of the parameter
|
/// packs that occur within the pattern have been substituted but others have
|
/// not.
|
unsigned NumExpansions;
|
|
PackExpansionType(QualType Pattern, QualType Canon,
|
Optional<unsigned> NumExpansions)
|
: Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
|
/*InstantiationDependent=*/true,
|
/*VariablyModified=*/Pattern->isVariablyModifiedType(),
|
/*ContainsUnexpandedParameterPack=*/false),
|
Pattern(Pattern),
|
NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
|
|
friend class ASTContext; // ASTContext creates these
|
|
public:
|
/// \brief Retrieve the pattern of this pack expansion, which is the
|
/// type that will be repeatedly instantiated when instantiating the
|
/// pack expansion itself.
|
QualType getPattern() const { return Pattern; }
|
|
/// \brief Retrieve the number of expansions that this pack expansion will
|
/// generate, if known.
|
Optional<unsigned> getNumExpansions() const {
|
if (NumExpansions)
|
return NumExpansions - 1;
|
|
return None;
|
}
|
|
bool isSugared() const { return !Pattern->isDependentType(); }
|
QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getPattern(), getNumExpansions());
|
}
|
|
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
|
Optional<unsigned> NumExpansions) {
|
ID.AddPointer(Pattern.getAsOpaquePtr());
|
ID.AddBoolean(NumExpansions.hasValue());
|
if (NumExpansions)
|
ID.AddInteger(*NumExpansions);
|
}
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == PackExpansion;
|
}
|
};
|
|
/// Represents a class type in Objective C.
|
///
|
/// Every Objective C type is a combination of a base type, a set of
|
/// type arguments (optional, for parameterized classes) and a list of
|
/// protocols.
|
///
|
/// Given the following declarations:
|
/// \code
|
/// \@class C<T>;
|
/// \@protocol P;
|
/// \endcode
|
///
|
/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
|
/// with base C and no protocols.
|
///
|
/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
|
/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
|
/// protocol list.
|
/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
|
/// and protocol list [P].
|
///
|
/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
|
/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
|
/// and no protocols.
|
///
|
/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
|
/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
|
/// this should get its own sugar class to better represent the source.
|
class ObjCObjectType : public Type {
|
// ObjCObjectType.NumTypeArgs - the number of type arguments stored
|
// after the ObjCObjectPointerType node.
|
// ObjCObjectType.NumProtocols - the number of protocols stored
|
// after the type arguments of ObjCObjectPointerType node.
|
//
|
// These protocols are those written directly on the type. If
|
// protocol qualifiers ever become additive, the iterators will need
|
// to get kindof complicated.
|
//
|
// In the canonical object type, these are sorted alphabetically
|
// and uniqued.
|
|
/// Either a BuiltinType or an InterfaceType or sugar for either.
|
QualType BaseType;
|
|
/// Cached superclass type.
|
mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
|
CachedSuperClassType;
|
|
ObjCProtocolDecl * const *getProtocolStorage() const {
|
return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
|
}
|
|
QualType *getTypeArgStorage();
|
const QualType *getTypeArgStorage() const {
|
return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
|
}
|
|
ObjCProtocolDecl **getProtocolStorage();
|
|
protected:
|
ObjCObjectType(QualType Canonical, QualType Base,
|
ArrayRef<QualType> typeArgs,
|
ArrayRef<ObjCProtocolDecl *> protocols,
|
bool isKindOf);
|
|
enum Nonce_ObjCInterface { Nonce_ObjCInterface };
|
ObjCObjectType(enum Nonce_ObjCInterface)
|
: Type(ObjCInterface, QualType(), false, false, false, false),
|
BaseType(QualType(this_(), 0)) {
|
ObjCObjectTypeBits.NumProtocols = 0;
|
ObjCObjectTypeBits.NumTypeArgs = 0;
|
ObjCObjectTypeBits.IsKindOf = 0;
|
}
|
|
void computeSuperClassTypeSlow() const;
|
|
public:
|
/// Gets the base type of this object type. This is always (possibly
|
/// sugar for) one of:
|
/// - the 'id' builtin type (as opposed to the 'id' type visible to the
|
/// user, which is a typedef for an ObjCObjectPointerType)
|
/// - the 'Class' builtin type (same caveat)
|
/// - an ObjCObjectType (currently always an ObjCInterfaceType)
|
QualType getBaseType() const { return BaseType; }
|
|
bool isObjCId() const {
|
return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
|
}
|
bool isObjCClass() const {
|
return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
|
}
|
bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
|
bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
|
bool isObjCUnqualifiedIdOrClass() const {
|
if (!qual_empty()) return false;
|
if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
|
return T->getKind() == BuiltinType::ObjCId ||
|
T->getKind() == BuiltinType::ObjCClass;
|
return false;
|
}
|
bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
|
bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
|
|
/// Gets the interface declaration for this object type, if the base type
|
/// really is an interface.
|
ObjCInterfaceDecl *getInterface() const;
|
|
/// Determine whether this object type is "specialized", meaning
|
/// that it has type arguments.
|
bool isSpecialized() const;
|
|
/// Determine whether this object type was written with type arguments.
