// Copyright 2012 the V8 project authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style license that can be
|
// found in the LICENSE file.
|
|
#if V8_TARGET_ARCH_MIPS64
|
|
#include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
|
|
#include "src/assembler-inl.h"
|
#include "src/code-stubs.h"
|
#include "src/log.h"
|
#include "src/macro-assembler.h"
|
#include "src/objects-inl.h"
|
#include "src/regexp/regexp-macro-assembler.h"
|
#include "src/regexp/regexp-stack.h"
|
#include "src/unicode.h"
|
|
namespace v8 {
|
namespace internal {
|
|
#ifndef V8_INTERPRETED_REGEXP
|
|
/* clang-format off
|
*
|
* This assembler uses the following register assignment convention
|
* - t3 : Temporarily stores the index of capture start after a matching pass
|
* for a global regexp.
|
* - a5 : Pointer to current code object (Code*) including heap object tag.
|
* - a6 : Current position in input, as negative offset from end of string.
|
* Please notice that this is the byte offset, not the character offset!
|
* - a7 : Currently loaded character. Must be loaded using
|
* LoadCurrentCharacter before using any of the dispatch methods.
|
* - t0 : Points to tip of backtrack stack
|
* - t1 : Unused.
|
* - t2 : End of input (points to byte after last character in input).
|
* - fp : Frame pointer. Used to access arguments, local variables and
|
* RegExp registers.
|
* - sp : Points to tip of C stack.
|
*
|
* The remaining registers are free for computations.
|
* Each call to a public method should retain this convention.
|
*
|
* TODO(plind): O32 documented here with intent of having single 32/64 codebase
|
* in the future.
|
*
|
* The O32 stack will have the following structure:
|
*
|
* - fp[72] Isolate* isolate (address of the current isolate)
|
* - fp[68] direct_call (if 1, direct call from JavaScript code,
|
* if 0, call through the runtime system).
|
* - fp[64] stack_area_base (High end of the memory area to use as
|
* backtracking stack).
|
* - fp[60] capture array size (may fit multiple sets of matches)
|
* - fp[44..59] MIPS O32 four argument slots
|
* - fp[40] int* capture_array (int[num_saved_registers_], for output).
|
* --- sp when called ---
|
* - fp[36] return address (lr).
|
* - fp[32] old frame pointer (r11).
|
* - fp[0..31] backup of registers s0..s7.
|
* --- frame pointer ----
|
* - fp[-4] end of input (address of end of string).
|
* - fp[-8] start of input (address of first character in string).
|
* - fp[-12] start index (character index of start).
|
* - fp[-16] void* input_string (location of a handle containing the string).
|
* - fp[-20] success counter (only for global regexps to count matches).
|
* - fp[-24] Offset of location before start of input (effectively character
|
* string start - 1). Used to initialize capture registers to a
|
* non-position.
|
* - fp[-28] At start (if 1, we are starting at the start of the
|
* string, otherwise 0)
|
* - fp[-32] register 0 (Only positions must be stored in the first
|
* - register 1 num_saved_registers_ registers)
|
* - ...
|
* - register num_registers-1
|
* --- sp ---
|
*
|
*
|
* The N64 stack will have the following structure:
|
*
|
* - fp[80] Isolate* isolate (address of the current isolate) kIsolate
|
* kStackFrameHeader
|
* --- sp when called ---
|
* - fp[72] ra Return from RegExp code (ra). kReturnAddress
|
* - fp[64] s9, old-fp Old fp, callee saved(s9).
|
* - fp[0..63] s0..s7 Callee-saved registers s0..s7.
|
* --- frame pointer ----
|
* - fp[-8] direct_call (1 = direct call from JS, 0 = from runtime) kDirectCall
|
* - fp[-16] stack_base (Top of backtracking stack). kStackHighEnd
|
* - fp[-24] capture array size (may fit multiple sets of matches) kNumOutputRegisters
|
* - fp[-32] int* capture_array (int[num_saved_registers_], for output). kRegisterOutput
|
* - fp[-40] end of input (address of end of string). kInputEnd
|
* - fp[-48] start of input (address of first character in string). kInputStart
|
* - fp[-56] start index (character index of start). kStartIndex
|
* - fp[-64] void* input_string (location of a handle containing the string). kInputString
|
* - fp[-72] success counter (only for global regexps to count matches). kSuccessfulCaptures
|
* - fp[-80] Offset of location before start of input (effectively character kStringStartMinusOne
|
* position -1). Used to initialize capture registers to a
|
* non-position.
|
* --------- The following output registers are 32-bit values. ---------
|
* - fp[-88] register 0 (Only positions must be stored in the first kRegisterZero
|
* - register 1 num_saved_registers_ registers)
|
* - ...
|
* - register num_registers-1
|
* --- sp ---
|
*
|
* The first num_saved_registers_ registers are initialized to point to
|
* "character -1" in the string (i.e., char_size() bytes before the first
|
* character of the string). The remaining registers start out as garbage.
|
*
|
* The data up to the return address must be placed there by the calling
|
* code and the remaining arguments are passed in registers, e.g. by calling the
|
* code entry as cast to a function with the signature:
|
* int (*match)(String* input_string,
|
* int start_index,
|
* Address start,
|
* Address end,
|
* int* capture_output_array,
|
* int num_capture_registers,
|
* byte* stack_area_base,
|
* bool direct_call = false,
|
* Isolate* isolate);
|
* The call is performed by NativeRegExpMacroAssembler::Execute()
|
* (in regexp-macro-assembler.cc) via the GeneratedCode wrapper.
