// Copyright 2018 the V8 project authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style license that can be
|
// found in the LICENSE file.
|
|
#include "src/reloc-info.h"
|
|
#include "src/assembler-arch-inl.h"
|
#include "src/code-stubs.h"
|
#include "src/deoptimize-reason.h"
|
#include "src/deoptimizer.h"
|
#include "src/heap/heap-write-barrier-inl.h"
|
#include "src/objects/code-inl.h"
|
#include "src/snapshot/snapshot.h"
|
|
namespace v8 {
|
namespace internal {
|
|
const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING";
|
|
// -----------------------------------------------------------------------------
|
// Implementation of RelocInfoWriter and RelocIterator
|
//
|
// Relocation information is written backwards in memory, from high addresses
|
// towards low addresses, byte by byte. Therefore, in the encodings listed
|
// below, the first byte listed it at the highest address, and successive
|
// bytes in the record are at progressively lower addresses.
|
//
|
// Encoding
|
//
|
// The most common modes are given single-byte encodings. Also, it is
|
// easy to identify the type of reloc info and skip unwanted modes in
|
// an iteration.
|
//
|
// The encoding relies on the fact that there are fewer than 14
|
// different relocation modes using standard non-compact encoding.
|
//
|
// The first byte of a relocation record has a tag in its low 2 bits:
|
// Here are the record schemes, depending on the low tag and optional higher
|
// tags.
|
//
|
// Low tag:
|
// 00: embedded_object: [6-bit pc delta] 00
|
//
|
// 01: code_target: [6-bit pc delta] 01
|
//
|
// 10: wasm_stub_call: [6-bit pc delta] 10
|
//
|
// 11: long_record [6 bit reloc mode] 11
|
// followed by pc delta
|
// followed by optional data depending on type.
|
//
|
// If a pc delta exceeds 6 bits, it is split into a remainder that fits into
|
// 6 bits and a part that does not. The latter is encoded as a long record
|
// with PC_JUMP as pseudo reloc info mode. The former is encoded as part of
|
// the following record in the usual way. The long pc jump record has variable
|
// length:
|
// pc-jump: [PC_JUMP] 11
|
// [7 bits data] 0
|
// ...
|
// [7 bits data] 1
|
// (Bits 6..31 of pc delta, with leading zeroes
|
// dropped, and last non-zero chunk tagged with 1.)
|
|
const int kTagBits = 2;
|
const int kTagMask = (1 << kTagBits) - 1;
|
const int kLongTagBits = 6;
|
|
const int kEmbeddedObjectTag = 0;
|
const int kCodeTargetTag = 1;
|
const int kWasmStubCallTag = 2;
|
const int kDefaultTag = 3;
|
|
const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
|
const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
|
const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask;
|
|
const int kChunkBits = 7;
|
const int kChunkMask = (1 << kChunkBits) - 1;
|
const int kLastChunkTagBits = 1;
|
const int kLastChunkTagMask = 1;
|
const int kLastChunkTag = 1;
|
|
uint32_t RelocInfoWriter::WriteLongPCJump(uint32_t pc_delta) {
|
// Return if the pc_delta can fit in kSmallPCDeltaBits bits.
|
// Otherwise write a variable length PC jump for the bits that do
|
// not fit in the kSmallPCDeltaBits bits.
|
if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
|
WriteMode(RelocInfo::PC_JUMP);
|
uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
|
DCHECK_GT(pc_jump, 0);
|
// Write kChunkBits size chunks of the pc_jump.
|
for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
|
byte b = pc_jump & kChunkMask;
|
*--pos_ = b << kLastChunkTagBits;
|
}
|
// Tag the last chunk so it can be identified.
|
*pos_ = *pos_ | kLastChunkTag;
|
// Return the remaining kSmallPCDeltaBits of the pc_delta.
|
return pc_delta & kSmallPCDeltaMask;
|
}
|
|
void RelocInfoWriter::WriteShortTaggedPC(uint32_t pc_delta, int tag) {
|
// Write a byte of tagged pc-delta, possibly preceded by an explicit pc-jump.
