// Copyright 2012 the V8 project authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style license that can be
|
// found in the LICENSE file.
|
|
#ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
|
#define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
|
|
#include "src/assembler.h"
|
#include "src/globals.h"
|
#include "src/mips/assembler-mips.h"
|
#include "src/turbo-assembler.h"
|
|
namespace v8 {
|
namespace internal {
|
|
// Give alias names to registers for calling conventions.
|
constexpr Register kReturnRegister0 = v0;
|
constexpr Register kReturnRegister1 = v1;
|
constexpr Register kReturnRegister2 = a0;
|
constexpr Register kJSFunctionRegister = a1;
|
constexpr Register kContextRegister = s7;
|
constexpr Register kAllocateSizeRegister = a0;
|
constexpr Register kSpeculationPoisonRegister = t3;
|
constexpr Register kInterpreterAccumulatorRegister = v0;
|
constexpr Register kInterpreterBytecodeOffsetRegister = t4;
|
constexpr Register kInterpreterBytecodeArrayRegister = t5;
|
constexpr Register kInterpreterDispatchTableRegister = t6;
|
|
constexpr Register kJavaScriptCallArgCountRegister = a0;
|
constexpr Register kJavaScriptCallCodeStartRegister = a2;
|
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
|
constexpr Register kJavaScriptCallNewTargetRegister = a3;
|
constexpr Register kJavaScriptCallExtraArg1Register = a2;
|
|
constexpr Register kOffHeapTrampolineRegister = at;
|
constexpr Register kRuntimeCallFunctionRegister = a1;
|
constexpr Register kRuntimeCallArgCountRegister = a0;
|
constexpr Register kRuntimeCallArgvRegister = a2;
|
constexpr Register kWasmInstanceRegister = a0;
|
|
// Forward declarations
|
enum class AbortReason : uint8_t;
|
|
// Reserved Register Usage Summary.
|
//
|
// Registers t8, t9, and at are reserved for use by the MacroAssembler.
|
//
|
// The programmer should know that the MacroAssembler may clobber these three,
|
// but won't touch other registers except in special cases.
|
//
|
// Per the MIPS ABI, register t9 must be used for indirect function call
|
// via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
|
// trying to update gp register for position-independent-code. Whenever
|
// MIPS generated code calls C code, it must be via t9 register.
|
|
|
// Flags used for LeaveExitFrame function.
|
enum LeaveExitFrameMode {
|
EMIT_RETURN = true,
|
NO_EMIT_RETURN = false
|
};
|
|
// Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
|
enum BranchDelaySlot {
|
USE_DELAY_SLOT,
|
PROTECT
|
};
|
|
// Flags used for the li macro-assembler function.
|
enum LiFlags {
|
// If the constant value can be represented in just 16 bits, then
|
// optimize the li to use a single instruction, rather than lui/ori pair.
|
OPTIMIZE_SIZE = 0,
|
// Always use 2 instructions (lui/ori pair), even if the constant could
|
// be loaded with just one, so that this value is patchable later.
|
CONSTANT_SIZE = 1
|
};
|
|
|
enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
|
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
|
enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
|
|
Register GetRegisterThatIsNotOneOf(Register reg1,
|
Register reg2 = no_reg,
|
Register reg3 = no_reg,
|
Register reg4 = no_reg,
|
Register reg5 = no_reg,
|
Register reg6 = no_reg);
|
|
// -----------------------------------------------------------------------------
|
// Static helper functions.
|
|
inline MemOperand ContextMemOperand(Register context, int index) {
|
return MemOperand(context, Context::SlotOffset(index));
|
}
|
|
|
inline MemOperand NativeContextMemOperand() {
|
return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
|
}
|
|
|
// Generate a MemOperand for loading a field from an object.
|
inline MemOperand FieldMemOperand(Register object, int offset) {
|
return MemOperand(object, offset - kHeapObjectTag);
|
}
|
|
|
// Generate a MemOperand for storing arguments 5..N on the stack
|
// when calling CallCFunction().