|
bool isSpecializedAsWritten() const {
|
return ObjCObjectTypeBits.NumTypeArgs > 0;
|
}
|
|
/// Determine whether this object type is "unspecialized", meaning
|
/// that it has no type arguments.
|
bool isUnspecialized() const { return !isSpecialized(); }
|
|
/// Determine whether this object type is "unspecialized" as
|
/// written, meaning that it has no type arguments.
|
bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
|
|
/// Retrieve the type arguments of this object type (semantically).
|
ArrayRef<QualType> getTypeArgs() const;
|
|
/// Retrieve the type arguments of this object type as they were
|
/// written.
|
ArrayRef<QualType> getTypeArgsAsWritten() const {
|
return llvm::makeArrayRef(getTypeArgStorage(),
|
ObjCObjectTypeBits.NumTypeArgs);
|
}
|
|
typedef ObjCProtocolDecl * const *qual_iterator;
|
typedef llvm::iterator_range<qual_iterator> qual_range;
|
|
qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
|
qual_iterator qual_begin() const { return getProtocolStorage(); }
|
qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
|
|
bool qual_empty() const { return getNumProtocols() == 0; }
|
|
/// Return the number of qualifying protocols in this interface type,
|
/// or 0 if there are none.
|
unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
|
|
/// Fetch a protocol by index.
|
ObjCProtocolDecl *getProtocol(unsigned I) const {
|
assert(I < getNumProtocols() && "Out-of-range protocol access");
|
return qual_begin()[I];
|
}
|
|
/// Retrieve all of the protocol qualifiers.
|
ArrayRef<ObjCProtocolDecl *> getProtocols() const {
|
return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
|
}
|
|
/// Whether this is a "__kindof" type as written.
|
bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
|
|
/// Whether this ia a "__kindof" type (semantically).
|
bool isKindOfType() const;
|
|
/// Retrieve the type of the superclass of this object type.
|
///
|
/// This operation substitutes any type arguments into the
|
/// superclass of the current class type, potentially producing a
|
/// specialization of the superclass type. Produces a null type if
|
/// there is no superclass.
|
QualType getSuperClassType() const {
|
if (!CachedSuperClassType.getInt())
|
computeSuperClassTypeSlow();
|
|
assert(CachedSuperClassType.getInt() && "Superclass not set?");
|
return QualType(CachedSuperClassType.getPointer(), 0);
|
}
|
|
/// Strip off the Objective-C "kindof" type and (with it) any
|
/// protocol qualifiers.
|
QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == ObjCObject ||
|
T->getTypeClass() == ObjCInterface;
|
}
|
};
|
|
/// A class providing a concrete implementation
|
/// of ObjCObjectType, so as to not increase the footprint of
|
/// ObjCInterfaceType. Code outside of ASTContext and the core type
|
/// system should not reference this type.
|
class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
|
friend class ASTContext;
|
|
// If anyone adds fields here, ObjCObjectType::getProtocolStorage()
|
// will need to be modified.
|
|
ObjCObjectTypeImpl(QualType Canonical, QualType Base,
|
ArrayRef<QualType> typeArgs,
|
ArrayRef<ObjCProtocolDecl *> protocols,
|
bool isKindOf)
|
: ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
|
|
public:
|
void Profile(llvm::FoldingSetNodeID &ID);
|
static void Profile(llvm::FoldingSetNodeID &ID,
|
QualType Base,
|
ArrayRef<QualType> typeArgs,
|
ArrayRef<ObjCProtocolDecl *> protocols,
|
bool isKindOf);
|
};
|
|
inline QualType *ObjCObjectType::getTypeArgStorage() {
|
return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
|
}
|
|
inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
|
return reinterpret_cast<ObjCProtocolDecl**>(
|
getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
|
}
|
|
/// Interfaces are the core concept in Objective-C for object oriented design.
|
/// They basically correspond to C++ classes. There are two kinds of interface
|
/// types: normal interfaces like `NSString`, and qualified interfaces, which
|
/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
|
///
|
/// ObjCInterfaceType guarantees the following properties when considered
|
/// as a subtype of its superclass, ObjCObjectType:
|
/// - There are no protocol qualifiers. To reinforce this, code which
|
/// tries to invoke the protocol methods via an ObjCInterfaceType will
|
/// fail to compile.
|
/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
|
/// T->getBaseType() == QualType(T, 0).
|
class ObjCInterfaceType : public ObjCObjectType {
|
mutable ObjCInterfaceDecl *Decl;
|
|
ObjCInterfaceType(const ObjCInterfaceDecl *D)
|
: ObjCObjectType(Nonce_ObjCInterface),
|
Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
|
friend class ASTContext; // ASTContext creates these.
|
friend class ASTReader;
|
friend class ObjCInterfaceDecl;
|
|
public:
|
/// Get the declaration of this interface.
|
ObjCInterfaceDecl *getDecl() const { return Decl; }
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == ObjCInterface;
|
}
|
|
// Nonsense to "hide" certain members of ObjCObjectType within this
|
// class. People asking for protocols on an ObjCInterfaceType are
|
// not going to get what they want: ObjCInterfaceTypes are
|
// guaranteed to have no protocols.
