huangcm
2025-04-26 2868c607307b8de19383692485d1cbe1b64eb94d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
/*
 * Copyright (C) 2015 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
 
package com.android.calculator2;
 
import android.content.Context;
import android.text.SpannableString;
import android.text.SpannableStringBuilder;
import android.text.Spanned;
import android.text.style.TtsSpan;
 
import java.io.ByteArrayOutputStream;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.DataOutputStream;
import java.io.IOException;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
 
/**
 * A mathematical expression represented as a sequence of "tokens".
 * Many tokens are represented by button ids for the corresponding operator.
 * A token may also represent the result of a previously evaluated expression.
 * The add() method adds a token to the end of the expression.  The delete method() removes one.
 * Clear() deletes the entire expression contents. Eval() evaluates the expression,
 * producing a UnifiedReal result.
 * Expressions are parsed only during evaluation; no explicit parse tree is maintained.
 *
 * The write() method is used to save the current expression.  Note that neither UnifiedReal
 * nor the underlying CR provide a serialization facility.  Thus we save all previously
 * computed values by writing out the expression that was used to compute them, and reevaluate
 * when reading it back in.
 */
class CalculatorExpr {
    /**
     * An interface for resolving expression indices in embedded subexpressions to
     * the associated CalculatorExpr, and associating a UnifiedReal result with it.
     * All methods are thread-safe in the strong sense; they may be called asynchronously
     * at any time from any thread.
     */
    public interface ExprResolver {
        /*
         * Retrieve the expression corresponding to index.
         */
        CalculatorExpr getExpr(long index);
        /*
         * Retrieve the degree mode associated with the expression at index i.
         */
        boolean getDegreeMode(long index);
        /*
         * Retrieve the stored result for the expression at index, or return null.
         */
        UnifiedReal getResult(long index);
        /*
         * Atomically test for an existing result, and set it if there was none.
         * Return the prior result if there was one, or the new one if there was not.
         * May only be called after getExpr.
         */
        UnifiedReal putResultIfAbsent(long index, UnifiedReal result);
    }
 
    private ArrayList<Token> mExpr;  // The actual representation
                                     // as a list of tokens.  Constant
                                     // tokens are always nonempty.
 
    private static enum TokenKind { CONSTANT, OPERATOR, PRE_EVAL };
    private static TokenKind[] tokenKindValues = TokenKind.values();
    private final static BigInteger BIG_MILLION = BigInteger.valueOf(1000000);
    private final static BigInteger BIG_BILLION = BigInteger.valueOf(1000000000);
 
    private static abstract class Token {
        abstract TokenKind kind();
 
        /**
         * Write token as either a very small Byte containing the TokenKind,
         * followed by data needed by subclass constructor,
         * or as a byte >= 0x20 directly describing the OPERATOR token.
         */
        abstract void write(DataOutput out) throws IOException;
 
        /**
         * Return a textual representation of the token.
         * The result is suitable for either display as part od the formula or TalkBack use.
         * It may be a SpannableString that includes added TalkBack information.
         * @param context context used for converting button ids to strings
         */
        abstract CharSequence toCharSequence(Context context);
    }
 
    /**
     * Representation of an operator token
     */
    private static class Operator extends Token {
        // TODO: rename id.
        public final int id; // We use the button resource id
        Operator(int resId) {
            id = resId;
        }
        Operator(byte op) throws IOException {
            id = KeyMaps.fromByte(op);
        }
        @Override
        void write(DataOutput out) throws IOException {
            out.writeByte(KeyMaps.toByte(id));
        }
        @Override
        public CharSequence toCharSequence(Context context) {
            String desc = KeyMaps.toDescriptiveString(context, id);
            if (desc != null) {
                SpannableString result = new SpannableString(KeyMaps.toString(context, id));
                Object descSpan = new TtsSpan.TextBuilder(desc).build();
                result.setSpan(descSpan, 0, result.length(), Spanned.SPAN_EXCLUSIVE_EXCLUSIVE);
                return result;
            } else {
                return KeyMaps.toString(context, id);
            }
        }
        @Override
        TokenKind kind() { return TokenKind.OPERATOR; }
    }
 
    /**
     * Representation of a (possibly incomplete) numerical constant.
     * Supports addition and removal of trailing characters; hence mutable.
     */
    private static class Constant extends Token implements Cloneable {
        private boolean mSawDecimal;
        private String mWhole;  // String preceding decimal point.
        private String mFraction; // String after decimal point.
        private int mExponent;  // Explicit exponent, only generated through addExponent.
        private static int SAW_DECIMAL = 0x1;
        private static int HAS_EXPONENT = 0x2;
 
        Constant() {
            mWhole = "";
            mFraction = "";
            // mSawDecimal = false;
            // mExponent = 0;
        };
 
