//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
|
//
|
// The LLVM Compiler Infrastructure
|
//
|
// This file is distributed under the University of Illinois Open Source
|
// License. See LICENSE.TXT for details.
|
//
|
//===----------------------------------------------------------------------===//
|
///
|
/// \file
|
/// \brief Defines the clang::ASTContext interface.
|
///
|
//===----------------------------------------------------------------------===//
|
|
#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
|
#define LLVM_CLANG_AST_ASTCONTEXT_H
|
|
#include "clang/AST/ASTTypeTraits.h"
|
#include "clang/AST/CanonicalType.h"
|
#include "clang/AST/CommentCommandTraits.h"
|
#include "clang/AST/Decl.h"
|
#include "clang/AST/ExternalASTSource.h"
|
#include "clang/AST/NestedNameSpecifier.h"
|
#include "clang/AST/PrettyPrinter.h"
|
#include "clang/AST/RawCommentList.h"
|
#include "clang/AST/TemplateName.h"
|
#include "clang/AST/Type.h"
|
#include "clang/Basic/AddressSpaces.h"
|
#include "clang/Basic/IdentifierTable.h"
|
#include "clang/Basic/LangOptions.h"
|
#include "clang/Basic/Module.h"
|
#include "clang/Basic/OperatorKinds.h"
|
#include "clang/Basic/PartialDiagnostic.h"
|
#include "clang/Basic/SanitizerBlacklist.h"
|
#include "clang/Basic/VersionTuple.h"
|
#include "llvm/ADT/DenseMap.h"
|
#include "llvm/ADT/FoldingSet.h"
|
#include "llvm/ADT/IntrusiveRefCntPtr.h"
|
#include "llvm/ADT/MapVector.h"
|
#include "llvm/ADT/SmallPtrSet.h"
|
#include "llvm/ADT/TinyPtrVector.h"
|
#include "llvm/Support/Allocator.h"
|
#include <memory>
|
#include <vector>
|
|
namespace llvm {
|
struct fltSemantics;
|
}
|
|
namespace clang {
|
class FileManager;
|
class AtomicExpr;
|
class ASTRecordLayout;
|
class BlockExpr;
|
class CharUnits;
|
class DiagnosticsEngine;
|
class Expr;
|
class ASTMutationListener;
|
class IdentifierTable;
|
class MaterializeTemporaryExpr;
|
class SelectorTable;
|
class TargetInfo;
|
class CXXABI;
|
class MangleNumberingContext;
|
// Decls
|
class MangleContext;
|
class ObjCIvarDecl;
|
class ObjCPropertyDecl;
|
class UnresolvedSetIterator;
|
class UsingDecl;
|
class UsingShadowDecl;
|
class VTableContextBase;
|
|
namespace Builtin { class Context; }
|
enum BuiltinTemplateKind : int;
|
|
namespace comments {
|
class FullComment;
|
}
|
|
struct TypeInfo {
|
uint64_t Width;
|
unsigned Align;
|
bool AlignIsRequired : 1;
|
TypeInfo() : Width(0), Align(0), AlignIsRequired(false) {}
|
TypeInfo(uint64_t Width, unsigned Align, bool AlignIsRequired)
|
: Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
|
};
|
|
/// \brief Holds long-lived AST nodes (such as types and decls) that can be
|
/// referred to throughout the semantic analysis of a file.
|
class ASTContext : public RefCountedBase<ASTContext> {
|
ASTContext &this_() { return *this; }
|
|
mutable SmallVector<Type *, 0> Types;
|
mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
|
mutable llvm::FoldingSet<ComplexType> ComplexTypes;
|
mutable llvm::FoldingSet<PointerType> PointerTypes;
|
mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
|
mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
|
mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
|
mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
|
mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
|
mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
|
mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
|
mutable std::vector<VariableArrayType*> VariableArrayTypes;
|
mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
|
mutable llvm::FoldingSet<DependentSizedExtVectorType>
|
DependentSizedExtVectorTypes;
|
mutable llvm::FoldingSet<VectorType> VectorTypes;
|
mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
|
mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
|
FunctionProtoTypes;
|
mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
|
mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
|
mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
|
mutable llvm::FoldingSet<SubstTemplateTypeParmType>
|
SubstTemplateTypeParmTypes;
|
mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
|
SubstTemplateTypeParmPackTypes;
|
mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
|
TemplateSpecializationTypes;
|
mutable llvm::FoldingSet<ParenType> ParenTypes;
|
mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
|
mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
|
mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
|
ASTContext&>
|
DependentTemplateSpecializationTypes;
|
llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
|
mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
|
mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
|
mutable llvm::FoldingSet<DependentUnaryTransformType>
|
DependentUnaryTransformTypes;
|
mutable llvm::FoldingSet<AutoType> AutoTypes;
|
mutable llvm::FoldingSet<AtomicType> AtomicTypes;
|
llvm::FoldingSet<AttributedType> AttributedTypes;
|
mutable llvm::FoldingSet<PipeType> PipeTypes;
|
|
mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
|
mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
|
mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
|
SubstTemplateTemplateParms;
|
mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
|
ASTContext&>
|
SubstTemplateTemplateParmPacks;
|
|
/// \brief The set of nested name specifiers.
|
///
|
/// This set is managed by the NestedNameSpecifier class.
|
mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
|
mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
|
friend class NestedNameSpecifier;
|
|
/// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
|
///
|
/// This is lazily created. This is intentionally not serialized.
|
mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
|
ASTRecordLayouts;
|
mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
|
ObjCLayouts;
|
|
/// \brief A cache from types to size and alignment information.
|
typedef llvm::DenseMap<const Type *, struct TypeInfo> TypeInfoMap;
|
mutable TypeInfoMap MemoizedTypeInfo;
|
|
/// \brief A cache mapping from CXXRecordDecls to key functions.
|
llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
|
|
/// \brief Mapping from ObjCContainers to their ObjCImplementations.
|
llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
|
|
/// \brief Mapping from ObjCMethod to its duplicate declaration in the same
|
/// interface.
|
llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
|
|
/// \brief Mapping from __block VarDecls to their copy initialization expr.
|
llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
|
|
/// \brief Mapping from class scope functions specialization to their
|
/// template patterns.
|
llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
|
ClassScopeSpecializationPattern;
|
|
/// \brief Mapping from materialized temporaries with static storage duration
|
/// that appear in constant initializers to their evaluated values. These are
|
/// allocated in a std::map because their address must be stable.
|
llvm::DenseMap<const MaterializeTemporaryExpr *, APValue *>
|
MaterializedTemporaryValues;
|
|
/// \brief Representation of a "canonical" template template parameter that
|
/// is used in canonical template names.
|
class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
|
TemplateTemplateParmDecl *Parm;
|
|
public:
|
CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
|
: Parm(Parm) { }
|
|
TemplateTemplateParmDecl *getParam() const { return Parm; }
|
|
void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
|
|
static void Profile(llvm::FoldingSetNodeID &ID,
|
TemplateTemplateParmDecl *Parm);
|
};
|
mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
|
CanonTemplateTemplateParms;
|
|
TemplateTemplateParmDecl *
|
getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
|
|
/// \brief The typedef for the __int128_t type.
|
mutable TypedefDecl *Int128Decl;
|
|
/// \brief The typedef for the __uint128_t type.
|
mutable TypedefDecl *UInt128Decl;
|
|
/// \brief The typedef for the target specific predefined
|
/// __builtin_va_list type.
|
mutable TypedefDecl *BuiltinVaListDecl;
|
|
/// The typedef for the predefined \c __builtin_ms_va_list type.
|
mutable TypedefDecl *BuiltinMSVaListDecl;
|
|
/// \brief The typedef for the predefined \c id type.
|
mutable TypedefDecl *ObjCIdDecl;
|
|
/// \brief The typedef for the predefined \c SEL type.
|
mutable TypedefDecl *ObjCSelDecl;
|
|
/// \brief The typedef for the predefined \c Class type.
|
mutable TypedefDecl *ObjCClassDecl;
|
|
/// \brief The typedef for the predefined \c Protocol class in Objective-C.
|
mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
|
|
/// \brief The typedef for the predefined 'BOOL' type.
|
mutable TypedefDecl *BOOLDecl;
|
|
// Typedefs which may be provided defining the structure of Objective-C
|
// pseudo-builtins
|
QualType ObjCIdRedefinitionType;
|
QualType ObjCClassRedefinitionType;
|
QualType ObjCSelRedefinitionType;
|
|
/// The identifier 'bool'.
|
mutable IdentifierInfo *BoolName = nullptr;
|
|
/// The identifier 'NSObject'.
|
IdentifierInfo *NSObjectName = nullptr;
|
|
/// The identifier 'NSCopying'.
|
IdentifierInfo *NSCopyingName = nullptr;
|
|
/// The identifier '__make_integer_seq'.
|
mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
|
|
/// The identifier '__type_pack_element'.
|
mutable IdentifierInfo *TypePackElementName = nullptr;
|
|
QualType ObjCConstantStringType;
|
mutable RecordDecl *CFConstantStringTagDecl;
|
mutable TypedefDecl *CFConstantStringTypeDecl;
|
|
mutable QualType ObjCSuperType;
|
|
QualType ObjCNSStringType;
|
|
/// \brief The typedef declaration for the Objective-C "instancetype" type.
|
TypedefDecl *ObjCInstanceTypeDecl;
|
|
/// \brief The type for the C FILE type.
|
TypeDecl *FILEDecl;
|
|
/// \brief The type for the C jmp_buf type.
|
TypeDecl *jmp_bufDecl;
|
|
/// \brief The type for the C sigjmp_buf type.
|
TypeDecl *sigjmp_bufDecl;
|
|
/// \brief The type for the C ucontext_t type.
|
TypeDecl *ucontext_tDecl;
|
|
/// \brief Type for the Block descriptor for Blocks CodeGen.
|
///
|
/// Since this is only used for generation of debug info, it is not
|
/// serialized.
|
mutable RecordDecl *BlockDescriptorType;
|
|
/// \brief Type for the Block descriptor for Blocks CodeGen.
|
///
|
/// Since this is only used for generation of debug info, it is not
|
/// serialized.
|
mutable RecordDecl *BlockDescriptorExtendedType;
|
|
/// \brief Declaration for the CUDA cudaConfigureCall function.
|
FunctionDecl *cudaConfigureCallDecl;
|
|
/// \brief Keeps track of all declaration attributes.
|
///
|
/// Since so few decls have attrs, we keep them in a hash map instead of
|
/// wasting space in the Decl class.
|
llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
|
|
/// \brief A mapping from non-redeclarable declarations in modules that were
|
/// merged with other declarations to the canonical declaration that they were
|
/// merged into.
|
llvm::DenseMap<Decl*, Decl*> MergedDecls;
|
|
/// \brief A mapping from a defining declaration to a list of modules (other
|
/// than the owning module of the declaration) that contain merged
|
/// definitions of that entity.
|
llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
|
|
public:
|
/// \brief A type synonym for the TemplateOrInstantiation mapping.
|
typedef llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>
|
TemplateOrSpecializationInfo;
|
|
private:
|
|
/// \brief A mapping to contain the template or declaration that
|
/// a variable declaration describes or was instantiated from,
|
/// respectively.
|
///
|
/// For non-templates, this value will be NULL. For variable
|
/// declarations that describe a variable template, this will be a
|
/// pointer to a VarTemplateDecl. For static data members
|
/// of class template specializations, this will be the
|
/// MemberSpecializationInfo referring to the member variable that was
|
/// instantiated or specialized. Thus, the mapping will keep track of
|
/// the static data member templates from which static data members of
|
/// class template specializations were instantiated.