|
enum {
|
qual_iterator,
|
qual_begin,
|
qual_end,
|
getNumProtocols,
|
getProtocol
|
};
|
};
|
|
inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
|
QualType baseType = getBaseType();
|
while (const ObjCObjectType *ObjT = baseType->getAs<ObjCObjectType>()) {
|
if (const ObjCInterfaceType *T = dyn_cast<ObjCInterfaceType>(ObjT))
|
return T->getDecl();
|
|
baseType = ObjT->getBaseType();
|
}
|
|
return nullptr;
|
}
|
|
/// Represents a pointer to an Objective C object.
|
///
|
/// These are constructed from pointer declarators when the pointee type is
|
/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
|
/// types are typedefs for these, and the protocol-qualified types 'id<P>'
|
/// and 'Class<P>' are translated into these.
|
///
|
/// Pointers to pointers to Objective C objects are still PointerTypes;
|
/// only the first level of pointer gets it own type implementation.
|
class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
|
QualType PointeeType;
|
|
ObjCObjectPointerType(QualType Canonical, QualType Pointee)
|
: Type(ObjCObjectPointer, Canonical,
|
Pointee->isDependentType(),
|
Pointee->isInstantiationDependentType(),
|
Pointee->isVariablyModifiedType(),
|
Pointee->containsUnexpandedParameterPack()),
|
PointeeType(Pointee) {}
|
friend class ASTContext; // ASTContext creates these.
|
|
public:
|
/// Gets the type pointed to by this ObjC pointer.
|
/// The result will always be an ObjCObjectType or sugar thereof.
|
QualType getPointeeType() const { return PointeeType; }
|
|
/// Gets the type pointed to by this ObjC pointer. Always returns non-null.
|
///
|
/// This method is equivalent to getPointeeType() except that
|
/// it discards any typedefs (or other sugar) between this
|
/// type and the "outermost" object type. So for:
|
/// \code
|
/// \@class A; \@protocol P; \@protocol Q;
|
/// typedef A<P> AP;
|
/// typedef A A1;
|
/// typedef A1<P> A1P;
|
/// typedef A1P<Q> A1PQ;
|
/// \endcode
|
/// For 'A*', getObjectType() will return 'A'.
|
/// For 'A<P>*', getObjectType() will return 'A<P>'.
|
/// For 'AP*', getObjectType() will return 'A<P>'.
|
/// For 'A1*', getObjectType() will return 'A'.
|
/// For 'A1<P>*', getObjectType() will return 'A1<P>'.
|
/// For 'A1P*', getObjectType() will return 'A1<P>'.
|
/// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
|
/// adding protocols to a protocol-qualified base discards the
|
/// old qualifiers (for now). But if it didn't, getObjectType()
|
/// would return 'A1P<Q>' (and we'd have to make iterating over
|
/// qualifiers more complicated).
|
const ObjCObjectType *getObjectType() const {
|
return PointeeType->castAs<ObjCObjectType>();
|
}
|
|
/// If this pointer points to an Objective C
|
/// \@interface type, gets the type for that interface. Any protocol
|
/// qualifiers on the interface are ignored.
|
///
|
/// \return null if the base type for this pointer is 'id' or 'Class'
|
const ObjCInterfaceType *getInterfaceType() const;
|
|
/// If this pointer points to an Objective \@interface
|
/// type, gets the declaration for that interface.
|
///
|
/// \return null if the base type for this pointer is 'id' or 'Class'
|
ObjCInterfaceDecl *getInterfaceDecl() const {
|
return getObjectType()->getInterface();
|
}
|
|
/// True if this is equivalent to the 'id' type, i.e. if
|
/// its object type is the primitive 'id' type with no protocols.
|
bool isObjCIdType() const {
|
return getObjectType()->isObjCUnqualifiedId();
|
}
|
|
/// True if this is equivalent to the 'Class' type,
|
/// i.e. if its object tive is the primitive 'Class' type with no protocols.
|
bool isObjCClassType() const {
|
return getObjectType()->isObjCUnqualifiedClass();
|
}
|
|
/// True if this is equivalent to the 'id' or 'Class' type,
|
bool isObjCIdOrClassType() const {
|
return getObjectType()->isObjCUnqualifiedIdOrClass();
|
}
|
|
/// True if this is equivalent to 'id<P>' for some non-empty set of
|
/// protocols.
|
bool isObjCQualifiedIdType() const {
|
return getObjectType()->isObjCQualifiedId();
|
}
|
|
/// True if this is equivalent to 'Class<P>' for some non-empty set of
|
/// protocols.
|
bool isObjCQualifiedClassType() const {
|
return getObjectType()->isObjCQualifiedClass();
|
}
|
|
/// Whether this is a "__kindof" type.
|
bool isKindOfType() const { return getObjectType()->isKindOfType(); }
|
|
/// Whether this type is specialized, meaning that it has type arguments.
|
bool isSpecialized() const { return getObjectType()->isSpecialized(); }
|
|
/// Whether this type is specialized, meaning that it has type arguments.
|
bool isSpecializedAsWritten() const {
|
return getObjectType()->isSpecializedAsWritten();
|
}
|
|
/// Whether this type is unspecialized, meaning that is has no type arguments.