|
*
|
* clang-format on
|
*/
|
|
#define __ ACCESS_MASM(masm_)
|
|
RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone,
|
Mode mode,
|
int registers_to_save)
|
: NativeRegExpMacroAssembler(isolate, zone),
|
masm_(new MacroAssembler(isolate, nullptr, kRegExpCodeSize,
|
CodeObjectRequired::kYes)),
|
mode_(mode),
|
num_registers_(registers_to_save),
|
num_saved_registers_(registers_to_save),
|
entry_label_(),
|
start_label_(),
|
success_label_(),
|
backtrack_label_(),
|
exit_label_(),
|
internal_failure_label_() {
|
DCHECK_EQ(0, registers_to_save % 2);
|
__ jmp(&entry_label_); // We'll write the entry code later.
|
// If the code gets too big or corrupted, an internal exception will be
|
// raised, and we will exit right away.
|
__ bind(&internal_failure_label_);
|
__ li(v0, Operand(FAILURE));
|
__ Ret();
|
__ bind(&start_label_); // And then continue from here.
|
}
|
|
|
RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
|
delete masm_;
|
// Unuse labels in case we throw away the assembler without calling GetCode.
|
entry_label_.Unuse();
|
start_label_.Unuse();
|
success_label_.Unuse();
|
backtrack_label_.Unuse();
|
exit_label_.Unuse();
|
check_preempt_label_.Unuse();
|
stack_overflow_label_.Unuse();
|
internal_failure_label_.Unuse();
|
}
|
|
|
int RegExpMacroAssemblerMIPS::stack_limit_slack() {
|
return RegExpStack::kStackLimitSlack;
|
}
|
|
|
void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
|
if (by != 0) {
|
__ Daddu(current_input_offset(),
|
current_input_offset(), Operand(by * char_size()));
|
}
|
}
|
|
|
void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
|
DCHECK_LE(0, reg);
|
DCHECK_GT(num_registers_, reg);
|
if (by != 0) {
|
__ Ld(a0, register_location(reg));
|
__ Daddu(a0, a0, Operand(by));
|
__ Sd(a0, register_location(reg));
|
}
|
}
|
|
|
void RegExpMacroAssemblerMIPS::Backtrack() {
|
CheckPreemption();
|
// Pop Code* offset from backtrack stack, add Code* and jump to location.
|
Pop(a0);
|
__ Daddu(a0, a0, code_pointer());
|
__ Jump(a0);
|
}
|
|
|
void RegExpMacroAssemblerMIPS::Bind(Label* label) {
|
__ bind(label);
|
}
|
|
|
void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
|
BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
|
}
|
|
|
void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
|
BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
|
}
|
|
|
void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) {
|
__ Ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
|
__ Daddu(a0, current_input_offset(), Operand(-char_size()));
|
BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
|
}
|
|
|
void RegExpMacroAssemblerMIPS::CheckNotAtStart(int cp_offset,
|
Label* on_not_at_start) {
|
__ Ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
|
__ Daddu(a0, current_input_offset(),
|
Operand(-char_size() + cp_offset * char_size()));
|
BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
|
}
|
|
|
void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
|
BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
|
}
|
|
|
void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
|
Label backtrack_non_equal;
|
__ Lw(a0, MemOperand(backtrack_stackpointer(), 0));
|
__ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
|
__ Daddu(backtrack_stackpointer(),
|
backtrack_stackpointer(),
|
Operand(kIntSize));
|
__ bind(&backtrack_non_equal);
|
BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
|
}
|
|
|
void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
|
int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
|
Label fallthrough;
|
__ Ld(a0, register_location(start_reg)); // Index of start of capture.
|
__ Ld(a1, register_location(start_reg + 1)); // Index of end of capture.
|
__ Dsubu(a1, a1, a0); // Length of capture.
|
|
// At this point, the capture registers are either both set or both cleared.
|
// If the capture length is zero, then the capture is either empty or cleared.
|
// Fall through in both cases.
|
__ Branch(&fallthrough, eq, a1, Operand(zero_reg));
|
|
if (read_backward) {
|
__ Ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
|
__ Daddu(t1, t1, a1);
|
BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
|
} else {
|
__ Daddu(t1, a1, current_input_offset());
|
// Check that there are enough characters left in the input.
|
BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
|
}
|
|
if (mode_ == LATIN1) {
|
Label success;
|
Label fail;
|
Label loop_check;
|
|
// a0 - offset of start of capture.
|
// a1 - length of capture.
|
__ Daddu(a0, a0, Operand(end_of_input_address()));
|
__ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
|
if (read_backward) {
|
__ Dsubu(a2, a2, Operand(a1));
|
}
|
__ Daddu(a1, a0, Operand(a1));
|
|
// a0 - Address of start of capture.
|
// a1 - Address of end of capture.
|
// a2 - Address of current input position.
|
|
Label loop;
|
__ bind(&loop);
|
__ Lbu(a3, MemOperand(a0, 0));
|
__ daddiu(a0, a0, char_size());
|
__ Lbu(a4, MemOperand(a2, 0));
|
__ daddiu(a2, a2, char_size());
|
|
__ Branch(&loop_check, eq, a4, Operand(a3));
|
|
// Mismatch, try case-insensitive match (converting letters to lower-case).
|
__ Or(a3, a3, Operand(0x20)); // Convert capture character to lower-case.
|
__ Or(a4, a4, Operand(0x20)); // Also convert input character.
|
__ Branch(&fail, ne, a4, Operand(a3));
|
__ Dsubu(a3, a3, Operand('a'));
|
__ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
|
// Latin-1: Check for values in range [224,254] but not 247.
|
__ Dsubu(a3, a3, Operand(224 - 'a'));
|
// Weren't Latin-1 letters.
|
__ Branch(&fail, hi, a3, Operand(254 - 224));
|
// Check for 247.