|
///
|
/// Given the following example:
|
///
|
/// \code
|
/// template<typename T>
|
/// struct X {
|
/// static T value;
|
/// };
|
///
|
/// template<typename T>
|
/// T X<T>::value = T(17);
|
///
|
/// int *x = &X<int>::value;
|
/// \endcode
|
///
|
/// This mapping will contain an entry that maps from the VarDecl for
|
/// X<int>::value to the corresponding VarDecl for X<T>::value (within the
|
/// class template X) and will be marked TSK_ImplicitInstantiation.
|
llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
|
TemplateOrInstantiation;
|
|
/// \brief Keeps track of the declaration from which a UsingDecl was
|
/// created during instantiation.
|
///
|
/// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
|
/// or an UnresolvedUsingTypenameDecl.
|
///
|
/// For example:
|
/// \code
|
/// template<typename T>
|
/// struct A {
|
/// void f();
|
/// };
|
///
|
/// template<typename T>
|
/// struct B : A<T> {
|
/// using A<T>::f;
|
/// };
|
///
|
/// template struct B<int>;
|
/// \endcode
|
///
|
/// This mapping will contain an entry that maps from the UsingDecl in
|
/// B<int> to the UnresolvedUsingDecl in B<T>.
|
llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
|
|
llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
|
InstantiatedFromUsingShadowDecl;
|
|
llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
|
|
/// \brief Mapping that stores the methods overridden by a given C++
|
/// member function.
|
///
|
/// Since most C++ member functions aren't virtual and therefore
|
/// don't override anything, we store the overridden functions in
|
/// this map on the side rather than within the CXXMethodDecl structure.
|
typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
|
llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
|
|
/// \brief Mapping from each declaration context to its corresponding
|
/// mangling numbering context (used for constructs like lambdas which
|
/// need to be consistently numbered for the mangler).
|
llvm::DenseMap<const DeclContext *, MangleNumberingContext *>
|
MangleNumberingContexts;
|
|
/// \brief Side-table of mangling numbers for declarations which rarely
|
/// need them (like static local vars).
|
llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
|
llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
|
|
/// \brief Mapping that stores parameterIndex values for ParmVarDecls when
|
/// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
|
typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
|
ParameterIndexTable ParamIndices;
|
|
ImportDecl *FirstLocalImport;
|
ImportDecl *LastLocalImport;
|
|
TranslationUnitDecl *TUDecl;
|
mutable ExternCContextDecl *ExternCContext;
|
mutable BuiltinTemplateDecl *MakeIntegerSeqDecl;
|
mutable BuiltinTemplateDecl *TypePackElementDecl;
|
|
/// \brief The associated SourceManager object.a
|
SourceManager &SourceMgr;
|
|
/// \brief The language options used to create the AST associated with
|
/// this ASTContext object.
|
LangOptions &LangOpts;
|
|
/// \brief Blacklist object that is used by sanitizers to decide which
|
/// entities should not be instrumented.
|
std::unique_ptr<SanitizerBlacklist> SanitizerBL;
|
|
/// \brief The allocator used to create AST objects.
|
///
|
/// AST objects are never destructed; rather, all memory associated with the
|
/// AST objects will be released when the ASTContext itself is destroyed.
|
mutable llvm::BumpPtrAllocator BumpAlloc;
|
|
/// \brief Allocator for partial diagnostics.
|
PartialDiagnostic::StorageAllocator DiagAllocator;
|
|
/// \brief The current C++ ABI.
|
std::unique_ptr<CXXABI> ABI;
|
CXXABI *createCXXABI(const TargetInfo &T);
|
|
/// \brief The logical -> physical address space map.
|
const LangAS::Map *AddrSpaceMap;
|
|
/// \brief Address space map mangling must be used with language specific
|
/// address spaces (e.g. OpenCL/CUDA)
|
bool AddrSpaceMapMangling;
|
|
friend class ASTDeclReader;
|
friend class ASTReader;
|
friend class ASTWriter;
|
friend class CXXRecordDecl;
|
|
const TargetInfo *Target;
|
const TargetInfo *AuxTarget;
|
clang::PrintingPolicy PrintingPolicy;
|
|
public:
|
IdentifierTable &Idents;
|
SelectorTable &Selectors;
|
Builtin::Context &BuiltinInfo;
|
mutable DeclarationNameTable DeclarationNames;
|
IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
|
ASTMutationListener *Listener;
|
|
/// \brief Contains parents of a node.
|
typedef llvm::SmallVector<ast_type_traits::DynTypedNode, 2> ParentVector;
|
|
/// \brief Maps from a node to its parents. This is used for nodes that have
|
/// pointer identity only, which are more common and we can save space by
|
/// only storing a unique pointer to them.
|
typedef llvm::DenseMap<const void *,
|
llvm::PointerUnion4<const Decl *, const Stmt *,
|
ast_type_traits::DynTypedNode *,
|
ParentVector *>> ParentMapPointers;
|
|
/// Parent map for nodes without pointer identity. We store a full
|
/// DynTypedNode for all keys.
|
typedef llvm::DenseMap<
|
ast_type_traits::DynTypedNode,
|
llvm::PointerUnion4<const Decl *, const Stmt *,
|
ast_type_traits::DynTypedNode *, ParentVector *>>
|
ParentMapOtherNodes;
|
|
/// Container for either a single DynTypedNode or for an ArrayRef to
|
/// DynTypedNode. For use with ParentMap.
|
class DynTypedNodeList {
|
typedef ast_type_traits::DynTypedNode DynTypedNode;
|
llvm::AlignedCharArrayUnion<ast_type_traits::DynTypedNode,
|
ArrayRef<DynTypedNode>> Storage;
|
bool IsSingleNode;
|
|
public:
|
DynTypedNodeList(const DynTypedNode &N) : IsSingleNode(true) {
|
new (Storage.buffer) DynTypedNode(N);
|
}
|
DynTypedNodeList(ArrayRef<DynTypedNode> A) : IsSingleNode(false) {
|
new (Storage.buffer) ArrayRef<DynTypedNode>(A);
|
}
|
|
const ast_type_traits::DynTypedNode *begin() const {
|
if (!IsSingleNode)
|
return reinterpret_cast<const ArrayRef<DynTypedNode> *>(Storage.buffer)
|
->begin();
|
return reinterpret_cast<const DynTypedNode *>(Storage.buffer);
|
}
|
|
const ast_type_traits::DynTypedNode *end() const {
|
if (!IsSingleNode)
|
return reinterpret_cast<const ArrayRef<DynTypedNode> *>(Storage.buffer)
|
->end();
|
return reinterpret_cast<const DynTypedNode *>(Storage.buffer) + 1;
|
}
|
|
size_t size() const { return end() - begin(); }
|
bool empty() const { return begin() == end(); }
|
const DynTypedNode &operator[](size_t N) const {
|
assert(N < size() && "Out of bounds!");
|
return *(begin() + N);
|
}
|
};
|
|
/// \brief Returns the parents of the given node.
|
///
|
/// Note that this will lazily compute the parents of all nodes
|
/// and store them for later retrieval. Thus, the first call is O(n)
|
/// in the number of AST nodes.
|
///
|
/// Caveats and FIXMEs:
|
/// Calculating the parent map over all AST nodes will need to load the
|
/// full AST. This can be undesirable in the case where the full AST is
|
/// expensive to create (for example, when using precompiled header
|
/// preambles). Thus, there are good opportunities for optimization here.
|
/// One idea is to walk the given node downwards, looking for references
|
/// to declaration contexts - once a declaration context is found, compute
|
/// the parent map for the declaration context; if that can satisfy the
|
/// request, loading the whole AST can be avoided. Note that this is made
|
/// more complex by statements in templates having multiple parents - those
|
/// problems can be solved by building closure over the templated parts of
|
/// the AST, which also avoids touching large parts of the AST.
|
/// Additionally, we will want to add an interface to already give a hint
|
/// where to search for the parents, for example when looking at a statement
|
/// inside a certain function.
|
///
|
/// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
|
/// NestedNameSpecifier or NestedNameSpecifierLoc.
|
template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node) {
|
return getParents(ast_type_traits::DynTypedNode::create(Node));
|
}
|
|
DynTypedNodeList getParents(const ast_type_traits::DynTypedNode &Node);
|
|
const clang::PrintingPolicy &getPrintingPolicy() const {
|
return PrintingPolicy;
|
}
|
|
void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
|
PrintingPolicy = Policy;
|
}
|
|
SourceManager& getSourceManager() { return SourceMgr; }
|
const SourceManager& getSourceManager() const { return SourceMgr; }
|
|
llvm::BumpPtrAllocator &getAllocator() const {
|
return BumpAlloc;
|
}
|
|
void *Allocate(size_t Size, unsigned Align = 8) const {
|
return BumpAlloc.Allocate(Size, Align);
|
}
|
template <typename T> T *Allocate(size_t Num = 1) const {
|
return static_cast<T *>(Allocate(Num * sizeof(T), llvm::alignOf<T>()));
|
}
|
void Deallocate(void *Ptr) const { }
|
|
/// Return the total amount of physical memory allocated for representing
|
/// AST nodes and type information.
|
size_t getASTAllocatedMemory() const {
|
return BumpAlloc.getTotalMemory();
|
}
|
/// Return the total memory used for various side tables.
|
size_t getSideTableAllocatedMemory() const;
|
|
PartialDiagnostic::StorageAllocator &getDiagAllocator() {
|
return DiagAllocator;
|
}
|
|
const TargetInfo &getTargetInfo() const { return *Target; }
|
const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
|
|
/// getIntTypeForBitwidth -
|
/// sets integer QualTy according to specified details:
|
/// bitwidth, signed/unsigned.
|
/// Returns empty type if there is no appropriate target types.
|
QualType getIntTypeForBitwidth(unsigned DestWidth,
|
unsigned Signed) const;
|
/// getRealTypeForBitwidth -
|
/// sets floating point QualTy according to specified bitwidth.
|
/// Returns empty type if there is no appropriate target types.
|
QualType getRealTypeForBitwidth(unsigned DestWidth) const;
|
|
bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
|
|
const LangOptions& getLangOpts() const { return LangOpts; }
|
|
const SanitizerBlacklist &getSanitizerBlacklist() const {
|
return *SanitizerBL;
|
}
|
|
DiagnosticsEngine &getDiagnostics() const;
|
|
FullSourceLoc getFullLoc(SourceLocation Loc) const {
|
return FullSourceLoc(Loc,SourceMgr);
|
}
|
|
/// \brief All comments in this translation unit.
|
RawCommentList Comments;
|
|
/// \brief True if comments are already loaded from ExternalASTSource.
|
mutable bool CommentsLoaded;
|
|
class RawCommentAndCacheFlags {
|
public:
|
enum Kind {
|
/// We searched for a comment attached to the particular declaration, but
|
/// didn't find any.
|
///
|
/// getRaw() == 0.
|
NoCommentInDecl = 0,
|
|
/// We have found a comment attached to this particular declaration.
|
///
|
/// getRaw() != 0.
|
FromDecl,
|
|
/// This declaration does not have an attached comment, and we have
|
/// searched the redeclaration chain.
|
///
|
/// If getRaw() == 0, the whole redeclaration chain does not have any
|
/// comments.
|
///
|
/// If getRaw() != 0, it is a comment propagated from other
|
/// redeclaration.
|
FromRedecl
|
};
|
|
Kind getKind() const LLVM_READONLY {
|
return Data.getInt();
|
}
|
|
void setKind(Kind K) {
|
Data.setInt(K);
|
}
|
|
const RawComment *getRaw() const LLVM_READONLY {
|
return Data.getPointer();
|
}
|
|
void setRaw(const RawComment *RC) {
|
Data.setPointer(RC);
|
}
|
|
const Decl *getOriginalDecl() const LLVM_READONLY {
|
return OriginalDecl;
|
}
|
|
void setOriginalDecl(const Decl *Orig) {
|
OriginalDecl = Orig;
|
}
|
|
private:
|
llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
|
const Decl *OriginalDecl;
|
};
|
|
/// \brief Mapping from declarations to comments attached to any
|
/// redeclaration.