|
pc_delta = WriteLongPCJump(pc_delta);
|
*--pos_ = pc_delta << kTagBits | tag;
|
}
|
|
void RelocInfoWriter::WriteShortData(intptr_t data_delta) {
|
*--pos_ = static_cast<byte>(data_delta);
|
}
|
|
void RelocInfoWriter::WriteMode(RelocInfo::Mode rmode) {
|
STATIC_ASSERT(RelocInfo::NUMBER_OF_MODES <= (1 << kLongTagBits));
|
*--pos_ = static_cast<int>((rmode << kTagBits) | kDefaultTag);
|
}
|
|
void RelocInfoWriter::WriteModeAndPC(uint32_t pc_delta, RelocInfo::Mode rmode) {
|
// Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
|
pc_delta = WriteLongPCJump(pc_delta);
|
WriteMode(rmode);
|
*--pos_ = pc_delta;
|
}
|
|
void RelocInfoWriter::WriteIntData(int number) {
|
for (int i = 0; i < kIntSize; i++) {
|
*--pos_ = static_cast<byte>(number);
|
// Signed right shift is arithmetic shift. Tested in test-utils.cc.
|
number = number >> kBitsPerByte;
|
}
|
}
|
|
void RelocInfoWriter::WriteData(intptr_t data_delta) {
|
for (int i = 0; i < kIntptrSize; i++) {
|
*--pos_ = static_cast<byte>(data_delta);
|
// Signed right shift is arithmetic shift. Tested in test-utils.cc.
|
data_delta = data_delta >> kBitsPerByte;
|
}
|
}
|
|
void RelocInfoWriter::Write(const RelocInfo* rinfo) {
|
RelocInfo::Mode rmode = rinfo->rmode();
|
#ifdef DEBUG
|
byte* begin_pos = pos_;
|
#endif
|
DCHECK(rinfo->rmode() < RelocInfo::NUMBER_OF_MODES);
|
DCHECK_GE(rinfo->pc() - reinterpret_cast<Address>(last_pc_), 0);
|
// Use unsigned delta-encoding for pc.
|
uint32_t pc_delta =
|
static_cast<uint32_t>(rinfo->pc() - reinterpret_cast<Address>(last_pc_));
|
|
// The two most common modes are given small tags, and usually fit in a byte.
|
if (rmode == RelocInfo::EMBEDDED_OBJECT) {
|
WriteShortTaggedPC(pc_delta, kEmbeddedObjectTag);
|
} else if (rmode == RelocInfo::CODE_TARGET) {
|
WriteShortTaggedPC(pc_delta, kCodeTargetTag);
|
DCHECK_LE(begin_pos - pos_, RelocInfo::kMaxCallSize);
|
} else if (rmode == RelocInfo::WASM_STUB_CALL) {
|
WriteShortTaggedPC(pc_delta, kWasmStubCallTag);
|
} else {
|
WriteModeAndPC(pc_delta, rmode);
|
if (RelocInfo::IsComment(rmode)) {
|
WriteData(rinfo->data());
|
} else if (RelocInfo::IsDeoptReason(rmode)) {
|
DCHECK_LT(rinfo->data(), 1 << kBitsPerByte);
|
WriteShortData(rinfo->data());
|
} else if (RelocInfo::IsConstPool(rmode) ||
|
RelocInfo::IsVeneerPool(rmode) || RelocInfo::IsDeoptId(rmode) ||
|
RelocInfo::IsDeoptPosition(rmode)) {
|
WriteIntData(static_cast<int>(rinfo->data()));
|
}
|
}
|
last_pc_ = reinterpret_cast<byte*>(rinfo->pc());
|
#ifdef DEBUG
|
DCHECK_LE(begin_pos - pos_, kMaxSize);
|
#endif
|
}
|
|
inline int RelocIterator::AdvanceGetTag() { return *--pos_ & kTagMask; }
|
|
inline RelocInfo::Mode RelocIterator::GetMode() {
|
return static_cast<RelocInfo::Mode>((*pos_ >> kTagBits) &
|
((1 << kLongTagBits) - 1));
|
}
|
|
inline void RelocIterator::ReadShortTaggedPC() {
|
rinfo_.pc_ += *pos_ >> kTagBits;
|
}
|
|
inline void RelocIterator::AdvanceReadPC() { rinfo_.pc_ += *--pos_; }
|
|
void RelocIterator::AdvanceReadInt() {
|
int x = 0;
|
for (int i = 0; i < kIntSize; i++) {
|
x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
|
}
|
rinfo_.data_ = x;
|
}
|
|
void RelocIterator::AdvanceReadData() {
|
intptr_t x = 0;
|
for (int i = 0; i < kIntptrSize; i++) {
|
x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
|
}
|
rinfo_.data_ = x;
|
}
|
|
void RelocIterator::AdvanceReadLongPCJump() {
|
// Read the 32-kSmallPCDeltaBits most significant bits of the
|
// pc jump in kChunkBits bit chunks and shift them into place.