|
__ Branch(&fail, eq, a3, Operand(247 - 224));
|
|
__ bind(&loop_check);
|
__ Branch(&loop, lt, a0, Operand(a1));
|
__ jmp(&success);
|
|
__ bind(&fail);
|
GoTo(on_no_match);
|
|
__ bind(&success);
|
// Compute new value of character position after the matched part.
|
__ Dsubu(current_input_offset(), a2, end_of_input_address());
|
if (read_backward) {
|
__ Ld(t1, register_location(start_reg)); // Index of start of capture.
|
__ Ld(a2, register_location(start_reg + 1)); // Index of end of capture.
|
__ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
|
__ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
|
}
|
} else {
|
DCHECK(mode_ == UC16);
|
// Put regexp engine registers on stack.
|
RegList regexp_registers_to_retain = current_input_offset().bit() |
|
current_character().bit() | backtrack_stackpointer().bit();
|
__ MultiPush(regexp_registers_to_retain);
|
|
int argument_count = 4;
|
__ PrepareCallCFunction(argument_count, a2);
|
|
// a0 - offset of start of capture.
|
// a1 - length of capture.
|
|
// Put arguments into arguments registers.
|
// Parameters are
|
// a0: Address byte_offset1 - Address captured substring's start.
|
// a1: Address byte_offset2 - Address of current character position.
|
// a2: size_t byte_length - length of capture in bytes(!).
|
// a3: Isolate* isolate or 0 if unicode flag.
|
|
// Address of start of capture.
|
__ Daddu(a0, a0, Operand(end_of_input_address()));
|
// Length of capture.
|
__ mov(a2, a1);
|
// Save length in callee-save register for use on return.
|
__ mov(s3, a1);
|
// Address of current input position.
|
__ Daddu(a1, current_input_offset(), Operand(end_of_input_address()));
|
if (read_backward) {
|
__ Dsubu(a1, a1, Operand(s3));
|
}
|
// Isolate.
|
#ifdef V8_INTL_SUPPORT
|
if (unicode) {
|
__ mov(a3, zero_reg);
|
} else // NOLINT
|
#endif // V8_INTL_SUPPORT
|
{
|
__ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
|
}
|
|
{
|
AllowExternalCallThatCantCauseGC scope(masm_);
|
ExternalReference function =
|
ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate());
|
__ CallCFunction(function, argument_count);
|
}
|
|
// Restore regexp engine registers.
|
__ MultiPop(regexp_registers_to_retain);
|
__ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
|
__ Ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
|
|
// Check if function returned non-zero for success or zero for failure.
|
BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
|
// On success, increment position by length of capture.
|
if (read_backward) {
|
__ Dsubu(current_input_offset(), current_input_offset(), Operand(s3));
|
} else {
|
__ Daddu(current_input_offset(), current_input_offset(), Operand(s3));
|
}
|
}
|
|
__ bind(&fallthrough);
|
}
|
|
|
void RegExpMacroAssemblerMIPS::CheckNotBackReference(int start_reg,
|
bool read_backward,
|
Label* on_no_match) {
|
Label fallthrough;
|
Label success;
|
|
// Find length of back-referenced capture.
|
__ Ld(a0, register_location(start_reg));
|
__ Ld(a1, register_location(start_reg + 1));
|
__ Dsubu(a1, a1, a0); // Length to check.
|
|
// At this point, the capture registers are either both set or both cleared.
|
// If the capture length is zero, then the capture is either empty or cleared.
|
// Fall through in both cases.
|
__ Branch(&fallthrough, eq, a1, Operand(zero_reg));
|
|
if (read_backward) {
|
__ Ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
|
__ Daddu(t1, t1, a1);
|
BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
|
} else {
|
__ Daddu(t1, a1, current_input_offset());
|
// Check that there are enough characters left in the input.
|
BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
|
}
|
|
// Compute pointers to match string and capture string.
|
__ Daddu(a0, a0, Operand(end_of_input_address()));
|
__ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
|
if (read_backward) {
|
__ Dsubu(a2, a2, Operand(a1));
|
}
|
__ Daddu(a1, a1, Operand(a0));
|
|
Label loop;
|
__ bind(&loop);
|
if (mode_ == LATIN1) {
|
__ Lbu(a3, MemOperand(a0, 0));
|
__ daddiu(a0, a0, char_size());
|
__ Lbu(a4, MemOperand(a2, 0));
|
__ daddiu(a2, a2, char_size());
|
} else {
|
DCHECK(mode_ == UC16);
|
__ Lhu(a3, MemOperand(a0, 0));
|
__ daddiu(a0, a0, char_size());
|
__ Lhu(a4, MemOperand(a2, 0));
|
__ daddiu(a2, a2, char_size());
|
}
|
BranchOrBacktrack(on_no_match, ne, a3, Operand(a4));
|
__ Branch(&loop, lt, a0, Operand(a1));
|
|
// Move current character position to position after match.
|
__ Dsubu(current_input_offset(), a2, end_of_input_address());
|
if (read_backward) {
|
__ Ld(t1, register_location(start_reg)); // Index of start of capture.
|
__ Ld(a2, register_location(start_reg + 1)); // Index of end of capture.
|
__ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
|
__ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
|
}
|
__ bind(&fallthrough);
|
}
|
|
|
void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
|
Label* on_not_equal) {
|
BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
|
}
|
|
|
void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
|
uint32_t mask,
|
Label* on_equal) {
|
__ And(a0, current_character(), Operand(mask));
|
Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
|
BranchOrBacktrack(on_equal, eq, a0, rhs);
|
}
|
|
|
void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
|
uint32_t mask,
|
Label* on_not_equal) {
|
__ And(a0, current_character(), Operand(mask));
|
Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
|
BranchOrBacktrack(on_not_equal, ne, a0, rhs);
|
}
|
|
|
void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
|
uc16 c,
|
uc16 minus,
|
uc16 mask,
|
Label* on_not_equal) {
|
DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
|
__ Dsubu(a0, current_character(), Operand(minus));
|
__ And(a0, a0, Operand(mask));
|
BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
|
}
|
|
|
void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
|
uc16 from,
|
uc16 to,
|
Label* on_in_range) {
|
__ Dsubu(a0, current_character(), Operand(from));
|
// Unsigned lower-or-same condition.