|
///
|
/// Raw comments are owned by Comments list. This mapping is populated
|
/// lazily.
|
mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
|
|
/// \brief Mapping from declarations to parsed comments attached to any
|
/// redeclaration.
|
mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
|
|
/// \brief Return the documentation comment attached to a given declaration,
|
/// without looking into cache.
|
RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
|
|
public:
|
RawCommentList &getRawCommentList() {
|
return Comments;
|
}
|
|
void addComment(const RawComment &RC) {
|
assert(LangOpts.RetainCommentsFromSystemHeaders ||
|
!SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
|
Comments.addComment(RC, BumpAlloc);
|
}
|
|
/// \brief Return the documentation comment attached to a given declaration.
|
/// Returns NULL if no comment is attached.
|
///
|
/// \param OriginalDecl if not NULL, is set to declaration AST node that had
|
/// the comment, if the comment we found comes from a redeclaration.
|
const RawComment *
|
getRawCommentForAnyRedecl(const Decl *D,
|
const Decl **OriginalDecl = nullptr) const;
|
|
/// Return parsed documentation comment attached to a given declaration.
|
/// Returns NULL if no comment is attached.
|
///
|
/// \param PP the Preprocessor used with this TU. Could be NULL if
|
/// preprocessor is not available.
|
comments::FullComment *getCommentForDecl(const Decl *D,
|
const Preprocessor *PP) const;
|
|
/// Return parsed documentation comment attached to a given declaration.
|
/// Returns NULL if no comment is attached. Does not look at any
|
/// redeclarations of the declaration.
|
comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
|
|
comments::FullComment *cloneFullComment(comments::FullComment *FC,
|
const Decl *D) const;
|
|
private:
|
mutable comments::CommandTraits CommentCommandTraits;
|
|
/// \brief Iterator that visits import declarations.
|
class import_iterator {
|
ImportDecl *Import;
|
|
public:
|
typedef ImportDecl *value_type;
|
typedef ImportDecl *reference;
|
typedef ImportDecl *pointer;
|
typedef int difference_type;
|
typedef std::forward_iterator_tag iterator_category;
|
|
import_iterator() : Import() {}
|
explicit import_iterator(ImportDecl *Import) : Import(Import) {}
|
|
reference operator*() const { return Import; }
|
pointer operator->() const { return Import; }
|
|
import_iterator &operator++() {
|
Import = ASTContext::getNextLocalImport(Import);
|
return *this;
|
}
|
|
import_iterator operator++(int) {
|
import_iterator Other(*this);
|
++(*this);
|
return Other;
|
}
|
|
friend bool operator==(import_iterator X, import_iterator Y) {
|
return X.Import == Y.Import;
|
}
|
|
friend bool operator!=(import_iterator X, import_iterator Y) {
|
return X.Import != Y.Import;
|
}
|
};
|
|
public:
|
comments::CommandTraits &getCommentCommandTraits() const {
|
return CommentCommandTraits;
|
}
|
|
/// \brief Retrieve the attributes for the given declaration.
|
AttrVec& getDeclAttrs(const Decl *D);
|
|
/// \brief Erase the attributes corresponding to the given declaration.
|
void eraseDeclAttrs(const Decl *D);
|
|
/// \brief If this variable is an instantiated static data member of a
|
/// class template specialization, returns the templated static data member
|
/// from which it was instantiated.
|
// FIXME: Remove ?
|
MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
|
const VarDecl *Var);
|
|
TemplateOrSpecializationInfo
|
getTemplateOrSpecializationInfo(const VarDecl *Var);
|
|
FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
|
|
void setClassScopeSpecializationPattern(FunctionDecl *FD,
|
FunctionDecl *Pattern);
|
|
/// \brief Note that the static data member \p Inst is an instantiation of
|
/// the static data member template \p Tmpl of a class template.
|
void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
|
TemplateSpecializationKind TSK,
|
SourceLocation PointOfInstantiation = SourceLocation());
|
|
void setTemplateOrSpecializationInfo(VarDecl *Inst,
|
TemplateOrSpecializationInfo TSI);
|
|
/// \brief If the given using decl \p Inst is an instantiation of a
|
/// (possibly unresolved) using decl from a template instantiation,
|
/// return it.
|
NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
|
|
/// \brief Remember that the using decl \p Inst is an instantiation
|
/// of the using decl \p Pattern of a class template.
|
void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
|
|
void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
|
UsingShadowDecl *Pattern);
|
UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
|
|
FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
|
|
void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
|
|
// Access to the set of methods overridden by the given C++ method.
|
typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
|
overridden_cxx_method_iterator
|
overridden_methods_begin(const CXXMethodDecl *Method) const;
|
|
overridden_cxx_method_iterator
|
overridden_methods_end(const CXXMethodDecl *Method) const;
|
|
unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
|
typedef llvm::iterator_range<overridden_cxx_method_iterator>
|
overridden_method_range;
|
overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
|
|
/// \brief Note that the given C++ \p Method overrides the given \p
|
/// Overridden method.
|
void addOverriddenMethod(const CXXMethodDecl *Method,
|
const CXXMethodDecl *Overridden);
|
|
/// \brief Return C++ or ObjC overridden methods for the given \p Method.
|
///
|
/// An ObjC method is considered to override any method in the class's
|
/// base classes, its protocols, or its categories' protocols, that has
|
/// the same selector and is of the same kind (class or instance).
|
/// A method in an implementation is not considered as overriding the same
|
/// method in the interface or its categories.
|
void getOverriddenMethods(
|
const NamedDecl *Method,
|
SmallVectorImpl<const NamedDecl *> &Overridden) const;
|
|
/// \brief Notify the AST context that a new import declaration has been
|
/// parsed or implicitly created within this translation unit.
|
void addedLocalImportDecl(ImportDecl *Import);
|
|
static ImportDecl *getNextLocalImport(ImportDecl *Import) {
|
return Import->NextLocalImport;
|
}
|
|
typedef llvm::iterator_range<import_iterator> import_range;
|
import_range local_imports() const {
|
return import_range(import_iterator(FirstLocalImport), import_iterator());
|
}
|
|
Decl *getPrimaryMergedDecl(Decl *D) {
|
Decl *Result = MergedDecls.lookup(D);
|
return Result ? Result : D;
|
}
|
void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
|
MergedDecls[D] = Primary;
|
}
|
|
/// \brief Note that the definition \p ND has been merged into module \p M,
|
/// and should be visible whenever \p M is visible.
|
void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
|
bool NotifyListeners = true);
|
/// \brief Clean up the merged definition list. Call this if you might have
|
/// added duplicates into the list.
|
void deduplicateMergedDefinitonsFor(NamedDecl *ND);
|
|
/// \brief Get the additional modules in which the definition \p Def has
|
/// been merged.
|
ArrayRef<Module*> getModulesWithMergedDefinition(NamedDecl *Def) {
|
auto MergedIt = MergedDefModules.find(Def);
|
if (MergedIt == MergedDefModules.end())
|
return None;
|
return MergedIt->second;
|
}
|
|
TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
|
|
ExternCContextDecl *getExternCContextDecl() const;
|
BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
|
BuiltinTemplateDecl *getTypePackElementDecl() const;
|
|
// Builtin Types.
|
CanQualType VoidTy;
|
CanQualType BoolTy;
|
CanQualType CharTy;
|
CanQualType WCharTy; // [C++ 3.9.1p5].
|
CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
|
CanQualType WIntTy; // [C99 7.24.1], integer type unchanged by default promotions.
|
CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
|
CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
|
CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
|
CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
|
CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
|
CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty;
|
CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
|
CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
|
CanQualType Float128ComplexTy;
|
CanQualType VoidPtrTy, NullPtrTy;
|
CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
|
CanQualType BuiltinFnTy;
|
CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
|
CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
|
CanQualType ObjCBuiltinBoolTy;
|
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
|
CanQualType SingletonId;
|
#include "clang/Basic/OpenCLImageTypes.def"
|
CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
|
CanQualType OCLQueueTy, OCLNDRangeTy, OCLReserveIDTy;
|
CanQualType OMPArraySectionTy;
|
|
// Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
|
mutable QualType AutoDeductTy; // Deduction against 'auto'.
|
mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
|
|
// Decl used to help define __builtin_va_list for some targets.
|
// The decl is built when constructing 'BuiltinVaListDecl'.
|
mutable Decl *VaListTagDecl;
|
|
ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
|
SelectorTable &sels, Builtin::Context &builtins);
|
|
~ASTContext();
|
|
/// \brief Attach an external AST source to the AST context.
|
///
|
/// The external AST source provides the ability to load parts of
|
/// the abstract syntax tree as needed from some external storage,
|
/// e.g., a precompiled header.
|
void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
|
|
/// \brief Retrieve a pointer to the external AST source associated
|
/// with this AST context, if any.
|
ExternalASTSource *getExternalSource() const {
|
return ExternalSource.get();
|
}
|
|
/// \brief Attach an AST mutation listener to the AST context.
|
///
|
/// The AST mutation listener provides the ability to track modifications to
|
/// the abstract syntax tree entities committed after they were initially
|
/// created.
|
void setASTMutationListener(ASTMutationListener *Listener) {
|
this->Listener = Listener;
|
}
|
|
/// \brief Retrieve a pointer to the AST mutation listener associated
|
/// with this AST context, if any.
|
ASTMutationListener *getASTMutationListener() const { return Listener; }
|
|
void PrintStats() const;
|
const SmallVectorImpl<Type *>& getTypes() const { return Types; }
|
|
BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
|
const IdentifierInfo *II) const;
|
|
/// \brief Create a new implicit TU-level CXXRecordDecl or RecordDecl
|
/// declaration.
|
RecordDecl *buildImplicitRecord(StringRef Name,
|
RecordDecl::TagKind TK = TTK_Struct) const;
|
|
/// \brief Create a new implicit TU-level typedef declaration.
|
TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
|
|
/// \brief Retrieve the declaration for the 128-bit signed integer type.
|
TypedefDecl *getInt128Decl() const;
|
|
/// \brief Retrieve the declaration for the 128-bit unsigned integer type.
|
TypedefDecl *getUInt128Decl() const;
|
|
//===--------------------------------------------------------------------===//
|
// Type Constructors
|
//===--------------------------------------------------------------------===//
|
|
private:
|
/// \brief Return a type with extended qualifiers.
|
QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
|
|
QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
|
|
public:
|
/// \brief Return the uniqued reference to the type for an address space
|
/// qualified type with the specified type and address space.
|
///
|
/// The resulting type has a union of the qualifiers from T and the address
|
/// space. If T already has an address space specifier, it is silently
|
/// replaced.
|
QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
|
|
/// \brief Return the uniqued reference to the type for an Objective-C
|
/// gc-qualified type.
|
///
|
/// The retulting type has a union of the qualifiers from T and the gc
|
/// attribute.
|
QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
|
|
/// \brief Return the uniqued reference to the type for a \c restrict
|
/// qualified type.
|
///
|
/// The resulting type has a union of the qualifiers from \p T and
|
/// \c restrict.
|
QualType getRestrictType(QualType T) const {
|
return T.withFastQualifiers(Qualifiers::Restrict);
|
}
|
|
/// \brief Return the uniqued reference to the type for a \c volatile
|
/// qualified type.
|
///
|
/// The resulting type has a union of the qualifiers from \p T and
|
/// \c volatile.
|
QualType getVolatileType(QualType T) const {
|
return T.withFastQualifiers(Qualifiers::Volatile);
|
}
|
|
/// \brief Return the uniqued reference to the type for a \c const
|
/// qualified type.
|
///
|
/// The resulting type has a union of the qualifiers from \p T and \c const.
|
///
|
/// It can be reasonably expected that this will always be equivalent to
|
/// calling T.withConst().