|
bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
|
|
/// Determine whether this object type is "unspecialized" as
|
/// written, meaning that it has no type arguments.
|
bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
|
|
/// Retrieve the type arguments for this type.
|
ArrayRef<QualType> getTypeArgs() const {
|
return getObjectType()->getTypeArgs();
|
}
|
|
/// Retrieve the type arguments for this type.
|
ArrayRef<QualType> getTypeArgsAsWritten() const {
|
return getObjectType()->getTypeArgsAsWritten();
|
}
|
|
/// An iterator over the qualifiers on the object type. Provided
|
/// for convenience. This will always iterate over the full set of
|
/// protocols on a type, not just those provided directly.
|
typedef ObjCObjectType::qual_iterator qual_iterator;
|
typedef llvm::iterator_range<qual_iterator> qual_range;
|
|
qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
|
qual_iterator qual_begin() const {
|
return getObjectType()->qual_begin();
|
}
|
qual_iterator qual_end() const {
|
return getObjectType()->qual_end();
|
}
|
bool qual_empty() const { return getObjectType()->qual_empty(); }
|
|
/// Return the number of qualifying protocols on the object type.
|
unsigned getNumProtocols() const {
|
return getObjectType()->getNumProtocols();
|
}
|
|
/// Retrieve a qualifying protocol by index on the object type.
|
ObjCProtocolDecl *getProtocol(unsigned I) const {
|
return getObjectType()->getProtocol(I);
|
}
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
/// Retrieve the type of the superclass of this object pointer type.
|
///
|
/// This operation substitutes any type arguments into the
|
/// superclass of the current class type, potentially producing a
|
/// pointer to a specialization of the superclass type. Produces a
|
/// null type if there is no superclass.
|
QualType getSuperClassType() const;
|
|
/// Strip off the Objective-C "kindof" type and (with it) any
|
/// protocol qualifiers.
|
const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
|
const ASTContext &ctx) const;
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getPointeeType());
|
}
|
static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
|
ID.AddPointer(T.getAsOpaquePtr());
|
}
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == ObjCObjectPointer;
|
}
|
};
|
|
class AtomicType : public Type, public llvm::FoldingSetNode {
|
QualType ValueType;
|
|
AtomicType(QualType ValTy, QualType Canonical)
|
: Type(Atomic, Canonical, ValTy->isDependentType(),
|
ValTy->isInstantiationDependentType(),
|
ValTy->isVariablyModifiedType(),
|
ValTy->containsUnexpandedParameterPack()),
|
ValueType(ValTy) {}
|
friend class ASTContext; // ASTContext creates these.
|
|
public:
|
/// Gets the type contained by this atomic type, i.e.
|
/// the type returned by performing an atomic load of this atomic type.
|
QualType getValueType() const { return ValueType; }
|
|
bool isSugared() const { return false; }
|
QualType desugar() const { return QualType(this, 0); }
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getValueType());
|
}
|
static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
|
ID.AddPointer(T.getAsOpaquePtr());
|
}
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == Atomic;
|
}
|
};
|
|
/// PipeType - OpenCL20.
|
class PipeType : public Type, public llvm::FoldingSetNode {
|
QualType ElementType;
|
|
PipeType(QualType elemType, QualType CanonicalPtr) :
|
Type(Pipe, CanonicalPtr, elemType->isDependentType(),
|
elemType->isInstantiationDependentType(),
|
elemType->isVariablyModifiedType(),
|
elemType->containsUnexpandedParameterPack()),
|
ElementType(elemType) {}
|
friend class ASTContext; // ASTContext creates these.
|
|
public:
|
|
QualType getElementType() const { return ElementType; }
|
|
bool isSugared() const { return false; }
|
|
QualType desugar() const { return QualType(this, 0); }
|
|
void Profile(llvm::FoldingSetNodeID &ID) {
|
Profile(ID, getElementType());
|
}
|
|
static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
|
ID.AddPointer(T.getAsOpaquePtr());
|
}
|
|
|
static bool classof(const Type *T) {
|
return T->getTypeClass() == Pipe;
|
}
|
|
};
|
|
/// A qualifier set is used to build a set of qualifiers.
|
class QualifierCollector : public Qualifiers {
|
public:
|
QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
|
|
/// Collect any qualifiers on the given type and return an
|
/// unqualified type. The qualifiers are assumed to be consistent
|
/// with those already in the type.
|
const Type *strip(QualType type) {
|
addFastQualifiers(type.getLocalFastQualifiers());
|
if (!type.hasLocalNonFastQualifiers())
|
return type.getTypePtrUnsafe();
|
|
const ExtQuals *extQuals = type.getExtQualsUnsafe();
|
addConsistentQualifiers(extQuals->getQualifiers());
|
return extQuals->getBaseType();
|
}
|
|
/// Apply the collected qualifiers to the given type.
|
QualType apply(const ASTContext &Context, QualType QT) const;
|
|
/// Apply the collected qualifiers to the given type.
|
QualType apply(const ASTContext &Context, const Type* T) const;
|
};
|
|
|
// Inline function definitions.