        Constant(DataInput in) throws IOException {
            mWhole = in.readUTF();
            byte flags = in.readByte();
            if ((flags & SAW_DECIMAL) != 0) {
                mSawDecimal = true;
                mFraction = in.readUTF();
            } else {
                // mSawDecimal = false;
                mFraction = "";
            }
            if ((flags & HAS_EXPONENT) != 0) {
                mExponent = in.readInt();
            }
        }
 
        @Override
        void write(DataOutput out) throws IOException {
            byte flags = (byte)((mSawDecimal ? SAW_DECIMAL : 0)
                    | (mExponent != 0 ? HAS_EXPONENT : 0));
            out.writeByte(TokenKind.CONSTANT.ordinal());
            out.writeUTF(mWhole);
            out.writeByte(flags);
            if (mSawDecimal) {
                out.writeUTF(mFraction);
            }
            if (mExponent != 0) {
                out.writeInt(mExponent);
            }
        }
 
        // Given a button press, append corresponding digit.
        // We assume id is a digit or decimal point.
        // Just return false if this was the second (or later) decimal point
        // in this constant.
        // Assumes that this constant does not have an exponent.
        public boolean add(int id) {
            if (id == R.id.dec_point) {
                if (mSawDecimal || mExponent != 0) return false;
                mSawDecimal = true;
                return true;
            }
            int val = KeyMaps.digVal(id);
            if (mExponent != 0) {
                if (Math.abs(mExponent) <= 10000) {
                    if (mExponent > 0) {
                        mExponent = 10 * mExponent + val;
                    } else {
                        mExponent = 10 * mExponent - val;
                    }
                    return true;
                } else {  // Too large; refuse
                    return false;
                }
            }
            if (mSawDecimal) {
                mFraction += val;
            } else {
                mWhole += val;
            }
            return true;
        }
 
        public void addExponent(int exp) {
            // Note that adding a 0 exponent is a no-op.  That's OK.
            mExponent = exp;
        }
 
        /**
         * Undo the last add or remove last exponent digit.
         * Assumes the constant is nonempty.
         */
        public void delete() {
            if (mExponent != 0) {
                mExponent /= 10;
                // Once zero, it can only be added back with addExponent.
            } else if (!mFraction.isEmpty()) {
                mFraction = mFraction.substring(0, mFraction.length() - 1);
            } else if (mSawDecimal) {
                mSawDecimal = false;
            } else {
                mWhole = mWhole.substring(0, mWhole.length() - 1);
            }
        }
 
        public boolean isEmpty() {
            return (mSawDecimal == false && mWhole.isEmpty());
        }
 
        /**
         * Produce human-readable string representation of constant, as typed.
         * We do add digit grouping separators to the whole number, even if not typed.
         * Result is internationalized.
         */
        @Override
        public String toString() {
            String result;
            if (mExponent != 0) {
                result = mWhole;
            } else {
                result = StringUtils.addCommas(mWhole, 0, mWhole.length());
            }
            if (mSawDecimal) {
                result += '.';
                result += mFraction;
            }
            if (mExponent != 0) {
                result += "E" + mExponent;
            }
            return KeyMaps.translateResult(result);
        }
 
        /**
         * Return BoundedRational representation of constant, if well-formed.
         * Result is never null.
         */
        public BoundedRational toRational() throws SyntaxException {
            String whole = mWhole;
            if (whole.isEmpty()) {
                if (mFraction.isEmpty()) {
                    // Decimal point without digits.
                    throw new SyntaxException();
                } else {
                    whole = "0";
                }
            }
            BigInteger num = new BigInteger(whole + mFraction);
            BigInteger den = BigInteger.TEN.pow(mFraction.length());
            if (mExponent > 0) {
                num = num.multiply(BigInteger.TEN.pow(mExponent));
            }
            if (mExponent < 0) {
                den = den.multiply(BigInteger.TEN.pow(-mExponent));
            }
            return new BoundedRational(num, den);
        }
 
        @Override
        public CharSequence toCharSequence(Context context) {
            return toString();
        }
 
        @Override
        public TokenKind kind() {
            return TokenKind.CONSTANT;
        }
 
        // Override clone to make it public
        @Override
        public Object clone() {
            Constant result = new Constant();
            result.mWhole = mWhole;
            result.mFraction = mFraction;
            result.mSawDecimal = mSawDecimal;
            result.mExponent = mExponent;
            return result;
        }
    }
 