|
BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
|
}
|
|
|
void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
|
uc16 from,
|
uc16 to,
|
Label* on_not_in_range) {
|
__ Dsubu(a0, current_character(), Operand(from));
|
// Unsigned higher condition.
|
BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
|
}
|
|
|
void RegExpMacroAssemblerMIPS::CheckBitInTable(
|
Handle<ByteArray> table,
|
Label* on_bit_set) {
|
__ li(a0, Operand(table));
|
if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
|
__ And(a1, current_character(), Operand(kTableSize - 1));
|
__ Daddu(a0, a0, a1);
|
} else {
|
__ Daddu(a0, a0, current_character());
|
}
|
|
__ Lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
|
BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
|
}
|
|
|
bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
|
Label* on_no_match) {
|
// Range checks (c in min..max) are generally implemented by an unsigned
|
// (c - min) <= (max - min) check.
|
switch (type) {
|
case 's':
|
// Match space-characters.
|
if (mode_ == LATIN1) {
|
// One byte space characters are '\t'..'\r', ' ' and \u00a0.
|
Label success;
|
__ Branch(&success, eq, current_character(), Operand(' '));
|
// Check range 0x09..0x0D.
|
__ Dsubu(a0, current_character(), Operand('\t'));
|
__ Branch(&success, ls, a0, Operand('\r' - '\t'));
|
// \u00a0 (NBSP).
|
BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00A0 - '\t'));
|
__ bind(&success);
|
return true;
|
}
|
return false;
|
case 'S':
|
// The emitted code for generic character classes is good enough.
|
return false;
|
case 'd':
|
// Match Latin1 digits ('0'..'9').
|
__ Dsubu(a0, current_character(), Operand('0'));
|
BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
|
return true;
|
case 'D':
|
// Match non Latin1-digits.
|
__ Dsubu(a0, current_character(), Operand('0'));
|
BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
|
return true;
|
case '.': {
|
// Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029).
|
__ Xor(a0, current_character(), Operand(0x01));
|
// See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C.
|
__ Dsubu(a0, a0, Operand(0x0B));
|
BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0C - 0x0B));
|
if (mode_ == UC16) {
|
// Compare original value to 0x2028 and 0x2029, using the already
|
// computed (current_char ^ 0x01 - 0x0B). I.e., check for
|
// 0x201D (0x2028 - 0x0B) or 0x201E.
|
__ Dsubu(a0, a0, Operand(0x2028 - 0x0B));
|
BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
|
}
|
return true;
|
}
|
case 'n': {
|
// Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029).
|
__ Xor(a0, current_character(), Operand(0x01));
|
// See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C.
|
__ Dsubu(a0, a0, Operand(0x0B));
|
if (mode_ == LATIN1) {
|
BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0C - 0x0B));
|
} else {
|
Label done;
|
BranchOrBacktrack(&done, ls, a0, Operand(0x0C - 0x0B));
|
// Compare original value to 0x2028 and 0x2029, using the already
|
// computed (current_char ^ 0x01 - 0x0B). I.e., check for
|
// 0x201D (0x2028 - 0x0B) or 0x201E.
|
__ Dsubu(a0, a0, Operand(0x2028 - 0x0B));
|
BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
|
__ bind(&done);
|
}
|
return true;
|
}
|
case 'w': {
|
if (mode_ != LATIN1) {
|
// Table is 256 entries, so all Latin1 characters can be tested.
|
BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
|
}
|
ExternalReference map = ExternalReference::re_word_character_map(isolate());
|
__ li(a0, Operand(map));
|
__ Daddu(a0, a0, current_character());
|
__ Lbu(a0, MemOperand(a0, 0));
|
BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
|
return true;
|
}
|
case 'W': {
|
Label done;
|
if (mode_ != LATIN1) {
|
// Table is 256 entries, so all Latin1 characters can be tested.
|
__ Branch(&done, hi, current_character(), Operand('z'));
|
}
|
ExternalReference map = ExternalReference::re_word_character_map(isolate());
|
__ li(a0, Operand(map));
|
__ Daddu(a0, a0, current_character());
|
__ Lbu(a0, MemOperand(a0, 0));
|
BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
|
if (mode_ != LATIN1) {
|
__ bind(&done);
|
}
|
return true;
|
}
|
case '*':
|
// Match any character.
|
return true;
|
// No custom implementation (yet): s(UC16), S(UC16).
|
default:
|
return false;
|
}
|
}
|
|
|
void RegExpMacroAssemblerMIPS::Fail() {
|
__ li(v0, Operand(FAILURE));
|
__ jmp(&exit_label_);
|
}
|
|
|
Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
|
Label return_v0;
|
if (masm_->has_exception()) {
|
// If the code gets corrupted due to long regular expressions and lack of
|
// space on trampolines, an internal exception flag is set. If this case
|
// is detected, we will jump into exit sequence right away.
|
__ bind_to(&entry_label_, internal_failure_label_.pos());
|
} else {
|
// Finalize code - write the entry point code now we know how many
|
// registers we need.
|
|
// Entry code:
|
__ bind(&entry_label_);
|
|
// Tell the system that we have a stack frame. Because the type is MANUAL,
|
// no is generated.
|
FrameScope scope(masm_, StackFrame::MANUAL);
|
|
// Actually emit code to start a new stack frame.