|
|
inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
|
SplitQualType desugar =
|
Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
|
desugar.Quals.addConsistentQualifiers(Quals);
|
return desugar;
|
}
|
|
inline const Type *QualType::getTypePtr() const {
|
return getCommonPtr()->BaseType;
|
}
|
|
inline const Type *QualType::getTypePtrOrNull() const {
|
return (isNull() ? nullptr : getCommonPtr()->BaseType);
|
}
|
|
inline SplitQualType QualType::split() const {
|
if (!hasLocalNonFastQualifiers())
|
return SplitQualType(getTypePtrUnsafe(),
|
Qualifiers::fromFastMask(getLocalFastQualifiers()));
|
|
const ExtQuals *eq = getExtQualsUnsafe();
|
Qualifiers qs = eq->getQualifiers();
|
qs.addFastQualifiers(getLocalFastQualifiers());
|
return SplitQualType(eq->getBaseType(), qs);
|
}
|
|
inline Qualifiers QualType::getLocalQualifiers() const {
|
Qualifiers Quals;
|
if (hasLocalNonFastQualifiers())
|
Quals = getExtQualsUnsafe()->getQualifiers();
|
Quals.addFastQualifiers(getLocalFastQualifiers());
|
return Quals;
|
}
|
|
inline Qualifiers QualType::getQualifiers() const {
|
Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
|
quals.addFastQualifiers(getLocalFastQualifiers());
|
return quals;
|
}
|
|
inline unsigned QualType::getCVRQualifiers() const {
|
unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
|
cvr |= getLocalCVRQualifiers();
|
return cvr;
|
}
|
|
inline QualType QualType::getCanonicalType() const {
|
QualType canon = getCommonPtr()->CanonicalType;
|
return canon.withFastQualifiers(getLocalFastQualifiers());
|
}
|
|
inline bool QualType::isCanonical() const {
|
return getTypePtr()->isCanonicalUnqualified();
|
}
|
|
inline bool QualType::isCanonicalAsParam() const {
|
if (!isCanonical()) return false;
|
if (hasLocalQualifiers()) return false;
|
|
const Type *T = getTypePtr();
|
if (T->isVariablyModifiedType() && T->hasSizedVLAType())
|
return false;
|
|
return !isa<FunctionType>(T) && !isa<ArrayType>(T);
|
}
|
|
inline bool QualType::isConstQualified() const {
|
return isLocalConstQualified() ||
|
getCommonPtr()->CanonicalType.isLocalConstQualified();
|
}
|
|
inline bool QualType::isRestrictQualified() const {
|
return isLocalRestrictQualified() ||
|
getCommonPtr()->CanonicalType.isLocalRestrictQualified();
|
}
|
|
|
inline bool QualType::isVolatileQualified() const {
|
return isLocalVolatileQualified() ||
|
getCommonPtr()->CanonicalType.isLocalVolatileQualified();
|
}
|
|
inline bool QualType::hasQualifiers() const {
|
return hasLocalQualifiers() ||
|
getCommonPtr()->CanonicalType.hasLocalQualifiers();
|
}
|
|
inline QualType QualType::getUnqualifiedType() const {
|
if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
|
return QualType(getTypePtr(), 0);
|
|
return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
|
}
|
|
inline SplitQualType QualType::getSplitUnqualifiedType() const {
|
if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
|
return split();
|
|
return getSplitUnqualifiedTypeImpl(*this);
|
}
|
|
inline void QualType::removeLocalConst() {
|
removeLocalFastQualifiers(Qualifiers::Const);
|
}
|
|
inline void QualType::removeLocalRestrict() {
|
removeLocalFastQualifiers(Qualifiers::Restrict);
|
}
|
|
inline void QualType::removeLocalVolatile() {
|
removeLocalFastQualifiers(Qualifiers::Volatile);
|
}
|
|
inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
|
assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
|
static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
|
"Fast bits differ from CVR bits!");
|
|
// Fast path: we don't need to touch the slow qualifiers.
|
removeLocalFastQualifiers(Mask);
|
}
|
|
/// Return the address space of this type.
|
inline unsigned QualType::getAddressSpace() const {
|
return getQualifiers().getAddressSpace();
|
}
|
|
/// Return the gc attribute of this type.
|
inline Qualifiers::GC QualType::getObjCGCAttr() const {
|
return getQualifiers().getObjCGCAttr();
|
}
|
|
inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
|
if (const PointerType *PT = t.getAs<PointerType>()) {
|
if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
|
return FT->getExtInfo();
|
} else if (const FunctionType *FT = t.getAs<FunctionType>())
|
return FT->getExtInfo();
|
|
return FunctionType::ExtInfo();
|
}
|
|
inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
|
return getFunctionExtInfo(*t);
|
}
|
|
/// Determine whether this type is more
|
/// qualified than the Other type. For example, "const volatile int"
|
/// is more qualified than "const int", "volatile int", and
|
/// "int". However, it is not more qualified than "const volatile
|
/// int".
|
inline bool QualType::isMoreQualifiedThan(QualType other) const {
|
Qualifiers MyQuals = getQualifiers();
|
Qualifiers OtherQuals = other.getQualifiers();
|
return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
|
}
|
|
/// Determine whether this type is at last
|
/// as qualified as the Other type. For example, "const volatile
|
/// int" is at least as qualified as "const int", "volatile int",
|
/// "int", and "const volatile int".