|
// Stop when the last chunk is encountered.
|
uint32_t pc_jump = 0;
|
for (int i = 0; i < kIntSize; i++) {
|
byte pc_jump_part = *--pos_;
|
pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
|
if ((pc_jump_part & kLastChunkTagMask) == 1) break;
|
}
|
// The least significant kSmallPCDeltaBits bits will be added
|
// later.
|
rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
|
}
|
|
inline void RelocIterator::ReadShortData() {
|
uint8_t unsigned_b = *pos_;
|
rinfo_.data_ = unsigned_b;
|
}
|
|
void RelocIterator::next() {
|
DCHECK(!done());
|
// Basically, do the opposite of RelocInfoWriter::Write.
|
// Reading of data is as far as possible avoided for unwanted modes,
|
// but we must always update the pc.
|
//
|
// We exit this loop by returning when we find a mode we want.
|
while (pos_ > end_) {
|
int tag = AdvanceGetTag();
|
if (tag == kEmbeddedObjectTag) {
|
ReadShortTaggedPC();
|
if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
|
} else if (tag == kCodeTargetTag) {
|
ReadShortTaggedPC();
|
if (SetMode(RelocInfo::CODE_TARGET)) return;
|
} else if (tag == kWasmStubCallTag) {
|
ReadShortTaggedPC();
|
if (SetMode(RelocInfo::WASM_STUB_CALL)) return;
|
} else {
|
DCHECK_EQ(tag, kDefaultTag);
|
RelocInfo::Mode rmode = GetMode();
|
if (rmode == RelocInfo::PC_JUMP) {
|
AdvanceReadLongPCJump();
|
} else {
|
AdvanceReadPC();
|
if (RelocInfo::IsComment(rmode)) {
|
if (SetMode(rmode)) {
|
AdvanceReadData();
|
return;
|
}
|
Advance(kIntptrSize);
|
} else if (RelocInfo::IsDeoptReason(rmode)) {
|
Advance();
|
if (SetMode(rmode)) {
|
ReadShortData();
|
return;
|
}
|
} else if (RelocInfo::IsConstPool(rmode) ||
|
RelocInfo::IsVeneerPool(rmode) ||
|
RelocInfo::IsDeoptId(rmode) ||
|
RelocInfo::IsDeoptPosition(rmode)) {
|
if (SetMode(rmode)) {
|
AdvanceReadInt();
|
return;
|
}
|
Advance(kIntSize);
|
} else if (SetMode(static_cast<RelocInfo::Mode>(rmode))) {
|
return;
|
}
|
}
|
}
|
}
|
done_ = true;
|
}
|
|
RelocIterator::RelocIterator(Code* code, int mode_mask)
|
: RelocIterator(code, code->raw_instruction_start(), code->constant_pool(),
|
code->relocation_end(), code->relocation_start(),
|
mode_mask) {}
|
|
RelocIterator::RelocIterator(const CodeReference code_reference, int mode_mask)
|
: RelocIterator(nullptr, code_reference.instruction_start(),
|
code_reference.constant_pool(),
|
code_reference.relocation_end(),
|
code_reference.relocation_start(), mode_mask) {}
|
|
RelocIterator::RelocIterator(EmbeddedData* embedded_data, Code* code,
|
int mode_mask)
|
: RelocIterator(
|
code, embedded_data->InstructionStartOfBuiltin(code->builtin_index()),
|
code->constant_pool(),
|
code->relocation_start() + code->relocation_size(),
|
code->relocation_start(), mode_mask) {}
|
|
RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask)
|
: RelocIterator(nullptr, reinterpret_cast<Address>(desc.buffer), 0,
|
desc.buffer + desc.buffer_size,
|
desc.buffer + desc.buffer_size - desc.reloc_size,
|
mode_mask) {}
|
|
RelocIterator::RelocIterator(Vector<byte> instructions,
|
Vector<const byte> reloc_info, Address const_pool,
|
int mode_mask)
|
: RelocIterator(nullptr, reinterpret_cast<Address>(instructions.start()),
|
const_pool, reloc_info.start() + reloc_info.size(),
|
reloc_info.start(), mode_mask) {}
|
|
RelocIterator::RelocIterator(Code* host, Address pc, Address constant_pool,
|
const byte* pos, const byte* end, int mode_mask)
|
: pos_(pos), end_(end), mode_mask_(mode_mask) {
|
// Relocation info is read backwards.