    /**
     * The "token" class for previously evaluated subexpressions.
     * We treat previously evaluated subexpressions as tokens.  These are inserted when we either
     * continue an expression after evaluating some of it, or copy an expression and paste it back
     * in.
     * This only contains enough information to allow us to display the expression in a
     * formula, or reevaluate the expression with the aid of an ExprResolver; we no longer
     * cache the result. The expression corresponding to the index can be obtained through
     * the ExprResolver, which looks it up in a subexpression database.
     * The representation includes a UnifiedReal value.  In order to
     * support saving and restoring, we also include the underlying expression itself, and the
     * context (currently just degree mode) used to evaluate it.  The short string representation
     * is also stored in order to avoid potentially expensive recomputation in the UI thread.
     */
    private static class PreEval extends Token {
        public final long mIndex;
        private final String mShortRep;  // Not internationalized.
        PreEval(long index, String shortRep) {
            mIndex = index;
            mShortRep = shortRep;
        }
        @Override
        // This writes out only a shallow representation of the result, without
        // information about subexpressions. To write out a deep representation, we
        // find referenced subexpressions, and iteratively write those as well.
        public void write(DataOutput out) throws IOException {
            out.writeByte(TokenKind.PRE_EVAL.ordinal());
            if (mIndex > Integer.MAX_VALUE || mIndex < Integer.MIN_VALUE) {
                // This would be millions of expressions per day for the life of the device.
                throw new AssertionError("Expression index too big");
            }
            out.writeInt((int)mIndex);
            out.writeUTF(mShortRep);
        }
        PreEval(DataInput in) throws IOException {
            mIndex = in.readInt();
            mShortRep = in.readUTF();
        }
        @Override
        public CharSequence toCharSequence(Context context) {
            return KeyMaps.translateResult(mShortRep);
        }
        @Override
        public TokenKind kind() {
            return TokenKind.PRE_EVAL;
        }
        public boolean hasEllipsis() {
            return mShortRep.lastIndexOf(KeyMaps.ELLIPSIS) != -1;
        }
    }
 
    /**
     * Read token from in.
     */
    public static Token newToken(DataInput in) throws IOException {
        byte kindByte = in.readByte();
        if (kindByte < 0x20) {
            TokenKind kind = tokenKindValues[kindByte];
            switch(kind) {
            case CONSTANT:
                return new Constant(in);
            case PRE_EVAL:
                PreEval pe = new PreEval(in);
                if (pe.mIndex == -1) {
                    // Database corrupted by earlier bug.
                    // Return a conspicuously wrong placeholder that won't lead to a crash.
                    Constant result = new Constant();
                    result.add(R.id.dec_point);
                    return result;
                } else {
                    return pe;
                }
            default: throw new IOException("Bad save file format");
            }
        } else {
            return new Operator(kindByte);
        }
    }
 
    CalculatorExpr() {
        mExpr = new ArrayList<Token>();
    }
 
    private CalculatorExpr(ArrayList<Token> expr) {
        mExpr = expr;
    }
 
    /**
     * Construct CalculatorExpr, by reading it from in.
     */
    CalculatorExpr(DataInput in) throws IOException {
        mExpr = new ArrayList<Token>();
        int size = in.readInt();
        for (int i = 0; i < size; ++i) {
            mExpr.add(newToken(in));
        }
    }
 
    /**
     * Write this expression to out.
     */
    public void write(DataOutput out) throws IOException {
        int size = mExpr.size();
        out.writeInt(size);
        for (int i = 0; i < size; ++i) {
            mExpr.get(i).write(out);
        }
    }
 
    /**
     * Use write() above to generate a byte array containing a serialized representation of
     * this expression.
     */
    public byte[] toBytes() {
        ByteArrayOutputStream byteArrayStream = new ByteArrayOutputStream();
        try (DataOutputStream out = new DataOutputStream(byteArrayStream)) {
            write(out);
        } catch (IOException e) {
            // Impossible; No IO involved.
            throw new AssertionError("Impossible IO exception", e);
        }
        return byteArrayStream.toByteArray();
    }
 
    /**
     * Does this expression end with a numeric constant?
     * As opposed to an operator or preevaluated expression.
     */
    boolean hasTrailingConstant() {
        int s = mExpr.size();
        if (s == 0) {
            return false;
        }
        Token t = mExpr.get(s-1);
        return t instanceof Constant;
    }
 
    /**
     * Does this expression end with a binary operator?
     */
    boolean hasTrailingBinary() {
        int s = mExpr.size();
        if (s == 0) return false;
        Token t = mExpr.get(s-1);
        if (!(t instanceof Operator)) return false;
        Operator o = (Operator)t;
        return (KeyMaps.isBinary(o.id));
    }
 