|
QualType getConstType(QualType T) const { return T.withConst(); }
|
|
/// \brief Change the ExtInfo on a function type.
|
const FunctionType *adjustFunctionType(const FunctionType *Fn,
|
FunctionType::ExtInfo EInfo);
|
|
/// Adjust the given function result type.
|
CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
|
|
/// \brief Change the result type of a function type once it is deduced.
|
void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
|
|
/// \brief Change the exception specification on a function once it is
|
/// delay-parsed, instantiated, or computed.
|
void adjustExceptionSpec(FunctionDecl *FD,
|
const FunctionProtoType::ExceptionSpecInfo &ESI,
|
bool AsWritten = false);
|
|
/// \brief Return the uniqued reference to the type for a complex
|
/// number with the specified element type.
|
QualType getComplexType(QualType T) const;
|
CanQualType getComplexType(CanQualType T) const {
|
return CanQualType::CreateUnsafe(getComplexType((QualType) T));
|
}
|
|
/// \brief Return the uniqued reference to the type for a pointer to
|
/// the specified type.
|
QualType getPointerType(QualType T) const;
|
CanQualType getPointerType(CanQualType T) const {
|
return CanQualType::CreateUnsafe(getPointerType((QualType) T));
|
}
|
|
/// \brief Return the uniqued reference to a type adjusted from the original
|
/// type to a new type.
|
QualType getAdjustedType(QualType Orig, QualType New) const;
|
CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
|
return CanQualType::CreateUnsafe(
|
getAdjustedType((QualType)Orig, (QualType)New));
|
}
|
|
/// \brief Return the uniqued reference to the decayed version of the given
|
/// type. Can only be called on array and function types which decay to
|
/// pointer types.
|
QualType getDecayedType(QualType T) const;
|
CanQualType getDecayedType(CanQualType T) const {
|
return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
|
}
|
|
/// \brief Return the uniqued reference to the atomic type for the specified
|
/// type.
|
QualType getAtomicType(QualType T) const;
|
|
/// \brief Return the uniqued reference to the type for a block of the
|
/// specified type.
|
QualType getBlockPointerType(QualType T) const;
|
|
/// Gets the struct used to keep track of the descriptor for pointer to
|
/// blocks.
|
QualType getBlockDescriptorType() const;
|
|
/// \brief Return pipe type for the specified type.
|
QualType getPipeType(QualType T) const;
|
|
/// Gets the struct used to keep track of the extended descriptor for
|
/// pointer to blocks.
|
QualType getBlockDescriptorExtendedType() const;
|
|
void setcudaConfigureCallDecl(FunctionDecl *FD) {
|
cudaConfigureCallDecl = FD;
|
}
|
FunctionDecl *getcudaConfigureCallDecl() {
|
return cudaConfigureCallDecl;
|
}
|
|
/// Returns true iff we need copy/dispose helpers for the given type.
|
bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
|
|
|
/// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
|
/// to false in this case. If HasByrefExtendedLayout returns true, byref variable
|
/// has extended lifetime.
|
bool getByrefLifetime(QualType Ty,
|
Qualifiers::ObjCLifetime &Lifetime,
|
bool &HasByrefExtendedLayout) const;
|
|
/// \brief Return the uniqued reference to the type for an lvalue reference
|
/// to the specified type.
|
QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
|
const;
|
|
/// \brief Return the uniqued reference to the type for an rvalue reference
|
/// to the specified type.
|
QualType getRValueReferenceType(QualType T) const;
|
|
/// \brief Return the uniqued reference to the type for a member pointer to
|
/// the specified type in the specified class.
|
///
|
/// The class \p Cls is a \c Type because it could be a dependent name.
|
QualType getMemberPointerType(QualType T, const Type *Cls) const;
|
|
/// \brief Return a non-unique reference to the type for a variable array of
|
/// the specified element type.
|
QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
|
ArrayType::ArraySizeModifier ASM,
|
unsigned IndexTypeQuals,
|
SourceRange Brackets) const;
|
|
/// \brief Return a non-unique reference to the type for a dependently-sized
|
/// array of the specified element type.
|
///
|
/// FIXME: We will need these to be uniqued, or at least comparable, at some
|
/// point.
|
QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
|
ArrayType::ArraySizeModifier ASM,
|
unsigned IndexTypeQuals,
|
SourceRange Brackets) const;
|
|
/// \brief Return a unique reference to the type for an incomplete array of
|
/// the specified element type.
|
QualType getIncompleteArrayType(QualType EltTy,
|
ArrayType::ArraySizeModifier ASM,
|
unsigned IndexTypeQuals) const;
|
|
/// \brief Return the unique reference to the type for a constant array of
|
/// the specified element type.
|
QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
|
ArrayType::ArraySizeModifier ASM,
|
unsigned IndexTypeQuals) const;
|
|
/// \brief Returns a vla type where known sizes are replaced with [*].
|
QualType getVariableArrayDecayedType(QualType Ty) const;
|
|
/// \brief Return the unique reference to a vector type of the specified
|
/// element type and size.
|
///
|
/// \pre \p VectorType must be a built-in type.
|
QualType getVectorType(QualType VectorType, unsigned NumElts,
|
VectorType::VectorKind VecKind) const;
|
|
/// \brief Return the unique reference to an extended vector type
|
/// of the specified element type and size.
|
///
|
/// \pre \p VectorType must be a built-in type.
|
QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
|
|
/// \pre Return a non-unique reference to the type for a dependently-sized
|
/// vector of the specified element type.
|
///
|
/// FIXME: We will need these to be uniqued, or at least comparable, at some
|
/// point.
|
QualType getDependentSizedExtVectorType(QualType VectorType,
|
Expr *SizeExpr,
|
SourceLocation AttrLoc) const;
|
|
/// \brief Return a K&R style C function type like 'int()'.
|
QualType getFunctionNoProtoType(QualType ResultTy,
|
const FunctionType::ExtInfo &Info) const;
|
|
QualType getFunctionNoProtoType(QualType ResultTy) const {
|
return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
|
}
|
|
/// \brief Return a normal function type with a typed argument list.
|
QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
|
const FunctionProtoType::ExtProtoInfo &EPI) const;
|
|
/// \brief Return the unique reference to the type for the specified type
|
/// declaration.
|
QualType getTypeDeclType(const TypeDecl *Decl,
|
const TypeDecl *PrevDecl = nullptr) const {
|
assert(Decl && "Passed null for Decl param");
|
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
|
|
if (PrevDecl) {
|
assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
|
Decl->TypeForDecl = PrevDecl->TypeForDecl;
|
return QualType(PrevDecl->TypeForDecl, 0);
|
}
|
|
return getTypeDeclTypeSlow(Decl);
|
}
|
|
/// \brief Return the unique reference to the type for the specified
|
/// typedef-name decl.
|
QualType getTypedefType(const TypedefNameDecl *Decl,
|
QualType Canon = QualType()) const;
|
|
QualType getRecordType(const RecordDecl *Decl) const;
|
|
QualType getEnumType(const EnumDecl *Decl) const;
|
|
QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
|
|
QualType getAttributedType(AttributedType::Kind attrKind,
|
QualType modifiedType,
|
QualType equivalentType);
|
|
QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
|
QualType Replacement) const;
|
QualType getSubstTemplateTypeParmPackType(
|
const TemplateTypeParmType *Replaced,
|
const TemplateArgument &ArgPack);
|
|
QualType
|
getTemplateTypeParmType(unsigned Depth, unsigned Index,
|
bool ParameterPack,
|
TemplateTypeParmDecl *ParmDecl = nullptr) const;
|
|
QualType getTemplateSpecializationType(TemplateName T,
|
ArrayRef<TemplateArgument> Args,
|
QualType Canon = QualType()) const;
|
|
QualType
|
getCanonicalTemplateSpecializationType(TemplateName T,
|
ArrayRef<TemplateArgument> Args) const;
|
|
QualType getTemplateSpecializationType(TemplateName T,
|
const TemplateArgumentListInfo &Args,
|
QualType Canon = QualType()) const;
|
|
TypeSourceInfo *
|
getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
|
const TemplateArgumentListInfo &Args,
|
QualType Canon = QualType()) const;
|
|
QualType getParenType(QualType NamedType) const;
|
|
QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
|
NestedNameSpecifier *NNS,
|
QualType NamedType) const;
|
QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
|
NestedNameSpecifier *NNS,
|
const IdentifierInfo *Name,
|
QualType Canon = QualType()) const;
|
|
QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
|
NestedNameSpecifier *NNS,
|
const IdentifierInfo *Name,
|
const TemplateArgumentListInfo &Args) const;
|
QualType getDependentTemplateSpecializationType(
|
ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
|
const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
|
|
QualType getPackExpansionType(QualType Pattern,
|
Optional<unsigned> NumExpansions);
|
|
QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
|
ObjCInterfaceDecl *PrevDecl = nullptr) const;
|
|
/// Legacy interface: cannot provide type arguments or __kindof.
|
QualType getObjCObjectType(QualType Base,
|
ObjCProtocolDecl * const *Protocols,
|
unsigned NumProtocols) const;
|
|
QualType getObjCObjectType(QualType Base,
|
ArrayRef<QualType> typeArgs,
|
ArrayRef<ObjCProtocolDecl *> protocols,
|
bool isKindOf) const;
|
|
bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
|
/// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
|
/// QT's qualified-id protocol list adopt all protocols in IDecl's list
|
/// of protocols.
|
bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
|
ObjCInterfaceDecl *IDecl);
|
|
/// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
|
QualType getObjCObjectPointerType(QualType OIT) const;
|
|
/// \brief GCC extension.
|
QualType getTypeOfExprType(Expr *e) const;
|
QualType getTypeOfType(QualType t) const;
|
|
/// \brief C++11 decltype.
|
QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
|
|
/// \brief Unary type transforms
|
QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
|
UnaryTransformType::UTTKind UKind) const;
|
|
/// \brief C++11 deduced auto type.
|
QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
|
bool IsDependent) const;
|
|
/// \brief C++11 deduction pattern for 'auto' type.
|
QualType getAutoDeductType() const;
|
|
/// \brief C++11 deduction pattern for 'auto &&' type.
|
QualType getAutoRRefDeductType() const;
|
|
/// \brief Return the unique reference to the type for the specified TagDecl
|
/// (struct/union/class/enum) decl.
|
QualType getTagDeclType(const TagDecl *Decl) const;
|
|
/// \brief Return the unique type for "size_t" (C99 7.17), defined in
|
/// <stddef.h>.
|
///
|
/// The sizeof operator requires this (C99 6.5.3.4p4).
|
CanQualType getSizeType() const;
|
|
/// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
|
/// <stdint.h>.
|
CanQualType getIntMaxType() const;
|
|
/// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
|
/// <stdint.h>.
|
CanQualType getUIntMaxType() const;
|
|
/// \brief Return the unique wchar_t type available in C++ (and available as
|
/// __wchar_t as a Microsoft extension).
|
QualType getWCharType() const { return WCharTy; }
|
|
/// \brief Return the type of wide characters. In C++, this returns the
|
/// unique wchar_t type. In C99, this returns a type compatible with the type
|
/// defined in <stddef.h> as defined by the target.
|
QualType getWideCharType() const { return WideCharTy; }
|
|
/// \brief Return the type of "signed wchar_t".
|
///
|
/// Used when in C++, as a GCC extension.
|
QualType getSignedWCharType() const;
|
|
/// \brief Return the type of "unsigned wchar_t".
|
///
|
/// Used when in C++, as a GCC extension.
|
QualType getUnsignedWCharType() const;
|
|
/// \brief In C99, this returns a type compatible with the type
|
/// defined in <stddef.h> as defined by the target.
|
QualType getWIntType() const { return WIntTy; }
|
|
/// \brief Return a type compatible with "intptr_t" (C99 7.18.1.4),
|
/// as defined by the target.