|
// Push arguments
|
// Save callee-save registers.
|
// Start new stack frame.
|
// Store link register in existing stack-cell.
|
// Order here should correspond to order of offset constants in header file.
|
// TODO(plind): we save s0..s7, but ONLY use s3 here - use the regs
|
// or dont save.
|
RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() |
|
s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit();
|
RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit();
|
|
argument_registers |= a4.bit() | a5.bit() | a6.bit() | a7.bit();
|
|
__ MultiPush(argument_registers | registers_to_retain | ra.bit());
|
// Set frame pointer in space for it if this is not a direct call
|
// from generated code.
|
// TODO(plind): this 8 is the # of argument regs, should have definition.
|
__ Daddu(frame_pointer(), sp, Operand(8 * kPointerSize));
|
__ mov(a0, zero_reg);
|
__ push(a0); // Make room for success counter and initialize it to 0.
|
__ push(a0); // Make room for "string start - 1" constant.
|
|
// Check if we have space on the stack for registers.
|
Label stack_limit_hit;
|
Label stack_ok;
|
|
ExternalReference stack_limit =
|
ExternalReference::address_of_stack_limit(masm_->isolate());
|
__ li(a0, Operand(stack_limit));
|
__ Ld(a0, MemOperand(a0));
|
__ Dsubu(a0, sp, a0);
|
// Handle it if the stack pointer is already below the stack limit.
|
__ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
|
// Check if there is room for the variable number of registers above
|
// the stack limit.
|
__ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
|
// Exit with OutOfMemory exception. There is not enough space on the stack
|
// for our working registers.
|
__ li(v0, Operand(EXCEPTION));
|
__ jmp(&return_v0);
|
|
__ bind(&stack_limit_hit);
|
CallCheckStackGuardState(a0);
|
// If returned value is non-zero, we exit with the returned value as result.
|
__ Branch(&return_v0, ne, v0, Operand(zero_reg));
|
|
__ bind(&stack_ok);
|
// Allocate space on stack for registers.
|
__ Dsubu(sp, sp, Operand(num_registers_ * kPointerSize));
|
// Load string end.
|
__ Ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
|
// Load input start.
|
__ Ld(a0, MemOperand(frame_pointer(), kInputStart));
|
// Find negative length (offset of start relative to end).
|
__ Dsubu(current_input_offset(), a0, end_of_input_address());
|
// Set a0 to address of char before start of the input string
|
// (effectively string position -1).
|
__ Ld(a1, MemOperand(frame_pointer(), kStartIndex));
|
__ Dsubu(a0, current_input_offset(), Operand(char_size()));
|
__ dsll(t1, a1, (mode_ == UC16) ? 1 : 0);
|
__ Dsubu(a0, a0, t1);
|
// Store this value in a local variable, for use when clearing
|
// position registers.
|
__ Sd(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
|
|
// Initialize code pointer register
|
__ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
|
|
Label load_char_start_regexp, start_regexp;
|
// Load newline if index is at start, previous character otherwise.
|
__ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
|
__ li(current_character(), Operand('\n'));
|
__ jmp(&start_regexp);
|
|
// Global regexp restarts matching here.
|
__ bind(&load_char_start_regexp);
|
// Load previous char as initial value of current character register.
|
LoadCurrentCharacterUnchecked(-1, 1);
|
__ bind(&start_regexp);
|
|
// Initialize on-stack registers.
|
if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
|
// Fill saved registers with initial value = start offset - 1.
|
if (num_saved_registers_ > 8) {
|
// Address of register 0.
|
__ Daddu(a1, frame_pointer(), Operand(kRegisterZero));
|
__ li(a2, Operand(num_saved_registers_));
|
Label init_loop;
|
__ bind(&init_loop);
|
__ Sd(a0, MemOperand(a1));
|
__ Daddu(a1, a1, Operand(-kPointerSize));
|
__ Dsubu(a2, a2, Operand(1));
|
__ Branch(&init_loop, ne, a2, Operand(zero_reg));
|
} else {
|
for (int i = 0; i < num_saved_registers_; i++) {
|
__ Sd(a0, register_location(i));
|
}
|
}
|
}
|
|
// Initialize backtrack stack pointer.
|
__ Ld(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
|
|
__ jmp(&start_label_);
|
|
|
// Exit code:
|
if (success_label_.is_linked()) {
|
// Save captures when successful.
|
__ bind(&success_label_);
|
if (num_saved_registers_ > 0) {
|
// Copy captures to output.
|
__ Ld(a1, MemOperand(frame_pointer(), kInputStart));
|
__ Ld(a0, MemOperand(frame_pointer(), kRegisterOutput));
|
__ Ld(a2, MemOperand(frame_pointer(), kStartIndex));
|
__ Dsubu(a1, end_of_input_address(), a1);
|
// a1 is length of input in bytes.
|
if (mode_ == UC16) {
|
__ dsrl(a1, a1, 1);
|
}
|
// a1 is length of input in characters.
|
__ Daddu(a1, a1, Operand(a2));
|
// a1 is length of string in characters.
|
|
DCHECK_EQ(0, num_saved_registers_ % 2);
|
// Always an even number of capture registers. This allows us to
|
// unroll the loop once to add an operation between a load of a register
|
// and the following use of that register.
|
for (int i = 0; i < num_saved_registers_; i += 2) {
|
__ Ld(a2, register_location(i));
|
__ Ld(a3, register_location(i + 1));
|
if (i == 0 && global_with_zero_length_check()) {
|
// Keep capture start in a4 for the zero-length check later.