    /**
     * Append press of button with given id to expression.
     * If the insertion would clearly result in a syntax error, either just return false
     * and do nothing, or make an adjustment to avoid the problem.  We do the latter only
     * for unambiguous consecutive binary operators, in which case we delete the first
     * operator.
     */
    boolean add(int id) {
        int s = mExpr.size();
        final int d = KeyMaps.digVal(id);
        final boolean binary = KeyMaps.isBinary(id);
        Token lastTok = s == 0 ? null : mExpr.get(s-1);
        int lastOp = lastTok instanceof Operator ? ((Operator) lastTok).id : 0;
        // Quietly replace a trailing binary operator with another one, unless the second
        // operator is minus, in which case we just allow it as a unary minus.
        if (binary && !KeyMaps.isPrefix(id)) {
            if (s == 0 || lastOp == R.id.lparen || KeyMaps.isFunc(lastOp)
                    || KeyMaps.isPrefix(lastOp) && lastOp != R.id.op_sub) {
                return false;
            }
            while (hasTrailingBinary()) {
                delete();
            }
            // s invalid and not used below.
        }
        final boolean isConstPiece = (d != KeyMaps.NOT_DIGIT || id == R.id.dec_point);
        if (isConstPiece) {
            // Since we treat juxtaposition as multiplication, a constant can appear anywhere.
            if (s == 0) {
                mExpr.add(new Constant());
                s++;
            } else {
                Token last = mExpr.get(s-1);
                if(!(last instanceof Constant)) {
                    if (last instanceof PreEval) {
                        // Add explicit multiplication to avoid confusing display.
                        mExpr.add(new Operator(R.id.op_mul));
                        s++;
                    }
                    mExpr.add(new Constant());
                    s++;
                }
            }
            return ((Constant)(mExpr.get(s-1))).add(id);
        } else {
            mExpr.add(new Operator(id));
            return true;
        }
    }
 
    /**
     * Add exponent to the constant at the end of the expression.
     * Assumes there is a constant at the end of the expression.
     */
    void addExponent(int exp) {
        Token lastTok = mExpr.get(mExpr.size() - 1);
        ((Constant) lastTok).addExponent(exp);
    }
 
    /**
     * Remove trailing op_add and op_sub operators.
     */
    void removeTrailingAdditiveOperators() {
        while (true) {
            int s = mExpr.size();
            if (s == 0) {
                break;
            }
            Token lastTok = mExpr.get(s-1);
            if (!(lastTok instanceof Operator)) {
                break;
            }
            int lastOp = ((Operator) lastTok).id;
            if (lastOp != R.id.op_add && lastOp != R.id.op_sub) {
                break;
            }
            delete();
        }
    }
 
    /**
     * Append the contents of the argument expression.
     * It is assumed that the argument expression will not change, and thus its pieces can be
     * reused directly.
     */
    public void append(CalculatorExpr expr2) {
        int s = mExpr.size();
        int s2 = expr2.mExpr.size();
        // Check that we're not concatenating Constant or PreEval tokens, since the result would
        // look like a single constant, with very mysterious results for the user.
        if (s != 0 && s2 != 0) {
            Token last = mExpr.get(s-1);
            Token first = expr2.mExpr.get(0);
            if (!(first instanceof Operator) && !(last instanceof Operator)) {
                // Fudge it by adding an explicit multiplication.  We would have interpreted it as
                // such anyway, and this makes it recognizable to the user.
                mExpr.add(new Operator(R.id.op_mul));
            }
        }
        for (int i = 0; i < s2; ++i) {
            mExpr.add(expr2.mExpr.get(i));
        }
    }
 
    /**
     * Undo the last key addition, if any.
     * Or possibly remove a trailing exponent digit.
     */
    public void delete() {
        final int s = mExpr.size();
        if (s == 0) {
            return;
        }
        Token last = mExpr.get(s-1);
        if (last instanceof Constant) {
            Constant c = (Constant)last;
            c.delete();
            if (!c.isEmpty()) {
                return;
            }
        }
        mExpr.remove(s-1);
    }
 
    /**
     * Remove all tokens from the expression.
     */
    public void clear() {
        mExpr.clear();
    }
 
    public boolean isEmpty() {
        return mExpr.isEmpty();
    }
 
    /**
     * Returns a logical deep copy of the CalculatorExpr.
     * Operator and PreEval tokens are immutable, and thus aren't really copied.
     */
    public Object clone() {
        CalculatorExpr result = new CalculatorExpr();
        for (Token t : mExpr) {
            if (t instanceof Constant) {
                result.mExpr.add((Token)(((Constant)t).clone()));
            } else {
                result.mExpr.add(t);
            }
        }
        return result;
    }
 
    // Am I just a constant?
    public boolean isConstant() {
        if (mExpr.size() != 1) {
            return false;
        }
        return mExpr.get(0) instanceof Constant;
    }
 