|
QualType getIntPtrType() const;
|
|
/// \brief Return a type compatible with "uintptr_t" (C99 7.18.1.4),
|
/// as defined by the target.
|
QualType getUIntPtrType() const;
|
|
/// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
|
/// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
|
QualType getPointerDiffType() const;
|
|
/// \brief Return the unique type for "pid_t" defined in
|
/// <sys/types.h>. We need this to compute the correct type for vfork().
|
QualType getProcessIDType() const;
|
|
/// \brief Return the C structure type used to represent constant CFStrings.
|
QualType getCFConstantStringType() const;
|
|
/// \brief Returns the C struct type for objc_super
|
QualType getObjCSuperType() const;
|
void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
|
|
/// Get the structure type used to representation CFStrings, or NULL
|
/// if it hasn't yet been built.
|
QualType getRawCFConstantStringType() const {
|
if (CFConstantStringTypeDecl)
|
return getTypedefType(CFConstantStringTypeDecl);
|
return QualType();
|
}
|
void setCFConstantStringType(QualType T);
|
TypedefDecl *getCFConstantStringDecl() const;
|
RecordDecl *getCFConstantStringTagDecl() const;
|
|
// This setter/getter represents the ObjC type for an NSConstantString.
|
void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
|
QualType getObjCConstantStringInterface() const {
|
return ObjCConstantStringType;
|
}
|
|
QualType getObjCNSStringType() const {
|
return ObjCNSStringType;
|
}
|
|
void setObjCNSStringType(QualType T) {
|
ObjCNSStringType = T;
|
}
|
|
/// \brief Retrieve the type that \c id has been defined to, which may be
|
/// different from the built-in \c id if \c id has been typedef'd.
|
QualType getObjCIdRedefinitionType() const {
|
if (ObjCIdRedefinitionType.isNull())
|
return getObjCIdType();
|
return ObjCIdRedefinitionType;
|
}
|
|
/// \brief Set the user-written type that redefines \c id.
|
void setObjCIdRedefinitionType(QualType RedefType) {
|
ObjCIdRedefinitionType = RedefType;
|
}
|
|
/// \brief Retrieve the type that \c Class has been defined to, which may be
|
/// different from the built-in \c Class if \c Class has been typedef'd.
|
QualType getObjCClassRedefinitionType() const {
|
if (ObjCClassRedefinitionType.isNull())
|
return getObjCClassType();
|
return ObjCClassRedefinitionType;
|
}
|
|
/// \brief Set the user-written type that redefines 'SEL'.
|
void setObjCClassRedefinitionType(QualType RedefType) {
|
ObjCClassRedefinitionType = RedefType;
|
}
|
|
/// \brief Retrieve the type that 'SEL' has been defined to, which may be
|
/// different from the built-in 'SEL' if 'SEL' has been typedef'd.
|
QualType getObjCSelRedefinitionType() const {
|
if (ObjCSelRedefinitionType.isNull())
|
return getObjCSelType();
|
return ObjCSelRedefinitionType;
|
}
|
|
|
/// \brief Set the user-written type that redefines 'SEL'.
|
void setObjCSelRedefinitionType(QualType RedefType) {
|
ObjCSelRedefinitionType = RedefType;
|
}
|
|
/// Retrieve the identifier 'NSObject'.
|
IdentifierInfo *getNSObjectName() {
|
if (!NSObjectName) {
|
NSObjectName = &Idents.get("NSObject");
|
}
|
|
return NSObjectName;
|
}
|
|
/// Retrieve the identifier 'NSCopying'.
|
IdentifierInfo *getNSCopyingName() {
|
if (!NSCopyingName) {
|
NSCopyingName = &Idents.get("NSCopying");
|
}
|
|
return NSCopyingName;
|
}
|
|
/// Retrieve the identifier 'bool'.
|
IdentifierInfo *getBoolName() const {
|
if (!BoolName)
|
BoolName = &Idents.get("bool");
|
return BoolName;
|
}
|
|
IdentifierInfo *getMakeIntegerSeqName() const {
|
if (!MakeIntegerSeqName)
|
MakeIntegerSeqName = &Idents.get("__make_integer_seq");
|
return MakeIntegerSeqName;
|
}
|
|
IdentifierInfo *getTypePackElementName() const {
|
if (!TypePackElementName)
|
TypePackElementName = &Idents.get("__type_pack_element");
|
return TypePackElementName;
|
}
|
|
/// \brief Retrieve the Objective-C "instancetype" type, if already known;
|
/// otherwise, returns a NULL type;
|
QualType getObjCInstanceType() {
|
return getTypeDeclType(getObjCInstanceTypeDecl());
|
}
|
|
/// \brief Retrieve the typedef declaration corresponding to the Objective-C
|
/// "instancetype" type.
|
TypedefDecl *getObjCInstanceTypeDecl();
|
|
/// \brief Set the type for the C FILE type.
|
void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
|
|
/// \brief Retrieve the C FILE type.
|
QualType getFILEType() const {
|
if (FILEDecl)
|
return getTypeDeclType(FILEDecl);
|
return QualType();
|
}
|
|
/// \brief Set the type for the C jmp_buf type.
|
void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
|
this->jmp_bufDecl = jmp_bufDecl;
|
}
|
|
/// \brief Retrieve the C jmp_buf type.
|
QualType getjmp_bufType() const {
|
if (jmp_bufDecl)
|
return getTypeDeclType(jmp_bufDecl);
|
return QualType();
|
}
|
|
/// \brief Set the type for the C sigjmp_buf type.
|
void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
|
this->sigjmp_bufDecl = sigjmp_bufDecl;
|
}
|
|
/// \brief Retrieve the C sigjmp_buf type.
|
QualType getsigjmp_bufType() const {
|
if (sigjmp_bufDecl)
|
return getTypeDeclType(sigjmp_bufDecl);
|
return QualType();
|
}
|
|
/// \brief Set the type for the C ucontext_t type.
|
void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
|
this->ucontext_tDecl = ucontext_tDecl;
|
}
|
|
/// \brief Retrieve the C ucontext_t type.
|
QualType getucontext_tType() const {
|
if (ucontext_tDecl)
|
return getTypeDeclType(ucontext_tDecl);
|
return QualType();
|
}
|
|
/// \brief The result type of logical operations, '<', '>', '!=', etc.
|
QualType getLogicalOperationType() const {
|
return getLangOpts().CPlusPlus ? BoolTy : IntTy;
|
}
|
|
/// \brief Emit the Objective-CC type encoding for the given type \p T into
|
/// \p S.
|
///
|
/// If \p Field is specified then record field names are also encoded.
|
void getObjCEncodingForType(QualType T, std::string &S,
|
const FieldDecl *Field=nullptr,
|
QualType *NotEncodedT=nullptr) const;
|
|
/// \brief Emit the Objective-C property type encoding for the given
|
/// type \p T into \p S.
|
void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
|
|
void getLegacyIntegralTypeEncoding(QualType &t) const;
|
|
/// \brief Put the string version of the type qualifiers \p QT into \p S.
|
void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
|
std::string &S) const;
|
|
/// \brief Emit the encoded type for the function \p Decl into \p S.
|
///
|
/// This is in the same format as Objective-C method encodings.
|
///
|
/// \returns true if an error occurred (e.g., because one of the parameter
|
/// types is incomplete), false otherwise.
|
bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
|
|
/// \brief Emit the encoded type for the method declaration \p Decl into
|
/// \p S.
|
///
|
/// \returns true if an error occurred (e.g., because one of the parameter
|
/// types is incomplete), false otherwise.
|
bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
|
bool Extended = false)
|
const;
|
|
/// \brief Return the encoded type for this block declaration.
|
std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
|
|
/// getObjCEncodingForPropertyDecl - Return the encoded type for
|
/// this method declaration. If non-NULL, Container must be either
|
/// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
|
/// only be NULL when getting encodings for protocol properties.
|
void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
|
const Decl *Container,
|
std::string &S) const;
|
|
bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
|
ObjCProtocolDecl *rProto) const;
|
|
ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
|
const ObjCPropertyDecl *PD,
|
const Decl *Container) const;
|
|
/// \brief Return the size of type \p T for Objective-C encoding purpose,
|
/// in characters.
|
CharUnits getObjCEncodingTypeSize(QualType T) const;
|
|
/// \brief Retrieve the typedef corresponding to the predefined \c id type
|
/// in Objective-C.
|
TypedefDecl *getObjCIdDecl() const;
|
|
/// \brief Represents the Objective-CC \c id type.
|
///
|
/// This is set up lazily, by Sema. \c id is always a (typedef for a)
|
/// pointer type, a pointer to a struct.
|
QualType getObjCIdType() const {
|
return getTypeDeclType(getObjCIdDecl());
|
}
|
|
/// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
|
/// in Objective-C.
|
TypedefDecl *getObjCSelDecl() const;
|
|
/// \brief Retrieve the type that corresponds to the predefined Objective-C
|
/// 'SEL' type.
|
QualType getObjCSelType() const {
|
return getTypeDeclType(getObjCSelDecl());
|
}
|
|
/// \brief Retrieve the typedef declaration corresponding to the predefined
|
/// Objective-C 'Class' type.
|
TypedefDecl *getObjCClassDecl() const;
|
|
/// \brief Represents the Objective-C \c Class type.
|
///
|
/// This is set up lazily, by Sema. \c Class is always a (typedef for a)
|
/// pointer type, a pointer to a struct.
|
QualType getObjCClassType() const {
|
return getTypeDeclType(getObjCClassDecl());
|
}
|
|
/// \brief Retrieve the Objective-C class declaration corresponding to
|
/// the predefined \c Protocol class.
|
ObjCInterfaceDecl *getObjCProtocolDecl() const;
|
|
/// \brief Retrieve declaration of 'BOOL' typedef
|
TypedefDecl *getBOOLDecl() const {
|
return BOOLDecl;
|
}
|
|
/// \brief Save declaration of 'BOOL' typedef
|
void setBOOLDecl(TypedefDecl *TD) {
|
BOOLDecl = TD;
|
}
|
|
/// \brief type of 'BOOL' type.
|
QualType getBOOLType() const {
|
return getTypeDeclType(getBOOLDecl());
|
}
|
|
/// \brief Retrieve the type of the Objective-C \c Protocol class.
|
QualType getObjCProtoType() const {
|
return getObjCInterfaceType(getObjCProtocolDecl());
|
}
|
|
/// \brief Retrieve the C type declaration corresponding to the predefined
|
/// \c __builtin_va_list type.
|
TypedefDecl *getBuiltinVaListDecl() const;
|
|
/// \brief Retrieve the type of the \c __builtin_va_list type.
|
QualType getBuiltinVaListType() const {
|
return getTypeDeclType(getBuiltinVaListDecl());
|
}
|
|
/// \brief Retrieve the C type declaration corresponding to the predefined
|
/// \c __va_list_tag type used to help define the \c __builtin_va_list type
|
/// for some targets.
|
Decl *getVaListTagDecl() const;
|
|
/// Retrieve the C type declaration corresponding to the predefined
|
/// \c __builtin_ms_va_list type.
|
TypedefDecl *getBuiltinMSVaListDecl() const;
|
|
/// Retrieve the type of the \c __builtin_ms_va_list type.
|
QualType getBuiltinMSVaListType() const {
|
return getTypeDeclType(getBuiltinMSVaListDecl());
|
}
|
|
/// \brief Return a type with additional \c const, \c volatile, or
|
/// \c restrict qualifiers.
|
QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
|
return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
|
}
|
|
/// \brief Un-split a SplitQualType.
|
QualType getQualifiedType(SplitQualType split) const {
|
return getQualifiedType(split.Ty, split.Quals);
|
}
|
|
/// \brief Return a type with additional qualifiers.