|
__ mov(t3, a2);
|
}
|
if (mode_ == UC16) {
|
__ dsra(a2, a2, 1);
|
__ Daddu(a2, a2, a1);
|
__ dsra(a3, a3, 1);
|
__ Daddu(a3, a3, a1);
|
} else {
|
__ Daddu(a2, a1, Operand(a2));
|
__ Daddu(a3, a1, Operand(a3));
|
}
|
// V8 expects the output to be an int32_t array.
|
__ Sw(a2, MemOperand(a0));
|
__ Daddu(a0, a0, kIntSize);
|
__ Sw(a3, MemOperand(a0));
|
__ Daddu(a0, a0, kIntSize);
|
}
|
}
|
|
if (global()) {
|
// Restart matching if the regular expression is flagged as global.
|
__ Ld(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
|
__ Ld(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
|
__ Ld(a2, MemOperand(frame_pointer(), kRegisterOutput));
|
// Increment success counter.
|
__ Daddu(a0, a0, 1);
|
__ Sd(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
|
// Capture results have been stored, so the number of remaining global
|
// output registers is reduced by the number of stored captures.
|
__ Dsubu(a1, a1, num_saved_registers_);
|
// Check whether we have enough room for another set of capture results.
|
__ mov(v0, a0);
|
__ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
|
|
__ Sd(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
|
// Advance the location for output.
|
__ Daddu(a2, a2, num_saved_registers_ * kIntSize);
|
__ Sd(a2, MemOperand(frame_pointer(), kRegisterOutput));
|
|
// Prepare a0 to initialize registers with its value in the next run.
|
__ Ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
|
|
if (global_with_zero_length_check()) {
|
// Special case for zero-length matches.
|
// t3: capture start index
|
// Not a zero-length match, restart.
|
__ Branch(
|
&load_char_start_regexp, ne, current_input_offset(), Operand(t3));
|
// Offset from the end is zero if we already reached the end.
|
__ Branch(&exit_label_, eq, current_input_offset(),
|
Operand(zero_reg));
|
// Advance current position after a zero-length match.
|
Label advance;
|
__ bind(&advance);
|
__ Daddu(current_input_offset(),
|
current_input_offset(),
|
Operand((mode_ == UC16) ? 2 : 1));
|
if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
|
}
|
|
__ Branch(&load_char_start_regexp);
|
} else {
|
__ li(v0, Operand(SUCCESS));
|
}
|
}
|
// Exit and return v0.
|
__ bind(&exit_label_);
|
if (global()) {
|
__ Ld(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
|
}
|
|
__ bind(&return_v0);
|
// Skip sp past regexp registers and local variables..
|
__ mov(sp, frame_pointer());
|
// Restore registers s0..s7 and return (restoring ra to pc).
|
__ MultiPop(registers_to_retain | ra.bit());
|
__ Ret();
|
|
// Backtrack code (branch target for conditional backtracks).
|
if (backtrack_label_.is_linked()) {
|
__ bind(&backtrack_label_);
|
Backtrack();
|
}
|
|
Label exit_with_exception;
|
|
// Preempt-code.
|
if (check_preempt_label_.is_linked()) {
|
SafeCallTarget(&check_preempt_label_);
|
// Put regexp engine registers on stack.
|
RegList regexp_registers_to_retain = current_input_offset().bit() |
|
current_character().bit() | backtrack_stackpointer().bit();
|
__ MultiPush(regexp_registers_to_retain);
|
CallCheckStackGuardState(a0);
|
__ MultiPop(regexp_registers_to_retain);
|
// If returning non-zero, we should end execution with the given
|
// result as return value.
|
__ Branch(&return_v0, ne, v0, Operand(zero_reg));
|
|
// String might have moved: Reload end of string from frame.
|
__ Ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
|
__ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
|
SafeReturn();
|
}
|
|
// Backtrack stack overflow code.
|
if (stack_overflow_label_.is_linked()) {
|
SafeCallTarget(&stack_overflow_label_);
|
// Reached if the backtrack-stack limit has been hit.
|
// Put regexp engine registers on stack first.
|
RegList regexp_registers = current_input_offset().bit() |
|
current_character().bit();
|
__ MultiPush(regexp_registers);
|
Label grow_failed;
|
// Call GrowStack(backtrack_stackpointer(), &stack_base)
|
static const int num_arguments = 3;
|
__ PrepareCallCFunction(num_arguments, a0);
|
__ mov(a0, backtrack_stackpointer());
|
__ Daddu(a1, frame_pointer(), Operand(kStackHighEnd));
|
__ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate())));
|
ExternalReference grow_stack =
|
ExternalReference::re_grow_stack(masm_->isolate());
|
__ CallCFunction(grow_stack, num_arguments);
|
// Restore regexp registers.
|
__ MultiPop(regexp_registers);
|
// If return nullptr, we have failed to grow the stack, and
|
// must exit with a stack-overflow exception.
|
__ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
|
// Otherwise use return value as new stack pointer.
|
__ mov(backtrack_stackpointer(), v0);
|
// Restore saved registers and continue.
|
__ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
|
__ Ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
|
SafeReturn();
|
}
|
|
if (exit_with_exception.is_linked()) {
|
// If any of the code above needed to exit with an exception.
|
__ bind(&exit_with_exception);
|
// Exit with Result EXCEPTION(-1) to signal thrown exception.