    /**
     * Return a new expression consisting of a single token representing the current pre-evaluated
     * expression.
     * The caller supplies the expression index and short string representation.
     * The expression must have been previously evaluated.
     */
    public CalculatorExpr abbreviate(long index, String sr) {
        CalculatorExpr result = new CalculatorExpr();
        @SuppressWarnings("unchecked")
        Token t = new PreEval(index, sr);
        result.mExpr.add(t);
        return result;
    }
 
    /**
     * Internal evaluation functions return an EvalRet pair.
     * We compute rational (BoundedRational) results when possible, both as a performance
     * optimization, and to detect errors exactly when we can.
     */
    private static class EvalRet {
        public int pos; // Next position (expression index) to be parsed.
        public final UnifiedReal val; // Constructive Real result of evaluating subexpression.
        EvalRet(int p, UnifiedReal v) {
            pos = p;
            val = v;
        }
    }
 
    /**
     * Internal evaluation functions take an EvalContext argument.
     */
    private static class EvalContext {
        public final int mPrefixLength; // Length of prefix to evaluate. Not explicitly saved.
        public final boolean mDegreeMode;
        public final ExprResolver mExprResolver;  // Reconstructed, not saved.
        // If we add any other kinds of evaluation modes, they go here.
        EvalContext(boolean degreeMode, int len, ExprResolver er) {
            mDegreeMode = degreeMode;
            mPrefixLength = len;
            mExprResolver = er;
        }
        EvalContext(DataInput in, int len, ExprResolver er) throws IOException {
            mDegreeMode = in.readBoolean();
            mPrefixLength = len;
            mExprResolver = er;
        }
        void write(DataOutput out) throws IOException {
            out.writeBoolean(mDegreeMode);
        }
    }
 
    private UnifiedReal toRadians(UnifiedReal x, EvalContext ec) {
        if (ec.mDegreeMode) {
            return x.multiply(UnifiedReal.RADIANS_PER_DEGREE);
        } else {
            return x;
        }
    }
 
    private UnifiedReal fromRadians(UnifiedReal x, EvalContext ec) {
        if (ec.mDegreeMode) {
            return x.divide(UnifiedReal.RADIANS_PER_DEGREE);
        } else {
            return x;
        }
    }
 
    // The following methods can all throw IndexOutOfBoundsException in the event of a syntax
    // error.  We expect that to be caught in eval below.
 
    private boolean isOperatorUnchecked(int i, int op) {
        Token t = mExpr.get(i);
        if (!(t instanceof Operator)) {
            return false;
        }
        return ((Operator)(t)).id == op;
    }
 
    private boolean isOperator(int i, int op, EvalContext ec) {
        if (i >= ec.mPrefixLength) {
            return false;
        }
        return isOperatorUnchecked(i, op);
    }
 
    public static class SyntaxException extends Exception {
        public SyntaxException() {
            super();
        }
        public SyntaxException(String s) {
            super(s);
        }
    }
 
    // The following functions all evaluate some kind of expression starting at position i in
    // mExpr in a specified evaluation context.  They return both the expression value (as
    // constructive real and, if applicable, as BoundedRational) and the position of the next token
    // that was not used as part of the evaluation.
    // This is essentially a simple recursive descent parser combined with expression evaluation.
 