|
QualType getQualifiedType(QualType T, Qualifiers Qs) const {
|
if (!Qs.hasNonFastQualifiers())
|
return T.withFastQualifiers(Qs.getFastQualifiers());
|
QualifierCollector Qc(Qs);
|
const Type *Ptr = Qc.strip(T);
|
return getExtQualType(Ptr, Qc);
|
}
|
|
/// \brief Return a type with additional qualifiers.
|
QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
|
if (!Qs.hasNonFastQualifiers())
|
return QualType(T, Qs.getFastQualifiers());
|
return getExtQualType(T, Qs);
|
}
|
|
/// \brief Return a type with the given lifetime qualifier.
|
///
|
/// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
|
QualType getLifetimeQualifiedType(QualType type,
|
Qualifiers::ObjCLifetime lifetime) {
|
assert(type.getObjCLifetime() == Qualifiers::OCL_None);
|
assert(lifetime != Qualifiers::OCL_None);
|
|
Qualifiers qs;
|
qs.addObjCLifetime(lifetime);
|
return getQualifiedType(type, qs);
|
}
|
|
/// getUnqualifiedObjCPointerType - Returns version of
|
/// Objective-C pointer type with lifetime qualifier removed.
|
QualType getUnqualifiedObjCPointerType(QualType type) const {
|
if (!type.getTypePtr()->isObjCObjectPointerType() ||
|
!type.getQualifiers().hasObjCLifetime())
|
return type;
|
Qualifiers Qs = type.getQualifiers();
|
Qs.removeObjCLifetime();
|
return getQualifiedType(type.getUnqualifiedType(), Qs);
|
}
|
|
DeclarationNameInfo getNameForTemplate(TemplateName Name,
|
SourceLocation NameLoc) const;
|
|
TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
|
UnresolvedSetIterator End) const;
|
|
TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
|
bool TemplateKeyword,
|
TemplateDecl *Template) const;
|
|
TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
|
const IdentifierInfo *Name) const;
|
TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
|
OverloadedOperatorKind Operator) const;
|
TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
|
TemplateName replacement) const;
|
TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
|
const TemplateArgument &ArgPack) const;
|
|
enum GetBuiltinTypeError {
|
GE_None, ///< No error
|
GE_Missing_stdio, ///< Missing a type from <stdio.h>
|
GE_Missing_setjmp, ///< Missing a type from <setjmp.h>
|
GE_Missing_ucontext ///< Missing a type from <ucontext.h>
|
};
|
|
/// \brief Return the type for the specified builtin.
|
///
|
/// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
|
/// arguments to the builtin that are required to be integer constant
|
/// expressions.
|
QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
|
unsigned *IntegerConstantArgs = nullptr) const;
|
|
private:
|
CanQualType getFromTargetType(unsigned Type) const;
|
TypeInfo getTypeInfoImpl(const Type *T) const;
|
|
//===--------------------------------------------------------------------===//
|
// Type Predicates.
|
//===--------------------------------------------------------------------===//
|
|
public:
|
/// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
|
/// collection attributes.
|
Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
|
|
/// \brief Return true if the given vector types are of the same unqualified
|
/// type or if they are equivalent to the same GCC vector type.
|
///
|
/// \note This ignores whether they are target-specific (AltiVec or Neon)
|
/// types.
|
bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
|
|
/// \brief Return true if this is an \c NSObject object with its \c NSObject
|
/// attribute set.
|
static bool isObjCNSObjectType(QualType Ty) {
|
return Ty->isObjCNSObjectType();
|
}
|
|
//===--------------------------------------------------------------------===//
|
// Type Sizing and Analysis
|
//===--------------------------------------------------------------------===//
|
|
/// \brief Return the APFloat 'semantics' for the specified scalar floating
|
/// point type.
|
const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
|
|
/// \brief Get the size and alignment of the specified complete type in bits.
|
TypeInfo getTypeInfo(const Type *T) const;
|
TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
|
|
/// \brief Get default simd alignment of the specified complete type in bits.
|
unsigned getOpenMPDefaultSimdAlign(QualType T) const;
|
|
/// \brief Return the size of the specified (complete) type \p T, in bits.
|
uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
|
uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
|
|
/// \brief Return the size of the character type, in bits.
|
uint64_t getCharWidth() const {
|
return getTypeSize(CharTy);
|
}
|
|
/// \brief Convert a size in bits to a size in characters.
|
CharUnits toCharUnitsFromBits(int64_t BitSize) const;
|
|
/// \brief Convert a size in characters to a size in bits.
|
int64_t toBits(CharUnits CharSize) const;
|
|
/// \brief Return the size of the specified (complete) type \p T, in
|
/// characters.
|
CharUnits getTypeSizeInChars(QualType T) const;
|
CharUnits getTypeSizeInChars(const Type *T) const;
|
|
/// \brief Return the ABI-specified alignment of a (complete) type \p T, in
|
/// bits.
|
unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
|
unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
|
|
/// \brief Return the ABI-specified alignment of a (complete) type \p T, in
|
/// characters.
|
CharUnits getTypeAlignInChars(QualType T) const;
|
CharUnits getTypeAlignInChars(const Type *T) const;
|
|
// getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
|
// type is a record, its data size is returned.
|
std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
|
|
std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
|
std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
|
|
/// \brief Determine if the alignment the type has was required using an
|
/// alignment attribute.
|
bool isAlignmentRequired(const Type *T) const;
|
bool isAlignmentRequired(QualType T) const;
|
|
/// \brief Return the "preferred" alignment of the specified type \p T for
|
/// the current target, in bits.
|
///
|
/// This can be different than the ABI alignment in cases where it is
|
/// beneficial for performance to overalign a data type.
|
unsigned getPreferredTypeAlign(const Type *T) const;
|
|
/// \brief Return the default alignment for __attribute__((aligned)) on
|
/// this target, to be used if no alignment value is specified.
|
unsigned getTargetDefaultAlignForAttributeAligned(void) const;
|
|
/// \brief Return the alignment in bits that should be given to a
|
/// global variable with type \p T.
|
unsigned getAlignOfGlobalVar(QualType T) const;
|
|
/// \brief Return the alignment in characters that should be given to a
|
/// global variable with type \p T.
|
CharUnits getAlignOfGlobalVarInChars(QualType T) const;
|
|
/// \brief Return a conservative estimate of the alignment of the specified
|
/// decl \p D.
|
///
|
/// \pre \p D must not be a bitfield type, as bitfields do not have a valid
|
/// alignment.
|
///
|
/// If \p ForAlignof, references are treated like their underlying type
|
/// and large arrays don't get any special treatment. If not \p ForAlignof
|
/// it computes the value expected by CodeGen: references are treated like
|
/// pointers and large arrays get extra alignment.
|
CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
|
|
/// \brief Get or compute information about the layout of the specified
|
/// record (struct/union/class) \p D, which indicates its size and field
|
/// position information.
|
const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
|
|
/// \brief Get or compute information about the layout of the specified
|
/// Objective-C interface.
|
const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
|
const;
|
|
void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
|
bool Simple = false) const;
|
|
/// \brief Get or compute information about the layout of the specified
|
/// Objective-C implementation.
|
///
|
/// This may differ from the interface if synthesized ivars are present.
|
const ASTRecordLayout &
|
getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
|
|
/// \brief Get our current best idea for the key function of the
|
/// given record decl, or NULL if there isn't one.
|
///
|
/// The key function is, according to the Itanium C++ ABI section 5.2.3:
|
/// ...the first non-pure virtual function that is not inline at the
|
/// point of class definition.
|
///
|
/// Other ABIs use the same idea. However, the ARM C++ ABI ignores
|
/// virtual functions that are defined 'inline', which means that
|
/// the result of this computation can change.
|
const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
|
|
/// \brief Observe that the given method cannot be a key function.
|
/// Checks the key-function cache for the method's class and clears it
|
/// if matches the given declaration.
|
///
|
/// This is used in ABIs where out-of-line definitions marked
|
/// inline are not considered to be key functions.
|
///
|
/// \param method should be the declaration from the class definition
|
void setNonKeyFunction(const CXXMethodDecl *method);
|
|
/// Loading virtual member pointers using the virtual inheritance model
|
/// always results in an adjustment using the vbtable even if the index is
|
/// zero.
|
///
|
/// This is usually OK because the first slot in the vbtable points
|
/// backwards to the top of the MDC. However, the MDC might be reusing a
|
/// vbptr from an nv-base. In this case, the first slot in the vbtable
|
/// points to the start of the nv-base which introduced the vbptr and *not*
|
/// the MDC. Modify the NonVirtualBaseAdjustment to account for this.
|
CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
|
|
/// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
|
uint64_t getFieldOffset(const ValueDecl *FD) const;
|
|
bool isNearlyEmpty(const CXXRecordDecl *RD) const;
|
|
VTableContextBase *getVTableContext();
|
|
MangleContext *createMangleContext();
|
|
void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
|
SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
|
|
unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
|
void CollectInheritedProtocols(const Decl *CDecl,
|
llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
|
|
//===--------------------------------------------------------------------===//
|
// Type Operators
|
//===--------------------------------------------------------------------===//
|
|
/// \brief Return the canonical (structural) type corresponding to the
|
/// specified potentially non-canonical type \p T.
|
///
|
/// The non-canonical version of a type may have many "decorated" versions of
|
/// types. Decorators can include typedefs, 'typeof' operators, etc. The
|
/// returned type is guaranteed to be free of any of these, allowing two
|
/// canonical types to be compared for exact equality with a simple pointer
|
/// comparison.
|
CanQualType getCanonicalType(QualType T) const {
|
return CanQualType::CreateUnsafe(T.getCanonicalType());
|
}
|
|
const Type *getCanonicalType(const Type *T) const {
|
return T->getCanonicalTypeInternal().getTypePtr();
|
}
|
|
/// \brief Return the canonical parameter type corresponding to the specific
|
/// potentially non-canonical one.
|
///
|
/// Qualifiers are stripped off, functions are turned into function
|
/// pointers, and arrays decay one level into pointers.
|
CanQualType getCanonicalParamType(QualType T) const;
|
|
/// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
|
bool hasSameType(QualType T1, QualType T2) const {
|
return getCanonicalType(T1) == getCanonicalType(T2);
|
}
|
|
bool hasSameType(const Type *T1, const Type *T2) const {
|
return getCanonicalType(T1) == getCanonicalType(T2);
|
}
|
|
/// \brief Return this type as a completely-unqualified array type,
|
/// capturing the qualifiers in \p Quals.
|
///
|
/// This will remove the minimal amount of sugaring from the types, similar
|
/// to the behavior of QualType::getUnqualifiedType().
|
///
|
/// \param T is the qualified type, which may be an ArrayType
|
///
|
/// \param Quals will receive the full set of qualifiers that were
|
/// applied to the array.
|
///
|
/// \returns if this is an array type, the completely unqualified array type
|
/// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
|
QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
|
|
/// \brief Determine whether the given types are equivalent after
|
/// cvr-qualifiers have been removed.
|
bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
|
return getCanonicalType(T1).getTypePtr() ==
|
getCanonicalType(T2).getTypePtr();
|
}
|
|
bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
|
bool IsParam) const {
|
auto SubTnullability = SubT->getNullability(*this);
|
auto SuperTnullability = SuperT->getNullability(*this);
|
if (SubTnullability.hasValue() == SuperTnullability.hasValue()) {
|
// Neither has nullability; return true
|
if (!SubTnullability)
|
return true;
|
// Both have nullability qualifier.
|
if (*SubTnullability == *SuperTnullability ||
|
*SubTnullability == NullabilityKind::Unspecified ||
|
*SuperTnullability == NullabilityKind::Unspecified)
|
return true;
|
|
if (IsParam) {
|
// Ok for the superclass method parameter to be "nonnull" and the subclass
|
// method parameter to be "nullable"
|
return (*SuperTnullability == NullabilityKind::NonNull &&
|
*SubTnullability == NullabilityKind::Nullable);
|
}
|
else {
|
// For the return type, it's okay for the superclass method to specify
|
// "nullable" and the subclass method specify "nonnull"
|
return (*SuperTnullability == NullabilityKind::Nullable &&
|
*SubTnullability == NullabilityKind::NonNull);
|
}
|
}
|
return true;
|
}
|
|
bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
|
const ObjCMethodDecl *MethodImp);
|
|
bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
|
|
/// \brief Retrieves the "canonical" nested name specifier for a
|
/// given nested name specifier.