|
inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
|
Qualifiers OtherQuals = other.getQualifiers();
|
|
// Ignore __unaligned qualifier if this type is a void.
|
if (getUnqualifiedType()->isVoidType())
|
OtherQuals.removeUnaligned();
|
|
return getQualifiers().compatiblyIncludes(OtherQuals);
|
}
|
|
/// If Type is a reference type (e.g., const
|
/// int&), returns the type that the reference refers to ("const
|
/// int"). Otherwise, returns the type itself. This routine is used
|
/// throughout Sema to implement C++ 5p6:
|
///
|
/// If an expression initially has the type "reference to T" (8.3.2,
|
/// 8.5.3), the type is adjusted to "T" prior to any further
|
/// analysis, the expression designates the object or function
|
/// denoted by the reference, and the expression is an lvalue.
|
inline QualType QualType::getNonReferenceType() const {
|
if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
|
return RefType->getPointeeType();
|
else
|
return *this;
|
}
|
|
inline bool QualType::isCForbiddenLValueType() const {
|
return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
|
getTypePtr()->isFunctionType());
|
}
|
|
/// Tests whether the type is categorized as a fundamental type.
|
///
|
/// \returns True for types specified in C++0x [basic.fundamental].
|
inline bool Type::isFundamentalType() const {
|
return isVoidType() ||
|
// FIXME: It's really annoying that we don't have an
|
// 'isArithmeticType()' which agrees with the standard definition.
|
(isArithmeticType() && !isEnumeralType());
|
}
|
|
/// Tests whether the type is categorized as a compound type.
|
///
|
/// \returns True for types specified in C++0x [basic.compound].
|
inline bool Type::isCompoundType() const {
|
// C++0x [basic.compound]p1:
|
// Compound types can be constructed in the following ways:
|
// -- arrays of objects of a given type [...];
|
return isArrayType() ||
|
// -- functions, which have parameters of given types [...];
|
isFunctionType() ||
|
// -- pointers to void or objects or functions [...];
|
isPointerType() ||
|
// -- references to objects or functions of a given type. [...]
|
isReferenceType() ||
|
// -- classes containing a sequence of objects of various types, [...];
|
isRecordType() ||
|
// -- unions, which are classes capable of containing objects of different
|
// types at different times;
|
isUnionType() ||
|
// -- enumerations, which comprise a set of named constant values. [...];
|
isEnumeralType() ||
|
// -- pointers to non-static class members, [...].
|
isMemberPointerType();
|
}
|
|
inline bool Type::isFunctionType() const {
|
return isa<FunctionType>(CanonicalType);
|
}
|
inline bool Type::isPointerType() const {
|
return isa<PointerType>(CanonicalType);
|
}
|
inline bool Type::isAnyPointerType() const {
|
return isPointerType() || isObjCObjectPointerType();
|
}
|
inline bool Type::isBlockPointerType() const {
|
return isa<BlockPointerType>(CanonicalType);
|
}
|
inline bool Type::isReferenceType() const {
|
return isa<ReferenceType>(CanonicalType);
|
}
|
inline bool Type::isLValueReferenceType() const {
|
return isa<LValueReferenceType>(CanonicalType);
|
}
|
inline bool Type::isRValueReferenceType() const {
|
return isa<RValueReferenceType>(CanonicalType);
|
}
|
inline bool Type::isFunctionPointerType() const {
|
if (const PointerType *T = getAs<PointerType>())
|
return T->getPointeeType()->isFunctionType();
|
else
|
return false;
|
}
|
inline bool Type::isMemberPointerType() const {
|
return isa<MemberPointerType>(CanonicalType);
|
}
|
inline bool Type::isMemberFunctionPointerType() const {
|
if (const MemberPointerType* T = getAs<MemberPointerType>())
|
return T->isMemberFunctionPointer();
|
else
|
return false;
|
}
|
inline bool Type::isMemberDataPointerType() const {
|
if (const MemberPointerType* T = getAs<MemberPointerType>())
|
return T->isMemberDataPointer();
|
else
|
return false;
|
}
|
inline bool Type::isArrayType() const {
|
return isa<ArrayType>(CanonicalType);
|
}
|
inline bool Type::isConstantArrayType() const {
|
return isa<ConstantArrayType>(CanonicalType);
|
}
|
inline bool Type::isIncompleteArrayType() const {
|
return isa<IncompleteArrayType>(CanonicalType);
|
}
|
inline bool Type::isVariableArrayType() const {
|
return isa<VariableArrayType>(CanonicalType);
|
}
|
inline bool Type::isDependentSizedArrayType() const {
|
return isa<DependentSizedArrayType>(CanonicalType);
|
}
|
inline bool Type::isBuiltinType() const {
|
return isa<BuiltinType>(CanonicalType);
|
}
|
inline bool Type::isRecordType() const {
|
return isa<RecordType>(CanonicalType);
|
}
|
inline bool Type::isEnumeralType() const {
|
return isa<EnumType>(CanonicalType);
|
}
|
inline bool Type::isAnyComplexType() const {
|
return isa<ComplexType>(CanonicalType);
|
}
|
inline bool Type::isVectorType() const {
|
return isa<VectorType>(CanonicalType);