    private EvalRet evalUnary(int i, EvalContext ec) throws SyntaxException {
        final Token t = mExpr.get(i);
        if (t instanceof Constant) {
            Constant c = (Constant)t;
            return new EvalRet(i+1,new UnifiedReal(c.toRational()));
        }
        if (t instanceof PreEval) {
            final long index = ((PreEval)t).mIndex;
            UnifiedReal res = ec.mExprResolver.getResult(index);
            if (res == null) {
                // We try to minimize this recursive evaluation case, but currently don't
                // completely avoid it.
                res = nestedEval(index, ec.mExprResolver);
            }
            return new EvalRet(i+1, res);
        }
        EvalRet argVal;
        switch(((Operator)(t)).id) {
        case R.id.const_pi:
            return new EvalRet(i+1, UnifiedReal.PI);
        case R.id.const_e:
            return new EvalRet(i+1, UnifiedReal.E);
        case R.id.op_sqrt:
            // Seems to have highest precedence.
            // Does not add implicit paren.
            // Does seem to accept a leading minus.
            if (isOperator(i+1, R.id.op_sub, ec)) {
                argVal = evalUnary(i+2, ec);
                return new EvalRet(argVal.pos, argVal.val.negate().sqrt());
            } else {
                argVal = evalUnary(i+1, ec);
                return new EvalRet(argVal.pos, argVal.val.sqrt());
            }
        case R.id.lparen:
            argVal = evalExpr(i+1, ec);
            if (isOperator(argVal.pos, R.id.rparen, ec)) {
                argVal.pos++;
            }
            return new EvalRet(argVal.pos, argVal.val);
        case R.id.fun_sin:
            argVal = evalExpr(i+1, ec);
            if (isOperator(argVal.pos, R.id.rparen, ec)) {
                argVal.pos++;
            }
            return new EvalRet(argVal.pos, toRadians(argVal.val, ec).sin());
        case R.id.fun_cos:
            argVal = evalExpr(i+1, ec);
            if (isOperator(argVal.pos, R.id.rparen, ec)) {
                argVal.pos++;
            }
            return new EvalRet(argVal.pos, toRadians(argVal.val,ec).cos());
        case R.id.fun_tan:
            argVal = evalExpr(i+1, ec);
            if (isOperator(argVal.pos, R.id.rparen, ec)) {
                argVal.pos++;
            }
            UnifiedReal arg = toRadians(argVal.val, ec);
            return new EvalRet(argVal.pos, arg.sin().divide(arg.cos()));
        case R.id.fun_ln:
            argVal = evalExpr(i+1, ec);
            if (isOperator(argVal.pos, R.id.rparen, ec)) {
                argVal.pos++;
            }
            return new EvalRet(argVal.pos, argVal.val.ln());
        case R.id.fun_exp:
            argVal = evalExpr(i+1, ec);
            if (isOperator(argVal.pos, R.id.rparen, ec)) {
                argVal.pos++;
            }
            return new EvalRet(argVal.pos, argVal.val.exp());
        case R.id.fun_log:
            argVal = evalExpr(i+1, ec);
            if (isOperator(argVal.pos, R.id.rparen, ec)) {
                argVal.pos++;
            }
            return new EvalRet(argVal.pos, argVal.val.ln().divide(UnifiedReal.TEN.ln()));
        case R.id.fun_arcsin:
            argVal = evalExpr(i+1, ec);
            if (isOperator(argVal.pos, R.id.rparen, ec)) {
                argVal.pos++;
            }
            return new EvalRet(argVal.pos, fromRadians(argVal.val.asin(), ec));
        case R.id.fun_arccos:
            argVal = evalExpr(i+1, ec);
            if (isOperator(argVal.pos, R.id.rparen, ec)) {
                argVal.pos++;
            }
            return new EvalRet(argVal.pos, fromRadians(argVal.val.acos(), ec));
        case R.id.fun_arctan:
            argVal = evalExpr(i+1, ec);
            if (isOperator(argVal.pos, R.id.rparen, ec)) {
                argVal.pos++;
            }
            return new EvalRet(argVal.pos, fromRadians(argVal.val.atan(),ec));
        default:
            throw new SyntaxException("Unrecognized token in expression");
        }
    }
 
    private static final UnifiedReal ONE_HUNDREDTH = new UnifiedReal(100).inverse();
 
    private EvalRet evalSuffix(int i, EvalContext ec) throws SyntaxException {
        final EvalRet tmp = evalUnary(i, ec);
        int cpos = tmp.pos;
        UnifiedReal val = tmp.val;
 
        boolean isFact;
        boolean isSquared = false;
        while ((isFact = isOperator(cpos, R.id.op_fact, ec)) ||
                (isSquared = isOperator(cpos, R.id.op_sqr, ec)) ||
                isOperator(cpos, R.id.op_pct, ec)) {
            if (isFact) {
                val = val.fact();
            } else if (isSquared) {
                val = val.multiply(val);
            } else /* percent */ {
                val = val.multiply(ONE_HUNDREDTH);
            }
            ++cpos;
        }
        return new EvalRet(cpos, val);
    }
 
    private EvalRet evalFactor(int i, EvalContext ec) throws SyntaxException {
        final EvalRet result1 = evalSuffix(i, ec);
        int cpos = result1.pos;  // current position
        UnifiedReal val = result1.val;   // value so far
        if (isOperator(cpos, R.id.op_pow, ec)) {
            final EvalRet exp = evalSignedFactor(cpos + 1, ec);
            cpos = exp.pos;
            val = val.pow(exp.val);
        }
        return new EvalRet(cpos, val);
    }
 
    private EvalRet evalSignedFactor(int i, EvalContext ec) throws SyntaxException {
        final boolean negative = isOperator(i, R.id.op_sub, ec);
        int cpos = negative ? i + 1 : i;
        EvalRet tmp = evalFactor(cpos, ec);
        cpos = tmp.pos;
        final UnifiedReal result = negative ? tmp.val.negate() : tmp.val;
        return new EvalRet(cpos, result);
    }
 