|
inline MemOperand CFunctionArgumentOperand(int index) {
|
DCHECK_GT(index, kCArgSlotCount);
|
// Argument 5 takes the slot just past the four Arg-slots.
|
int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
|
return MemOperand(sp, offset);
|
}
|
|
class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
|
public:
|
TurboAssembler(Isolate* isolate, const AssemblerOptions& options,
|
void* buffer, int buffer_size,
|
CodeObjectRequired create_code_object)
|
: TurboAssemblerBase(isolate, options, buffer, buffer_size,
|
create_code_object) {}
|
|
// Activation support.
|
void EnterFrame(StackFrame::Type type);
|
void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) {
|
// Out-of-line constant pool not implemented on mips.
|
UNREACHABLE();
|
}
|
void LeaveFrame(StackFrame::Type type);
|
|
// Generates function and stub prologue code.
|
void StubPrologue(StackFrame::Type type);
|
void Prologue();
|
|
void InitializeRootRegister() {
|
ExternalReference roots_array_start =
|
ExternalReference::roots_array_start(isolate());
|
li(kRootRegister, Operand(roots_array_start));
|
Addu(kRootRegister, kRootRegister, kRootRegisterBias);
|
}
|
|
// Jump unconditionally to given label.
|
// We NEED a nop in the branch delay slot, as it used by v8, for example in
|
// CodeGenerator::ProcessDeferred().
|
// Currently the branch delay slot is filled by the MacroAssembler.
|
// Use rather b(Label) for code generation.
|
void jmp(Label* L) { Branch(L); }
|
|
// -------------------------------------------------------------------------
|
// Debugging.
|
|
// Calls Abort(msg) if the condition cc is not satisfied.
|
// Use --debug_code to enable.
|
void Assert(Condition cc, AbortReason reason, Register rs, Operand rt);
|
|
// Like Assert(), but always enabled.
|
void Check(Condition cc, AbortReason reason, Register rs, Operand rt);
|
|
// Print a message to stdout and abort execution.
|
void Abort(AbortReason msg);
|
|
inline bool AllowThisStubCall(CodeStub* stub);
|
|
// Arguments macros.
|
#define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
|
#define COND_ARGS cond, r1, r2
|
|
// Cases when relocation is not needed.
|
#define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
|
void Name(target_type target, BranchDelaySlot bd = PROTECT); \
|
inline void Name(BranchDelaySlot bd, target_type target) { \
|
Name(target, bd); \
|
} \
|
void Name(target_type target, \
|
COND_TYPED_ARGS, \
|
BranchDelaySlot bd = PROTECT); \
|
inline void Name(BranchDelaySlot bd, \
|
target_type target, \
|
COND_TYPED_ARGS) { \
|
Name(target, COND_ARGS, bd); \
|
}
|
|
#define DECLARE_BRANCH_PROTOTYPES(Name) \
|
DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
|
DECLARE_NORELOC_PROTOTYPE(Name, int32_t)
|
|
DECLARE_BRANCH_PROTOTYPES(Branch)
|
DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
|
DECLARE_BRANCH_PROTOTYPES(BranchShort)
|
|
#undef DECLARE_BRANCH_PROTOTYPES
|
#undef COND_TYPED_ARGS
|
#undef COND_ARGS
|
|
// Floating point branches
|
void CompareF32(FPUCondition cc, FPURegister cmp1, FPURegister cmp2) {
|
CompareF(S, cc, cmp1, cmp2);
|
}
|
|
void CompareIsNanF32(FPURegister cmp1, FPURegister cmp2) {
|
CompareIsNanF(S, cmp1, cmp2);
|
}
|
|
void CompareF64(FPUCondition cc, FPURegister cmp1, FPURegister cmp2) {
|
CompareF(D, cc, cmp1, cmp2);
|
}
|
|
void CompareIsNanF64(FPURegister cmp1, FPURegister cmp2) {
|
CompareIsNanF(D, cmp1, cmp2);
|
}
|
|
void BranchTrueShortF(Label* target, BranchDelaySlot bd = PROTECT);
|
void BranchFalseShortF(Label* target, BranchDelaySlot bd = PROTECT);
|
|
void BranchTrueF(Label* target, BranchDelaySlot bd = PROTECT);
|
void BranchFalseF(Label* target, BranchDelaySlot bd = PROTECT);
|
|
// MSA Branches
|
void BranchMSA(Label* target, MSABranchDF df, MSABranchCondition cond,
|
MSARegister wt, BranchDelaySlot bd = PROTECT);
|
|
void Branch(Label* L, Condition cond, Register rs, Heap::RootListIndex index,
|
BranchDelaySlot bdslot = PROTECT);
|
|
// Load int32 in the rd register.