|
}
|
inline bool Type::isExtVectorType() const {
|
return isa<ExtVectorType>(CanonicalType);
|
}
|
inline bool Type::isObjCObjectPointerType() const {
|
return isa<ObjCObjectPointerType>(CanonicalType);
|
}
|
inline bool Type::isObjCObjectType() const {
|
return isa<ObjCObjectType>(CanonicalType);
|
}
|
inline bool Type::isObjCObjectOrInterfaceType() const {
|
return isa<ObjCInterfaceType>(CanonicalType) ||
|
isa<ObjCObjectType>(CanonicalType);
|
}
|
inline bool Type::isAtomicType() const {
|
return isa<AtomicType>(CanonicalType);
|
}
|
|
inline bool Type::isObjCQualifiedIdType() const {
|
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
|
return OPT->isObjCQualifiedIdType();
|
return false;
|
}
|
inline bool Type::isObjCQualifiedClassType() const {
|
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
|
return OPT->isObjCQualifiedClassType();
|
return false;
|
}
|
inline bool Type::isObjCIdType() const {
|
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
|
return OPT->isObjCIdType();
|
return false;
|
}
|
inline bool Type::isObjCClassType() const {
|
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
|
return OPT->isObjCClassType();
|
return false;
|
}
|
inline bool Type::isObjCSelType() const {
|
if (const PointerType *OPT = getAs<PointerType>())
|
return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
|
return false;
|
}
|
inline bool Type::isObjCBuiltinType() const {
|
return isObjCIdType() || isObjCClassType() || isObjCSelType();
|
}
|
|
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
|
inline bool Type::is##Id##Type() const { \
|
return isSpecificBuiltinType(BuiltinType::Id); \
|
}
|
#include "clang/Basic/OpenCLImageTypes.def"
|
|
inline bool Type::isSamplerT() const {
|
return isSpecificBuiltinType(BuiltinType::OCLSampler);
|
}
|
|
inline bool Type::isEventT() const {
|
return isSpecificBuiltinType(BuiltinType::OCLEvent);
|
}
|
|
inline bool Type::isClkEventT() const {
|
return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
|
}
|
|
inline bool Type::isQueueT() const {
|
return isSpecificBuiltinType(BuiltinType::OCLQueue);
|
}
|
|
inline bool Type::isNDRangeT() const {
|
return isSpecificBuiltinType(BuiltinType::OCLNDRange);
|
}
|
|
inline bool Type::isReserveIDT() const {
|
return isSpecificBuiltinType(BuiltinType::OCLReserveID);
|
}
|
|
inline bool Type::isImageType() const {
|
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
|
return
|
#include "clang/Basic/OpenCLImageTypes.def"
|
0; // end boolean or operation
|
}
|
|
inline bool Type::isPipeType() const {
|
return isa<PipeType>(CanonicalType);
|
}
|
|
inline bool Type::isOpenCLSpecificType() const {
|
return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
|
isQueueT() || isNDRangeT() || isReserveIDT() || isPipeType();
|
}
|
|
inline bool Type::isTemplateTypeParmType() const {
|
return isa<TemplateTypeParmType>(CanonicalType);
|
}
|
|
inline bool Type::isSpecificBuiltinType(unsigned K) const {
|
if (const BuiltinType *BT = getAs<BuiltinType>())
|
if (BT->getKind() == (BuiltinType::Kind) K)
|
return true;
|
return false;
|
}
|
|
inline bool Type::isPlaceholderType() const {
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
|
return BT->isPlaceholderType();
|
return false;
|
}
|
|
inline const BuiltinType *Type::getAsPlaceholderType() const {
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
|
if (BT->isPlaceholderType())
|
return BT;
|
return nullptr;
|
}
|
|
inline bool Type::isSpecificPlaceholderType(unsigned K) const {
|
assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
|
return (BT->getKind() == (BuiltinType::Kind) K);
|
return false;
|
}
|
|
inline bool Type::isNonOverloadPlaceholderType() const {
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
|
return BT->isNonOverloadPlaceholderType();
|
return false;
|
}
|
|
inline bool Type::isVoidType() const {
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
return BT->getKind() == BuiltinType::Void;
|
return false;
|
}
|
|
inline bool Type::isHalfType() const {
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
return BT->getKind() == BuiltinType::Half;
|
// FIXME: Should we allow complex __fp16? Probably not.
|
return false;
|
}
|
|
inline bool Type::isNullPtrType() const {
|
if (const BuiltinType *BT = getAs<BuiltinType>())
|
return BT->getKind() == BuiltinType::NullPtr;
|
return false;
|
}
|
|
extern bool IsEnumDeclComplete(EnumDecl *);
|
extern bool IsEnumDeclScoped(EnumDecl *);
|
|
inline bool Type::isIntegerType() const {
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
return BT->getKind() >= BuiltinType::Bool &&
|
BT->getKind() <= BuiltinType::Int128;
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
|
// Incomplete enum types are not treated as integer types.
|
// FIXME: In C++, enum types are never integer types.