    private boolean canStartFactor(int i) {
        if (i >= mExpr.size()) return false;
        Token t = mExpr.get(i);
        if (!(t instanceof Operator)) return true;
        int id = ((Operator)(t)).id;
        if (KeyMaps.isBinary(id)) return false;
        switch (id) {
            case R.id.op_fact:
            case R.id.rparen:
                return false;
            default:
                return true;
        }
    }
 
    private EvalRet evalTerm(int i, EvalContext ec) throws SyntaxException {
        EvalRet tmp = evalSignedFactor(i, ec);
        boolean is_mul = false;
        boolean is_div = false;
        int cpos = tmp.pos;   // Current position in expression.
        UnifiedReal val = tmp.val;    // Current value.
        while ((is_mul = isOperator(cpos, R.id.op_mul, ec))
               || (is_div = isOperator(cpos, R.id.op_div, ec))
               || canStartFactor(cpos)) {
            if (is_mul || is_div) ++cpos;
            tmp = evalSignedFactor(cpos, ec);
            if (is_div) {
                val = val.divide(tmp.val);
            } else {
                val = val.multiply(tmp.val);
            }
            cpos = tmp.pos;
            is_mul = is_div = false;
        }
        return new EvalRet(cpos, val);
    }
 
    /**
     * Is the subexpression starting at pos a simple percent constant?
     * This is used to recognize exppressions like 200+10%, which we handle specially.
     * This is defined as a Constant or PreEval token, followed by a percent sign, and followed
     * by either nothing or an additive operator.
     * Note that we are intentionally far more restrictive in recognizing such expressions than
     * e.g. http://blogs.msdn.com/b/oldnewthing/archive/2008/01/10/7047497.aspx .
     * When in doubt, we fall back to the the naive interpretation of % as 1/100.
     * Note that 100+(10)% yields 100.1 while 100+10% yields 110.  This may be controversial,
     * but is consistent with Google web search.
     */
    private boolean isPercent(int pos) {
        if (mExpr.size() < pos + 2 || !isOperatorUnchecked(pos + 1, R.id.op_pct)) {
            return false;
        }
        Token number = mExpr.get(pos);
        if (number instanceof Operator) {
            return false;
        }
        if (mExpr.size() == pos + 2) {
            return true;
        }
        if (!(mExpr.get(pos + 2) instanceof Operator)) {
            return false;
        }
        Operator op = (Operator) mExpr.get(pos + 2);
        return op.id == R.id.op_add || op.id == R.id.op_sub || op.id == R.id.rparen;
    }
 
    /**
     * Compute the multiplicative factor corresponding to an N% addition or subtraction.
     * @param pos position of Constant or PreEval expression token corresponding to N.
     * @param isSubtraction this is a subtraction, as opposed to addition.
     * @param ec usable evaluation contex; only length matters.
     * @return UnifiedReal value and position, which is pos + 2, i.e. after percent sign
     */
    private EvalRet getPercentFactor(int pos, boolean isSubtraction, EvalContext ec)
            throws SyntaxException {
        EvalRet tmp = evalUnary(pos, ec);
        UnifiedReal val = isSubtraction ? tmp.val.negate() : tmp.val;
        val = UnifiedReal.ONE.add(val.multiply(ONE_HUNDREDTH));
        return new EvalRet(pos + 2 /* after percent sign */, val);
    }
 
    private EvalRet evalExpr(int i, EvalContext ec) throws SyntaxException {
        EvalRet tmp = evalTerm(i, ec);
        boolean is_plus;
        int cpos = tmp.pos;
        UnifiedReal val = tmp.val;
        while ((is_plus = isOperator(cpos, R.id.op_add, ec))
               || isOperator(cpos, R.id.op_sub, ec)) {
            if (isPercent(cpos + 1)) {
                tmp = getPercentFactor(cpos + 1, !is_plus, ec);
                val = val.multiply(tmp.val);
            } else {
                tmp = evalTerm(cpos + 1, ec);
                if (is_plus) {
                    val = val.add(tmp.val);
                } else {
                    val = val.subtract(tmp.val);
                }
            }
            cpos = tmp.pos;
        }
        return new EvalRet(cpos, val);
    }
 
    /**
     * Return the starting position of the sequence of trailing binary operators.
     */
    private int trailingBinaryOpsStart() {
        int result = mExpr.size();
        while (result > 0) {
            Token last = mExpr.get(result - 1);
            if (!(last instanceof Operator)) break;
            Operator o = (Operator)last;
            if (!KeyMaps.isBinary(o.id)) break;
            --result;
        }
        return result;
    }
 