|
__ li(v0, Operand(EXCEPTION));
|
__ jmp(&return_v0);
|
}
|
}
|
|
CodeDesc code_desc;
|
masm_->GetCode(isolate(), &code_desc);
|
Handle<Code> code = isolate()->factory()->NewCode(code_desc, Code::REGEXP,
|
masm_->CodeObject());
|
LOG(masm_->isolate(),
|
RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
|
return Handle<HeapObject>::cast(code);
|
}
|
|
|
void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
|
if (to == nullptr) {
|
Backtrack();
|
return;
|
}
|
__ jmp(to);
|
return;
|
}
|
|
|
void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
|
int comparand,
|
Label* if_ge) {
|
__ Ld(a0, register_location(reg));
|
BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
|
}
|
|
|
void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
|
int comparand,
|
Label* if_lt) {
|
__ Ld(a0, register_location(reg));
|
BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
|
}
|
|
|
void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
|
Label* if_eq) {
|
__ Ld(a0, register_location(reg));
|
BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
|
}
|
|
|
RegExpMacroAssembler::IrregexpImplementation
|
RegExpMacroAssemblerMIPS::Implementation() {
|
return kMIPSImplementation;
|
}
|
|
|
void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset,
|
Label* on_end_of_input,
|
bool check_bounds,
|
int characters) {
|
DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works).
|
if (check_bounds) {
|
if (cp_offset >= 0) {
|
CheckPosition(cp_offset + characters - 1, on_end_of_input);
|
} else {
|
CheckPosition(cp_offset, on_end_of_input);
|
}
|
}
|
LoadCurrentCharacterUnchecked(cp_offset, characters);
|
}
|
|
|
void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
|
Pop(current_input_offset());
|
}
|
|
|
void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
|
Pop(a0);
|
__ Sd(a0, register_location(register_index));
|
}
|
|
|
void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
|
if (label->is_bound()) {
|
int target = label->pos();
|
__ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
|
} else {
|
Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
|
Label after_constant;
|
__ Branch(&after_constant);
|
int offset = masm_->pc_offset();
|
int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
|
__ emit(0);
|
masm_->label_at_put(label, offset);
|
__ bind(&after_constant);
|
if (is_int16(cp_offset)) {
|
__ Lwu(a0, MemOperand(code_pointer(), cp_offset));
|
} else {
|
__ Daddu(a0, code_pointer(), cp_offset);
|
__ Lwu(a0, MemOperand(a0, 0));
|
}
|
}
|
Push(a0);
|
CheckStackLimit();
|
}
|
|
|
void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
|
Push(current_input_offset());
|
}
|
|
|
void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
|
StackCheckFlag check_stack_limit) {
|
__ Ld(a0, register_location(register_index));
|
Push(a0);
|
if (check_stack_limit) CheckStackLimit();
|
}
|
|
|
void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
|
__ Ld(current_input_offset(), register_location(reg));
|
}
|
|
|
void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
|
__ Ld(backtrack_stackpointer(), register_location(reg));
|
__ Ld(a0, MemOperand(frame_pointer(), kStackHighEnd));
|
__ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
|
}
|
|
|
void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
|
Label after_position;
|
__ Branch(&after_position,
|
ge,
|
current_input_offset(),
|
Operand(-by * char_size()));
|
__ li(current_input_offset(), -by * char_size());
|
// On RegExp code entry (where this operation is used), the character before
|
// the current position is expected to be already loaded.
|
// We have advanced the position, so it's safe to read backwards.
|
LoadCurrentCharacterUnchecked(-1, 1);
|
__ bind(&after_position);
|
}
|
|
|
void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
|
DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
|
__ li(a0, Operand(to));
|
__ Sd(a0, register_location(register_index));
|
}
|
|
|
bool RegExpMacroAssemblerMIPS::Succeed() {
|
__ jmp(&success_label_);
|
return global();
|
}
|
|
|
void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
|
int cp_offset) {
|
if (cp_offset == 0) {
|
__ Sd(current_input_offset(), register_location(reg));
|
} else {
|
__ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
|
__ Sd(a0, register_location(reg));
|
}
|
}
|
|
|
void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
|
DCHECK(reg_from <= reg_to);
|
__ Ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
|
for (int reg = reg_from; reg <= reg_to; reg++) {
|
__ Sd(a0, register_location(reg));
|
}
|
}
|
|
|
void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
|
__ Ld(a1, MemOperand(frame_pointer(), kStackHighEnd));
|
__ Dsubu(a0, backtrack_stackpointer(), a1);
|
__ Sd(a0, register_location(reg));
|
}
|
|
|
bool RegExpMacroAssemblerMIPS::CanReadUnaligned() {
|
return false;
|
}
|
|
|
// Private methods:
|
|
void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
|
int stack_alignment = base::OS::ActivationFrameAlignment();
|
|
// Align the stack pointer and save the original sp value on the stack.
|
__ mov(scratch, sp);
|
__ Dsubu(sp, sp, Operand(kPointerSize));
|
DCHECK(base::bits::IsPowerOfTwo(stack_alignment));
|
__ And(sp, sp, Operand(-stack_alignment));
|
__ Sd(scratch, MemOperand(sp));
|
|
__ mov(a2, frame_pointer());
|
// Code* of self.
|
__ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
|
|
// We need to make room for the return address on the stack.
|
DCHECK(IsAligned(stack_alignment, kPointerSize));
|
__ Dsubu(sp, sp, Operand(stack_alignment));
|
|
// Stack pointer now points to cell where return address is to be written.
|
// Arguments are in registers, meaning we teat the return address as
|
// argument 5. Since DirectCEntryStub will handleallocating space for the C
|
// argument slots, we don't need to care about that here. This is how the
|
// stack will look (sp meaning the value of sp at this moment):
|
// [sp + 3] - empty slot if needed for alignment.
|
// [sp + 2] - saved sp.
|
// [sp + 1] - second word reserved for return value.
|
// [sp + 0] - first word reserved for return value.
|
|
// a0 will point to the return address, placed by DirectCEntry.
|
__ mov(a0, sp);
|
|
ExternalReference stack_guard_check =
|
ExternalReference::re_check_stack_guard_state(masm_->isolate());
|
__ li(t9, Operand(stack_guard_check));
|
DirectCEntryStub stub(isolate());
|
stub.GenerateCall(masm_, t9);
|
|
// DirectCEntryStub allocated space for the C argument slots so we have to
|
// drop them with the return address from the stack with loading saved sp.