|
return IsEnumDeclComplete(ET->getDecl()) &&
|
!IsEnumDeclScoped(ET->getDecl());
|
}
|
return false;
|
}
|
|
inline bool Type::isScalarType() const {
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
return BT->getKind() > BuiltinType::Void &&
|
BT->getKind() <= BuiltinType::NullPtr;
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
|
// Enums are scalar types, but only if they are defined. Incomplete enums
|
// are not treated as scalar types.
|
return IsEnumDeclComplete(ET->getDecl());
|
return isa<PointerType>(CanonicalType) ||
|
isa<BlockPointerType>(CanonicalType) ||
|
isa<MemberPointerType>(CanonicalType) ||
|
isa<ComplexType>(CanonicalType) ||
|
isa<ObjCObjectPointerType>(CanonicalType);
|
}
|
|
inline bool Type::isIntegralOrEnumerationType() const {
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
return BT->getKind() >= BuiltinType::Bool &&
|
BT->getKind() <= BuiltinType::Int128;
|
|
// Check for a complete enum type; incomplete enum types are not properly an
|
// enumeration type in the sense required here.
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
|
return IsEnumDeclComplete(ET->getDecl());
|
|
return false;
|
}
|
|
inline bool Type::isBooleanType() const {
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
return BT->getKind() == BuiltinType::Bool;
|
return false;
|
}
|
|
inline bool Type::isUndeducedType() const {
|
const AutoType *AT = getContainedAutoType();
|
return AT && !AT->isDeduced();
|
}
|
|
/// \brief Determines whether this is a type for which one can define
|
/// an overloaded operator.
|
inline bool Type::isOverloadableType() const {
|
return isDependentType() || isRecordType() || isEnumeralType();
|
}
|
|
/// \brief Determines whether this type can decay to a pointer type.
|
inline bool Type::canDecayToPointerType() const {
|
return isFunctionType() || isArrayType();
|
}
|
|
inline bool Type::hasPointerRepresentation() const {
|
return (isPointerType() || isReferenceType() || isBlockPointerType() ||
|
isObjCObjectPointerType() || isNullPtrType());
|
}
|
|
inline bool Type::hasObjCPointerRepresentation() const {
|
return isObjCObjectPointerType();
|
}
|
|
inline const Type *Type::getBaseElementTypeUnsafe() const {
|
const Type *type = this;
|
while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
|
type = arrayType->getElementType().getTypePtr();
|
return type;
|
}
|
|
inline const Type *Type::getPointeeOrArrayElementType() const {
|
const Type *type = this;
|
if (type->isAnyPointerType())
|
return type->getPointeeType().getTypePtr();
|
else if (type->isArrayType())
|
return type->getBaseElementTypeUnsafe();
|
return type;
|
}
|
|
/// Insertion operator for diagnostics. This allows sending QualType's into a
|
/// diagnostic with <<.
|
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
|
QualType T) {
|
DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
|
DiagnosticsEngine::ak_qualtype);
|
return DB;
|
}
|
|
/// Insertion operator for partial diagnostics. This allows sending QualType's
|
/// into a diagnostic with <<.
|
inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
|
QualType T) {
|
PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
|
DiagnosticsEngine::ak_qualtype);
|
return PD;
|
}
|
|
// Helper class template that is used by Type::getAs to ensure that one does
|
// not try to look through a qualified type to get to an array type.
|
template <typename T, bool isArrayType = (std::is_same<T, ArrayType>::value ||
|
std::is_base_of<ArrayType, T>::value)>
|
struct ArrayType_cannot_be_used_with_getAs {};
|
|
template<typename T>
|
struct ArrayType_cannot_be_used_with_getAs<T, true>;
|
|
// Member-template getAs<specific type>'.
|
template <typename T> const T *Type::getAs() const {
|
ArrayType_cannot_be_used_with_getAs<T> at;
|
(void)at;
|
|
// If this is directly a T type, return it.
|
if (const T *Ty = dyn_cast<T>(this))
|
return Ty;
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
if (!isa<T>(CanonicalType))
|
return nullptr;
|
|
// If this is a typedef for the type, strip the typedef off without
|
// losing all typedef information.
|
return cast<T>(getUnqualifiedDesugaredType());
|
}
|
|
inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
|
// If this is directly an array type, return it.
|
if (const ArrayType *arr = dyn_cast<ArrayType>(this))
|
return arr;
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
if (!isa<ArrayType>(CanonicalType))
|
return nullptr;
|
|
// If this is a typedef for the type, strip the typedef off without
|
// losing all typedef information.
|
return cast<ArrayType>(getUnqualifiedDesugaredType());
|
}
|
|
template <typename T> const T *Type::castAs() const {
|
ArrayType_cannot_be_used_with_getAs<T> at;
|
(void) at;
|
|
if (const T *ty = dyn_cast<T>(this)) return ty;
|
assert(isa<T>(CanonicalType));
|
return cast<T>(getUnqualifiedDesugaredType());
|
}
|
|
inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
|
assert(isa<ArrayType>(CanonicalType));
|
if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
|
return cast<ArrayType>(getUnqualifiedDesugaredType());
|
}
|
|
} // end namespace clang
|
|
#endif
|