|
///
|
/// The canonical nested name specifier is a nested name specifier
|
/// that uniquely identifies a type or namespace within the type
|
/// system. For example, given:
|
///
|
/// \code
|
/// namespace N {
|
/// struct S {
|
/// template<typename T> struct X { typename T* type; };
|
/// };
|
/// }
|
///
|
/// template<typename T> struct Y {
|
/// typename N::S::X<T>::type member;
|
/// };
|
/// \endcode
|
///
|
/// Here, the nested-name-specifier for N::S::X<T>:: will be
|
/// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
|
/// by declarations in the type system and the canonical type for
|
/// the template type parameter 'T' is template-param-0-0.
|
NestedNameSpecifier *
|
getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
|
|
/// \brief Retrieves the default calling convention for the current target.
|
CallingConv getDefaultCallingConvention(bool isVariadic,
|
bool IsCXXMethod) const;
|
|
/// \brief Retrieves the "canonical" template name that refers to a
|
/// given template.
|
///
|
/// The canonical template name is the simplest expression that can
|
/// be used to refer to a given template. For most templates, this
|
/// expression is just the template declaration itself. For example,
|
/// the template std::vector can be referred to via a variety of
|
/// names---std::vector, \::std::vector, vector (if vector is in
|
/// scope), etc.---but all of these names map down to the same
|
/// TemplateDecl, which is used to form the canonical template name.
|
///
|
/// Dependent template names are more interesting. Here, the
|
/// template name could be something like T::template apply or
|
/// std::allocator<T>::template rebind, where the nested name
|
/// specifier itself is dependent. In this case, the canonical
|
/// template name uses the shortest form of the dependent
|
/// nested-name-specifier, which itself contains all canonical
|
/// types, values, and templates.
|
TemplateName getCanonicalTemplateName(TemplateName Name) const;
|
|
/// \brief Determine whether the given template names refer to the same
|
/// template.
|
bool hasSameTemplateName(TemplateName X, TemplateName Y);
|
|
/// \brief Retrieve the "canonical" template argument.
|
///
|
/// The canonical template argument is the simplest template argument
|
/// (which may be a type, value, expression, or declaration) that
|
/// expresses the value of the argument.
|
TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
|
const;
|
|
/// Type Query functions. If the type is an instance of the specified class,
|
/// return the Type pointer for the underlying maximally pretty type. This
|
/// is a member of ASTContext because this may need to do some amount of
|
/// canonicalization, e.g. to move type qualifiers into the element type.
|
const ArrayType *getAsArrayType(QualType T) const;
|
const ConstantArrayType *getAsConstantArrayType(QualType T) const {
|
return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
|
}
|
const VariableArrayType *getAsVariableArrayType(QualType T) const {
|
return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
|
}
|
const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
|
return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
|
}
|
const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
|
const {
|
return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
|
}
|
|
/// \brief Return the innermost element type of an array type.
|
///
|
/// For example, will return "int" for int[m][n]
|
QualType getBaseElementType(const ArrayType *VAT) const;
|
|
/// \brief Return the innermost element type of a type (which needn't
|
/// actually be an array type).
|
QualType getBaseElementType(QualType QT) const;
|
|
/// \brief Return number of constant array elements.
|
uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
|
|
/// \brief Perform adjustment on the parameter type of a function.
|
///
|
/// This routine adjusts the given parameter type @p T to the actual
|
/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
|
/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
|
QualType getAdjustedParameterType(QualType T) const;
|
|
/// \brief Retrieve the parameter type as adjusted for use in the signature
|
/// of a function, decaying array and function types and removing top-level
|
/// cv-qualifiers.
|
QualType getSignatureParameterType(QualType T) const;
|
|
QualType getExceptionObjectType(QualType T) const;
|
|
/// \brief Return the properly qualified result of decaying the specified
|
/// array type to a pointer.
|
///
|
/// This operation is non-trivial when handling typedefs etc. The canonical
|
/// type of \p T must be an array type, this returns a pointer to a properly
|
/// qualified element of the array.
|
///
|
/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
|
QualType getArrayDecayedType(QualType T) const;
|
|
/// \brief Return the type that \p PromotableType will promote to: C99
|
/// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
|
QualType getPromotedIntegerType(QualType PromotableType) const;
|
|
/// \brief Recurses in pointer/array types until it finds an Objective-C
|
/// retainable type and returns its ownership.
|
Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
|
|
/// \brief Whether this is a promotable bitfield reference according
|
/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
|
///
|
/// \returns the type this bit-field will promote to, or NULL if no
|
/// promotion occurs.
|
QualType isPromotableBitField(Expr *E) const;
|
|
/// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
|
///
|
/// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
|
/// \p LHS < \p RHS, return -1.
|
int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
|
|
/// \brief Compare the rank of the two specified floating point types,
|
/// ignoring the domain of the type (i.e. 'double' == '_Complex double').
|
///
|
/// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
|
/// \p LHS < \p RHS, return -1.
|
int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
|
|
/// \brief Return a real floating point or a complex type (based on
|
/// \p typeDomain/\p typeSize).
|
///
|
/// \param typeDomain a real floating point or complex type.
|
/// \param typeSize a real floating point or complex type.
|
QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
|
QualType typeDomain) const;
|
|
unsigned getTargetAddressSpace(QualType T) const {
|
return getTargetAddressSpace(T.getQualifiers());
|
}
|
|
unsigned getTargetAddressSpace(Qualifiers Q) const {
|
return getTargetAddressSpace(Q.getAddressSpace());
|
}
|
|
unsigned getTargetAddressSpace(unsigned AS) const {
|
if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
|
return AS;
|
else
|
return (*AddrSpaceMap)[AS - LangAS::Offset];
|
}
|
|
bool addressSpaceMapManglingFor(unsigned AS) const {
|
return AddrSpaceMapMangling ||
|
AS < LangAS::Offset ||
|
AS >= LangAS::Offset + LangAS::Count;
|
}
|
|
private:
|
// Helper for integer ordering
|
unsigned getIntegerRank(const Type *T) const;
|
|
public:
|
|
//===--------------------------------------------------------------------===//
|
// Type Compatibility Predicates
|
//===--------------------------------------------------------------------===//
|
|
/// Compatibility predicates used to check assignment expressions.
|
bool typesAreCompatible(QualType T1, QualType T2,
|
bool CompareUnqualified = false); // C99 6.2.7p1
|
|
bool propertyTypesAreCompatible(QualType, QualType);
|
bool typesAreBlockPointerCompatible(QualType, QualType);
|
|
bool isObjCIdType(QualType T) const {
|
return T == getObjCIdType();
|
}
|
bool isObjCClassType(QualType T) const {
|
return T == getObjCClassType();
|
}
|
bool isObjCSelType(QualType T) const {
|
return T == getObjCSelType();
|
}
|
bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
|
bool ForCompare);
|
|
bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
|
|
// Check the safety of assignment from LHS to RHS
|
bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
|
const ObjCObjectPointerType *RHSOPT);
|
bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
|
const ObjCObjectType *RHS);
|
bool canAssignObjCInterfacesInBlockPointer(
|
const ObjCObjectPointerType *LHSOPT,
|
const ObjCObjectPointerType *RHSOPT,
|
bool BlockReturnType);
|
bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
|
QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
|
const ObjCObjectPointerType *RHSOPT);
|
bool canBindObjCObjectType(QualType To, QualType From);
|
|
// Functions for calculating composite types
|
QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
|
bool Unqualified = false, bool BlockReturnType = false);
|
QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
|
bool Unqualified = false);
|
QualType mergeFunctionParameterTypes(QualType, QualType,
|
bool OfBlockPointer = false,
|
bool Unqualified = false);
|
QualType mergeTransparentUnionType(QualType, QualType,
|
bool OfBlockPointer=false,
|
bool Unqualified = false);
|
|
QualType mergeObjCGCQualifiers(QualType, QualType);
|
|
bool doFunctionTypesMatchOnExtParameterInfos(
|
const FunctionProtoType *FromFunctionType,
|
const FunctionProtoType *ToFunctionType);
|
|
void ResetObjCLayout(const ObjCContainerDecl *CD);
|
|
//===--------------------------------------------------------------------===//
|
// Integer Predicates
|
//===--------------------------------------------------------------------===//
|
|
// The width of an integer, as defined in C99 6.2.6.2. This is the number
|
// of bits in an integer type excluding any padding bits.
|
unsigned getIntWidth(QualType T) const;
|
|
// Per C99 6.2.5p6, for every signed integer type, there is a corresponding
|
// unsigned integer type. This method takes a signed type, and returns the
|
// corresponding unsigned integer type.
|
QualType getCorrespondingUnsignedType(QualType T) const;
|
|
//===--------------------------------------------------------------------===//
|
// Integer Values
|
//===--------------------------------------------------------------------===//
|
|
/// \brief Make an APSInt of the appropriate width and signedness for the
|
/// given \p Value and integer \p Type.
|
llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
|
// If Type is a signed integer type larger than 64 bits, we need to be sure
|
// to sign extend Res appropriately.
|
llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
|
Res = Value;
|
unsigned Width = getIntWidth(Type);
|
if (Width != Res.getBitWidth())
|
return Res.extOrTrunc(Width);
|
return Res;
|
}
|
|
bool isSentinelNullExpr(const Expr *E);
|
|
/// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
|
/// none exists.
|
ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
|
/// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
|
/// none exists.
|
ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
|
|
/// \brief Return true if there is at least one \@implementation in the TU.
|
bool AnyObjCImplementation() {
|
return !ObjCImpls.empty();
|
}
|
|
/// \brief Set the implementation of ObjCInterfaceDecl.
|
void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
|
ObjCImplementationDecl *ImplD);
|
/// \brief Set the implementation of ObjCCategoryDecl.
|
void setObjCImplementation(ObjCCategoryDecl *CatD,
|
ObjCCategoryImplDecl *ImplD);
|
|
/// \brief Get the duplicate declaration of a ObjCMethod in the same
|
/// interface, or null if none exists.
|
const ObjCMethodDecl *
|
getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
|
|
void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
|
const ObjCMethodDecl *Redecl);
|
|
/// \brief Returns the Objective-C interface that \p ND belongs to if it is
|
/// an Objective-C method/property/ivar etc. that is part of an interface,
|
/// otherwise returns null.
|
const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
|
|
/// \brief Set the copy inialization expression of a block var decl.
|
void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
|
/// \brief Get the copy initialization expression of the VarDecl \p VD, or
|
/// NULL if none exists.
|
Expr *getBlockVarCopyInits(const VarDecl* VD);
|
|
/// \brief Allocate an uninitialized TypeSourceInfo.
|
///
|
/// The caller should initialize the memory held by TypeSourceInfo using
|
/// the TypeLoc wrappers.
|
///
|
/// \param T the type that will be the basis for type source info. This type
|
/// should refer to how the declarator was written in source code, not to
|
/// what type semantic analysis resolved the declarator to.
|
///
|
/// \param Size the size of the type info to create, or 0 if the size
|
/// should be calculated based on the type.
|
TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
|
|
/// \brief Allocate a TypeSourceInfo where all locations have been
|
/// initialized to a given location, which defaults to the empty
|
/// location.
|
TypeSourceInfo *
|
getTrivialTypeSourceInfo(QualType T,
|
SourceLocation Loc = SourceLocation()) const;
|
|
/// \brief Add a deallocation callback that will be invoked when the
|
/// ASTContext is destroyed.