|
// At this point stack must look:
|
// [sp + 7] - empty slot if needed for alignment.
|
// [sp + 6] - saved sp.
|
// [sp + 5] - second word reserved for return value.
|
// [sp + 4] - first word reserved for return value.
|
// [sp + 3] - C argument slot.
|
// [sp + 2] - C argument slot.
|
// [sp + 1] - C argument slot.
|
// [sp + 0] - C argument slot.
|
__ Ld(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
|
|
__ li(code_pointer(), Operand(masm_->CodeObject()));
|
}
|
|
|
// Helper function for reading a value out of a stack frame.
|
template <typename T>
|
static T& frame_entry(Address re_frame, int frame_offset) {
|
return reinterpret_cast<T&>(Memory<int32_t>(re_frame + frame_offset));
|
}
|
|
|
template <typename T>
|
static T* frame_entry_address(Address re_frame, int frame_offset) {
|
return reinterpret_cast<T*>(re_frame + frame_offset);
|
}
|
|
|
int64_t RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
|
Code* re_code,
|
Address re_frame) {
|
return NativeRegExpMacroAssembler::CheckStackGuardState(
|
frame_entry<Isolate*>(re_frame, kIsolate),
|
static_cast<int>(frame_entry<int64_t>(re_frame, kStartIndex)),
|
frame_entry<int64_t>(re_frame, kDirectCall) == 1, return_address, re_code,
|
frame_entry_address<String*>(re_frame, kInputString),
|
frame_entry_address<const byte*>(re_frame, kInputStart),
|
frame_entry_address<const byte*>(re_frame, kInputEnd));
|
}
|
|
|
MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
|
DCHECK(register_index < (1<<30));
|
if (num_registers_ <= register_index) {
|
num_registers_ = register_index + 1;
|
}
|
return MemOperand(frame_pointer(),
|
kRegisterZero - register_index * kPointerSize);
|
}
|
|
|
void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
|
Label* on_outside_input) {
|
if (cp_offset >= 0) {
|
BranchOrBacktrack(on_outside_input, ge, current_input_offset(),
|
Operand(-cp_offset * char_size()));
|
} else {
|
__ Ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
|
__ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
|
BranchOrBacktrack(on_outside_input, le, a0, Operand(a1));
|
}
|
}
|
|
|
void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
|
Condition condition,
|
Register rs,
|
const Operand& rt) {
|
if (condition == al) { // Unconditional.
|
if (to == nullptr) {
|
Backtrack();
|
return;
|
}
|
__ jmp(to);
|
return;
|
}
|
if (to == nullptr) {
|
__ Branch(&backtrack_label_, condition, rs, rt);
|
return;
|
}
|
__ Branch(to, condition, rs, rt);
|
}
|
|
|
void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
|
Condition cond,
|
Register rs,
|
const Operand& rt) {
|
__ BranchAndLink(to, cond, rs, rt);
|
}
|
|
|
void RegExpMacroAssemblerMIPS::SafeReturn() {
|
__ pop(ra);
|
__ Daddu(t1, ra, Operand(masm_->CodeObject()));
|
__ Jump(t1);
|
}
|
|
|
void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
|
__ bind(name);
|
__ Dsubu(ra, ra, Operand(masm_->CodeObject()));
|
__ push(ra);
|
}
|
|
|
void RegExpMacroAssemblerMIPS::Push(Register source) {
|
DCHECK(source != backtrack_stackpointer());
|
__ Daddu(backtrack_stackpointer(),
|
backtrack_stackpointer(),
|
Operand(-kIntSize));
|
__ Sw(source, MemOperand(backtrack_stackpointer()));
|
}
|
|
|
void RegExpMacroAssemblerMIPS::Pop(Register target) {
|
DCHECK(target != backtrack_stackpointer());
|
__ Lw(target, MemOperand(backtrack_stackpointer()));
|
__ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), kIntSize);
|
}
|
|
|
void RegExpMacroAssemblerMIPS::CheckPreemption() {
|
// Check for preemption.
|
ExternalReference stack_limit =
|
ExternalReference::address_of_stack_limit(masm_->isolate());
|
__ li(a0, Operand(stack_limit));
|
__ Ld(a0, MemOperand(a0));
|
SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
|
}
|
|
|
void RegExpMacroAssemblerMIPS::CheckStackLimit() {
|
ExternalReference stack_limit =
|
ExternalReference::address_of_regexp_stack_limit(masm_->isolate());
|
|
__ li(a0, Operand(stack_limit));
|
__ Ld(a0, MemOperand(a0));
|
SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
|
}
|
|
|
void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
|
int characters) {
|
Register offset = current_input_offset();
|
if (cp_offset != 0) {
|
// t3 is not being used to store the capture start index at this point.
|
__ Daddu(t3, current_input_offset(), Operand(cp_offset * char_size()));
|
offset = t3;
|
}
|
// We assume that we cannot do unaligned loads on MIPS, so this function
|
// must only be used to load a single character at a time.
|
DCHECK_EQ(1, characters);
|
__ Daddu(t1, end_of_input_address(), Operand(offset));
|
if (mode_ == LATIN1) {
|
__ Lbu(current_character(), MemOperand(t1, 0));
|
} else {
|
DCHECK(mode_ == UC16);
|
__ Lhu(current_character(), MemOperand(t1, 0));
|
}
|
}
|
|
#undef __
|
|
#endif // V8_INTERPRETED_REGEXP
|
|
} // namespace internal
|
} // namespace v8
|
|
#endif // V8_TARGET_ARCH_MIPS64
|