|
DCHECK_GE(pos_, end_);
|
rinfo_.host_ = host;
|
rinfo_.pc_ = pc;
|
rinfo_.constant_pool_ = constant_pool;
|
if (mode_mask_ == 0) pos_ = end_;
|
next();
|
}
|
|
// -----------------------------------------------------------------------------
|
// Implementation of RelocInfo
|
|
// static
|
bool RelocInfo::OffHeapTargetIsCodedSpecially() {
|
#if defined(V8_TARGET_ARCH_ARM) || defined(V8_TARGET_ARCH_ARM64) || \
|
defined(V8_TARGET_ARCH_X64)
|
return false;
|
#elif defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_MIPS) || \
|
defined(V8_TARGET_ARCH_MIPS64) || defined(V8_TARGET_ARCH_PPC) || \
|
defined(V8_TARGET_ARCH_S390)
|
return true;
|
#endif
|
}
|
|
Address RelocInfo::wasm_call_address() const {
|
DCHECK_EQ(rmode_, WASM_CALL);
|
return Assembler::target_address_at(pc_, constant_pool_);
|
}
|
|
void RelocInfo::set_wasm_call_address(Address address,
|
ICacheFlushMode icache_flush_mode) {
|
DCHECK_EQ(rmode_, WASM_CALL);
|
Assembler::set_target_address_at(pc_, constant_pool_, address,
|
icache_flush_mode);
|
}
|
|
Address RelocInfo::wasm_stub_call_address() const {
|
DCHECK_EQ(rmode_, WASM_STUB_CALL);
|
return Assembler::target_address_at(pc_, constant_pool_);
|
}
|
|
void RelocInfo::set_wasm_stub_call_address(Address address,
|
ICacheFlushMode icache_flush_mode) {
|
DCHECK_EQ(rmode_, WASM_STUB_CALL);
|
Assembler::set_target_address_at(pc_, constant_pool_, address,
|
icache_flush_mode);
|
}
|
|
void RelocInfo::set_target_address(Address target,
|
WriteBarrierMode write_barrier_mode,
|
ICacheFlushMode icache_flush_mode) {
|
DCHECK(IsCodeTargetMode(rmode_) || IsRuntimeEntry(rmode_) ||
|
IsWasmCall(rmode_));
|
Assembler::set_target_address_at(pc_, constant_pool_, target,
|
icache_flush_mode);
|
if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != nullptr &&
|
IsCodeTargetMode(rmode_)) {
|
Code* target_code = Code::GetCodeFromTargetAddress(target);
|
MarkingBarrierForCode(host(), this, target_code);
|
}
|
}
|
|
bool RelocInfo::RequiresRelocationAfterCodegen(const CodeDesc& desc) {
|
RelocIterator it(desc, RelocInfo::PostCodegenRelocationMask());
|
return !it.done();
|
}
|
|
bool RelocInfo::RequiresRelocation(Code* code) {
|
RelocIterator it(code, RelocInfo::kApplyMask);
|
return !it.done();
|
}
|
|
#ifdef ENABLE_DISASSEMBLER
|
const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
|
switch (rmode) {
|
case NONE:
|
return "no reloc";
|
case EMBEDDED_OBJECT:
|
return "embedded object";
|
case CODE_TARGET:
|
return "code target";
|
case RELATIVE_CODE_TARGET:
|
return "relative code target";
|
case RUNTIME_ENTRY:
|
return "runtime entry";
|
case COMMENT:
|
return "comment";
|
case EXTERNAL_REFERENCE:
|
return "external reference";
|
case INTERNAL_REFERENCE:
|
return "internal reference";
|
case INTERNAL_REFERENCE_ENCODED:
|
return "encoded internal reference";
|
case OFF_HEAP_TARGET:
|
return "off heap target";
|
case DEOPT_SCRIPT_OFFSET:
|
return "deopt script offset";
|
case DEOPT_INLINING_ID:
|
return "deopt inlining id";
|
case DEOPT_REASON:
|
return "deopt reason";
|
case DEOPT_ID:
|
return "deopt index";
|
case CONST_POOL:
|
return "constant pool";
|
case VENEER_POOL:
|
return "veneer pool";
|
case WASM_CALL:
|
return "internal wasm call";
|
case WASM_STUB_CALL:
|
return "wasm stub call";
|
case JS_TO_WASM_CALL:
|
return "js to wasm call";
|
case NUMBER_OF_MODES:
|
case PC_JUMP:
|
UNREACHABLE();
|
}
|
return "unknown relocation type";