|
///
|
/// \param Callback A callback function that will be invoked on destruction.
|
///
|
/// \param Data Pointer data that will be provided to the callback function
|
/// when it is called.
|
void AddDeallocation(void (*Callback)(void*), void *Data);
|
|
GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
|
GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
|
|
/// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
|
/// lazily, only when used; this is only relevant for function or file scoped
|
/// var definitions.
|
///
|
/// \returns true if the function/var must be CodeGen'ed/deserialized even if
|
/// it is not used.
|
bool DeclMustBeEmitted(const Decl *D);
|
|
const CXXConstructorDecl *
|
getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
|
|
void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
|
CXXConstructorDecl *CD);
|
|
void addDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
|
unsigned ParmIdx, Expr *DAE);
|
|
Expr *getDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
|
unsigned ParmIdx);
|
|
void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
|
|
TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
|
|
void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
|
|
DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
|
|
void setManglingNumber(const NamedDecl *ND, unsigned Number);
|
unsigned getManglingNumber(const NamedDecl *ND) const;
|
|
void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
|
unsigned getStaticLocalNumber(const VarDecl *VD) const;
|
|
/// \brief Retrieve the context for computing mangling numbers in the given
|
/// DeclContext.
|
MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
|
|
MangleNumberingContext *createMangleNumberingContext() const;
|
|
/// \brief Used by ParmVarDecl to store on the side the
|
/// index of the parameter when it exceeds the size of the normal bitfield.
|
void setParameterIndex(const ParmVarDecl *D, unsigned index);
|
|
/// \brief Used by ParmVarDecl to retrieve on the side the
|
/// index of the parameter when it exceeds the size of the normal bitfield.
|
unsigned getParameterIndex(const ParmVarDecl *D) const;
|
|
/// \brief Get the storage for the constant value of a materialized temporary
|
/// of static storage duration.
|
APValue *getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
|
bool MayCreate);
|
|
//===--------------------------------------------------------------------===//
|
// Statistics
|
//===--------------------------------------------------------------------===//
|
|
/// \brief The number of implicitly-declared default constructors.
|
static unsigned NumImplicitDefaultConstructors;
|
|
/// \brief The number of implicitly-declared default constructors for
|
/// which declarations were built.
|
static unsigned NumImplicitDefaultConstructorsDeclared;
|
|
/// \brief The number of implicitly-declared copy constructors.
|
static unsigned NumImplicitCopyConstructors;
|
|
/// \brief The number of implicitly-declared copy constructors for
|
/// which declarations were built.
|
static unsigned NumImplicitCopyConstructorsDeclared;
|
|
/// \brief The number of implicitly-declared move constructors.
|
static unsigned NumImplicitMoveConstructors;
|
|
/// \brief The number of implicitly-declared move constructors for
|
/// which declarations were built.
|
static unsigned NumImplicitMoveConstructorsDeclared;
|
|
/// \brief The number of implicitly-declared copy assignment operators.
|
static unsigned NumImplicitCopyAssignmentOperators;
|
|
/// \brief The number of implicitly-declared copy assignment operators for
|
/// which declarations were built.
|
static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
|
|
/// \brief The number of implicitly-declared move assignment operators.
|
static unsigned NumImplicitMoveAssignmentOperators;
|
|
/// \brief The number of implicitly-declared move assignment operators for
|
/// which declarations were built.
|
static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
|
|
/// \brief The number of implicitly-declared destructors.
|
static unsigned NumImplicitDestructors;
|
|
/// \brief The number of implicitly-declared destructors for which
|
/// declarations were built.
|
static unsigned NumImplicitDestructorsDeclared;
|
|
private:
|
ASTContext(const ASTContext &) = delete;
|
void operator=(const ASTContext &) = delete;
|
|
public:
|
/// \brief Initialize built-in types.
|
///
|
/// This routine may only be invoked once for a given ASTContext object.
|
/// It is normally invoked after ASTContext construction.
|
///
|
/// \param Target The target
|
void InitBuiltinTypes(const TargetInfo &Target,
|
const TargetInfo *AuxTarget = nullptr);
|
|
private:
|
void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
|
|
// Return the Objective-C type encoding for a given type.
|
void getObjCEncodingForTypeImpl(QualType t, std::string &S,
|
bool ExpandPointedToStructures,
|
bool ExpandStructures,
|
const FieldDecl *Field,
|
bool OutermostType = false,
|
bool EncodingProperty = false,
|
bool StructField = false,
|
bool EncodeBlockParameters = false,
|
bool EncodeClassNames = false,
|
bool EncodePointerToObjCTypedef = false,
|
QualType *NotEncodedT=nullptr) const;
|
|
// Adds the encoding of the structure's members.
|
void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
|
const FieldDecl *Field,
|
bool includeVBases = true,
|
QualType *NotEncodedT=nullptr) const;
|
public:
|
// Adds the encoding of a method parameter or return type.
|
void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
|
QualType T, std::string& S,
|
bool Extended) const;
|
|
/// \brief Returns true if this is an inline-initialized static data member
|
/// which is treated as a definition for MSVC compatibility.
|
bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
|
|
enum class InlineVariableDefinitionKind {
|
None, ///< Not an inline variable.
|
Weak, ///< Weak definition of inline variable.
|
WeakUnknown, ///< Weak for now, might become strong later in this TU.
|
Strong ///< Strong definition.
|
};
|
/// \brief Determine whether a definition of this inline variable should
|
/// be treated as a weak or strong definition. For compatibility with
|
/// C++14 and before, for a constexpr static data member, if there is an
|
/// out-of-line declaration of the member, we may promote it from weak to
|
/// strong.
|
InlineVariableDefinitionKind
|
getInlineVariableDefinitionKind(const VarDecl *VD) const;
|
|
private:
|
const ASTRecordLayout &
|
getObjCLayout(const ObjCInterfaceDecl *D,
|
const ObjCImplementationDecl *Impl) const;
|
|
/// \brief A set of deallocations that should be performed when the
|
/// ASTContext is destroyed.
|
// FIXME: We really should have a better mechanism in the ASTContext to
|
// manage running destructors for types which do variable sized allocation
|
// within the AST. In some places we thread the AST bump pointer allocator
|
// into the datastructures which avoids this mess during deallocation but is
|
// wasteful of memory, and here we require a lot of error prone book keeping
|
// in order to track and run destructors while we're tearing things down.
|
typedef llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>
|
DeallocationFunctionsAndArguments;
|
DeallocationFunctionsAndArguments Deallocations;
|
|
// FIXME: This currently contains the set of StoredDeclMaps used
|
// by DeclContext objects. This probably should not be in ASTContext,
|
// but we include it here so that ASTContext can quickly deallocate them.
|
llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
|
|
friend class DeclContext;
|
friend class DeclarationNameTable;
|
void ReleaseDeclContextMaps();
|
void ReleaseParentMapEntries();
|
|
std::unique_ptr<ParentMapPointers> PointerParents;
|
std::unique_ptr<ParentMapOtherNodes> OtherParents;
|
|
std::unique_ptr<VTableContextBase> VTContext;
|
|
public:
|
enum PragmaSectionFlag : unsigned {
|
PSF_None = 0,
|
PSF_Read = 0x1,
|
PSF_Write = 0x2,
|
PSF_Execute = 0x4,
|
PSF_Implicit = 0x8,
|
PSF_Invalid = 0x80000000U,
|
};
|
|
struct SectionInfo {
|
DeclaratorDecl *Decl;
|
SourceLocation PragmaSectionLocation;
|
int SectionFlags;
|
SectionInfo() {}
|
SectionInfo(DeclaratorDecl *Decl,
|
SourceLocation PragmaSectionLocation,
|
int SectionFlags)
|
: Decl(Decl),
|
PragmaSectionLocation(PragmaSectionLocation),
|
SectionFlags(SectionFlags) {}
|
};
|
|
llvm::StringMap<SectionInfo> SectionInfos;
|
};
|
|
/// \brief Utility function for constructing a nullary selector.
|
static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
|
IdentifierInfo* II = &Ctx.Idents.get(name);
|
return Ctx.Selectors.getSelector(0, &II);
|
}
|
|
/// \brief Utility function for constructing an unary selector.
|
static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
|
IdentifierInfo* II = &Ctx.Idents.get(name);
|
return Ctx.Selectors.getSelector(1, &II);
|
}
|
|
} // end namespace clang
|
|
// operator new and delete aren't allowed inside namespaces.
|
|
/// @brief Placement new for using the ASTContext's allocator.
|
///
|
/// This placement form of operator new uses the ASTContext's allocator for
|
/// obtaining memory.
|
///
|
/// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
|
/// here need to also be made there.
|
///
|
/// We intentionally avoid using a nothrow specification here so that the calls
|
/// to this operator will not perform a null check on the result -- the
|
/// underlying allocator never returns null pointers.
|
///
|
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
|
/// @code
|
/// // Default alignment (8)
|
/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
|
/// // Specific alignment
|
/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
|
/// @endcode
|
/// Memory allocated through this placement new operator does not need to be
|
/// explicitly freed, as ASTContext will free all of this memory when it gets
|
/// destroyed. Please note that you cannot use delete on the pointer.
|
///
|
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
|
/// @param C The ASTContext that provides the allocator.
|
/// @param Alignment The alignment of the allocated memory (if the underlying
|
/// allocator supports it).
|
/// @return The allocated memory. Could be NULL.
|
inline void *operator new(size_t Bytes, const clang::ASTContext &C,
|
size_t Alignment) {
|
return C.Allocate(Bytes, Alignment);
|
}
|
/// @brief Placement delete companion to the new above.
|
///
|
/// This operator is just a companion to the new above. There is no way of
|
/// invoking it directly; see the new operator for more details. This operator
|
/// is called implicitly by the compiler if a placement new expression using
|
/// the ASTContext throws in the object constructor.
|
inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
|
C.Deallocate(Ptr);
|
}
|
|
/// This placement form of operator new[] uses the ASTContext's allocator for
|
/// obtaining memory.
|
///
|
/// We intentionally avoid using a nothrow specification here so that the calls
|
/// to this operator will not perform a null check on the result -- the
|
/// underlying allocator never returns null pointers.
|
///
|
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
|
/// @code
|
/// // Default alignment (8)
|
/// char *data = new (Context) char[10];
|
/// // Specific alignment
|
/// char *data = new (Context, 4) char[10];
|
/// @endcode
|
/// Memory allocated through this placement new[] operator does not need to be
|
/// explicitly freed, as ASTContext will free all of this memory when it gets
|
/// destroyed. Please note that you cannot use delete on the pointer.
|
///
|
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
|
/// @param C The ASTContext that provides the allocator.
|
/// @param Alignment The alignment of the allocated memory (if the underlying
|
/// allocator supports it).
|
/// @return The allocated memory. Could be NULL.
|
inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
|
size_t Alignment = 8) {
|
return C.Allocate(Bytes, Alignment);
|
}
|
|
/// @brief Placement delete[] companion to the new[] above.
|
///
|
/// This operator is just a companion to the new[] above. There is no way of
|
/// invoking it directly; see the new[] operator for more details. This operator
|
/// is called implicitly by the compiler if a placement new[] expression using
|
/// the ASTContext throws in the object constructor.
|
inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
|
C.Deallocate(Ptr);
|
}
|
|
/// \brief Create the representation of a LazyGenerationalUpdatePtr.
|
template <typename Owner, typename T,
|
void (clang::ExternalASTSource::*Update)(Owner)>
|
typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
|
clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
|
const clang::ASTContext &Ctx, T Value) {
|
// Note, this is implemented here so that ExternalASTSource.h doesn't need to
|
// include ASTContext.h. We explicitly instantiate it for all relevant types
|
// in ASTContext.cpp.
|
if (auto *Source = Ctx.getExternalSource())
|
return new (Ctx) LazyData(Source, Value);
|
return Value;
|
}
|
|
#endif
|