    /**
     * Is the current expression worth evaluating?
     */
    public boolean hasInterestingOps() {
        final int last = trailingBinaryOpsStart();
        int first = 0;
        if (last > first && isOperatorUnchecked(first, R.id.op_sub)) {
            // Leading minus is not by itself interesting.
            first++;
        }
        for (int i = first; i < last; ++i) {
            Token t1 = mExpr.get(i);
            if (t1 instanceof Operator
                    || t1 instanceof PreEval && ((PreEval)t1).hasEllipsis()) {
                return true;
            }
        }
        return false;
    }
 
    /**
     * Does the expression contain trig operations?
     */
    public boolean hasTrigFuncs() {
        for (Token t : mExpr) {
            if (t instanceof Operator) {
                Operator o = (Operator)t;
                if (KeyMaps.isTrigFunc(o.id)) {
                    return true;
                }
            }
        }
        return false;
    }
 
    /**
     * Add the indices of unevaluated PreEval expressions embedded in the current expression to
     * argument.  This includes only directly referenced expressions e, not those indirectly
     * referenced by e. If the index was already present, it is not added. If the argument
     * contained no duplicates, the result will not either. New indices are added to the end of
     * the list.
     */
    private void addReferencedExprs(ArrayList<Long> list, ExprResolver er) {
        for (Token t : mExpr) {
            if (t instanceof PreEval) {
                Long index = ((PreEval) t).mIndex;
                if (er.getResult(index) == null && !list.contains(index)) {
                    list.add(index);
                }
            }
        }
    }
 
    /**
     * Return a list of unevaluated expressions transitively referenced by the current one.
     * All expressions in the resulting list will have had er.getExpr() called on them.
     * The resulting list is ordered such that evaluating expressions in list order
     * should trigger few recursive evaluations.
     */
    public ArrayList<Long> getTransitivelyReferencedExprs(ExprResolver er) {
        // We could avoid triggering any recursive evaluations by actually building the
        // dependency graph and topologically sorting it. Note that sorting by index works
        // for positive and negative indices separately, but not their union. Currently we
        // just settle for reverse breadth-first-search order, which handles the common case
        // of simple dependency chains well.
        ArrayList<Long> list = new ArrayList<Long>();
        int scanned = 0;  // We've added expressions referenced by [0, scanned) to the list
        addReferencedExprs(list, er);
        while (scanned != list.size()) {
            er.getExpr(list.get(scanned++)).addReferencedExprs(list, er);
        }
        Collections.reverse(list);
        return list;
    }
 
    /**
     * Evaluate the expression at the given index to a UnifiedReal.
     * Both saves and returns the result.
     */
    UnifiedReal nestedEval(long index, ExprResolver er) throws SyntaxException {
        CalculatorExpr nestedExpr = er.getExpr(index);
        EvalContext newEc = new EvalContext(er.getDegreeMode(index),
                nestedExpr.trailingBinaryOpsStart(), er);
        EvalRet new_res = nestedExpr.evalExpr(0, newEc);
        return er.putResultIfAbsent(index, new_res.val);
    }
 
    /**
     * Evaluate the expression excluding trailing binary operators.
     * Errors result in exceptions, most of which are unchecked.  Should not be called
     * concurrently with modification of the expression.  May take a very long time; avoid calling
     * from UI thread.
     *
     * @param degreeMode use degrees rather than radians
     */
    UnifiedReal eval(boolean degreeMode, ExprResolver er) throws SyntaxException
                        // And unchecked exceptions thrown by UnifiedReal, CR,
                        // and BoundedRational.
    {
        // First evaluate all indirectly referenced expressions in increasing index order.
        // This ensures that subsequent evaluation never encounters an embedded PreEval
        // expression that has not been previously evaluated.
        // We could do the embedded evaluations recursively, but that risks running out of
        // stack space.
        ArrayList<Long> referenced = getTransitivelyReferencedExprs(er);
        for (long index : referenced) {
            nestedEval(index, er);
        }
        try {
            // We currently never include trailing binary operators, but include other trailing
            // operators.  Thus we usually, but not always, display results for prefixes of valid
            // expressions, and don't generate an error where we previously displayed an instant
            // result.  This reflects the Android L design.
            int prefixLen = trailingBinaryOpsStart();
            EvalContext ec = new EvalContext(degreeMode, prefixLen, er);
            EvalRet res = evalExpr(0, ec);
            if (res.pos != prefixLen) {
                throw new SyntaxException("Failed to parse full expression");
            }
            return res.val;
        } catch (IndexOutOfBoundsException e) {
            throw new SyntaxException("Unexpected expression end");
        }
    }
 
    // Produce a string representation of the expression itself
    SpannableStringBuilder toSpannableStringBuilder(Context context) {
        SpannableStringBuilder ssb = new SpannableStringBuilder();
        for (Token t : mExpr) {
            ssb.append(t.toCharSequence(context));
        }
        return ssb;
    }
}