|
}
|
|
void RelocInfo::Print(Isolate* isolate, std::ostream& os) { // NOLINT
|
os << reinterpret_cast<const void*>(pc_) << " " << RelocModeName(rmode_);
|
if (IsComment(rmode_)) {
|
os << " (" << reinterpret_cast<char*>(data_) << ")";
|
} else if (rmode_ == DEOPT_SCRIPT_OFFSET || rmode_ == DEOPT_INLINING_ID) {
|
os << " (" << data() << ")";
|
} else if (rmode_ == DEOPT_REASON) {
|
os << " ("
|
<< DeoptimizeReasonToString(static_cast<DeoptimizeReason>(data_)) << ")";
|
} else if (rmode_ == EMBEDDED_OBJECT) {
|
os << " (" << Brief(target_object()) << ")";
|
} else if (rmode_ == EXTERNAL_REFERENCE) {
|
if (isolate) {
|
ExternalReferenceEncoder ref_encoder(isolate);
|
os << " ("
|
<< ref_encoder.NameOfAddress(isolate, target_external_reference())
|
<< ") ";
|
}
|
os << " (" << reinterpret_cast<const void*>(target_external_reference())
|
<< ")";
|
} else if (IsCodeTargetMode(rmode_)) {
|
const Address code_target = target_address();
|
Code* code = Code::GetCodeFromTargetAddress(code_target);
|
DCHECK(code->IsCode());
|
os << " (" << Code::Kind2String(code->kind());
|
if (Builtins::IsBuiltin(code)) {
|
os << " " << Builtins::name(code->builtin_index());
|
} else if (code->kind() == Code::STUB) {
|
os << " " << CodeStub::MajorName(CodeStub::GetMajorKey(code));
|
}
|
os << ") (" << reinterpret_cast<const void*>(target_address()) << ")";
|
} else if (IsRuntimeEntry(rmode_) && isolate->deoptimizer_data() != nullptr) {
|
// Deoptimization bailouts are stored as runtime entries.
|
DeoptimizeKind type;
|
if (Deoptimizer::IsDeoptimizationEntry(isolate, target_address(), &type)) {
|
int id = GetDeoptimizationId(isolate, type);
|
os << " (" << Deoptimizer::MessageFor(type) << " deoptimization bailout "
|
<< id << ")";
|
}
|
} else if (IsConstPool(rmode_)) {
|
os << " (size " << static_cast<int>(data_) << ")";
|
}
|
|
os << "\n";
|
}
|
#endif // ENABLE_DISASSEMBLER
|
|
#ifdef VERIFY_HEAP
|
void RelocInfo::Verify(Isolate* isolate) {
|
switch (rmode_) {
|
case EMBEDDED_OBJECT:
|
Object::VerifyPointer(isolate, target_object());
|
break;
|
case CODE_TARGET:
|
case RELATIVE_CODE_TARGET: {
|
// convert inline target address to code object
|
Address addr = target_address();
|
CHECK_NE(addr, kNullAddress);
|
// Check that we can find the right code object.
|
Code* code = Code::GetCodeFromTargetAddress(addr);
|
Object* found = isolate->FindCodeObject(addr);
|
CHECK(found->IsCode());
|
CHECK(code->address() == HeapObject::cast(found)->address());
|
break;
|
}
|
case INTERNAL_REFERENCE:
|
case INTERNAL_REFERENCE_ENCODED: {
|
Address target = target_internal_reference();
|
Address pc = target_internal_reference_address();
|
Code* code = Code::cast(isolate->FindCodeObject(pc));
|
CHECK(target >= code->InstructionStart());
|
CHECK(target <= code->InstructionEnd());
|
break;
|
}
|
case OFF_HEAP_TARGET: {
|
Address addr = target_off_heap_target();
|
CHECK_NE(addr, kNullAddress);
|
CHECK_NOT_NULL(InstructionStream::TryLookupCode(isolate, addr));
|
break;
|
}
|
case RUNTIME_ENTRY:
|
case COMMENT:
|
case EXTERNAL_REFERENCE:
|
case DEOPT_SCRIPT_OFFSET:
|
case DEOPT_INLINING_ID:
|
case DEOPT_REASON:
|
case DEOPT_ID:
|
case CONST_POOL:
|
case VENEER_POOL:
|
case WASM_CALL:
|
case WASM_STUB_CALL:
|
case JS_TO_WASM_CALL:
|
case NONE:
|
break;
|
case NUMBER_OF_MODES:
|
case PC_JUMP:
|
UNREACHABLE();
|
break;
|
}
|
}
|
#endif // VERIFY_HEAP
|
|
} // namespace internal
|
} // namespace v8
|