|
void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
|
inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) {
|
li(rd, Operand(j), mode);
|
}
|
void li(Register dst, Handle<HeapObject> value, LiFlags mode = OPTIMIZE_SIZE);
|
void li(Register dst, ExternalReference value, LiFlags mode = OPTIMIZE_SIZE);
|
|
void LoadFromConstantsTable(Register destination,
|
int constant_index) override;
|
void LoadRootRegisterOffset(Register destination, intptr_t offset) override;
|
void LoadRootRelative(Register destination, int32_t offset) override;
|
|
// Jump, Call, and Ret pseudo instructions implementing inter-working.
|
#define COND_ARGS Condition cond = al, Register rs = zero_reg, \
|
const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
|
|
void Jump(Register target, int16_t offset = 0, COND_ARGS);
|
void Jump(Register target, Register base, int16_t offset = 0, COND_ARGS);
|
void Jump(Register target, const Operand& offset, COND_ARGS);
|
void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
|
void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
|
void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
|
void Call(Register target, int16_t offset = 0, COND_ARGS);
|
void Call(Register target, Register base, int16_t offset = 0, COND_ARGS);
|
void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
|
void Call(Handle<Code> code,
|
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
|
COND_ARGS);
|
void Call(Label* target);
|
|
void CallForDeoptimization(Address target, int deopt_id,
|
RelocInfo::Mode rmode) {
|
USE(deopt_id);
|
Call(target, rmode);
|
}
|
|
void Ret(COND_ARGS);
|
inline void Ret(BranchDelaySlot bd, Condition cond = al,
|
Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
|
Ret(cond, rs, rt, bd);
|
}
|
|
// Emit code to discard a non-negative number of pointer-sized elements
|
// from the stack, clobbering only the sp register.
|
void Drop(int count,
|
Condition cond = cc_always,
|
Register reg = no_reg,
|
const Operand& op = Operand(no_reg));
|
|
// Trivial case of DropAndRet that utilizes the delay slot and only emits
|
// 2 instructions.
|
void DropAndRet(int drop);
|
|
void DropAndRet(int drop,
|
Condition cond,
|
Register reg,
|
const Operand& op);
|
|
void push(Register src) {
|
Addu(sp, sp, Operand(-kPointerSize));
|
sw(src, MemOperand(sp, 0));
|
}
|
|
void Push(Register src) { push(src); }
|
void Push(Handle<HeapObject> handle);
|
void Push(Smi* smi);
|
|
// Push two registers. Pushes leftmost register first (to highest address).
|
void Push(Register src1, Register src2) {
|
Subu(sp, sp, Operand(2 * kPointerSize));
|
sw(src1, MemOperand(sp, 1 * kPointerSize));
|
sw(src2, MemOperand(sp, 0 * kPointerSize));
|
}
|
|
// Push three registers. Pushes leftmost register first (to highest address).
|
void Push(Register src1, Register src2, Register src3) {
|
Subu(sp, sp, Operand(3 * kPointerSize));
|
sw(src1, MemOperand(sp, 2 * kPointerSize));
|
sw(src2, MemOperand(sp, 1 * kPointerSize));
|
sw(src3, MemOperand(sp, 0 * kPointerSize));
|
}
|
|
// Push four registers. Pushes leftmost register first (to highest address).
|
void Push(Register src1, Register src2, Register src3, Register src4) {
|
Subu(sp, sp, Operand(4 * kPointerSize));
|
sw(src1, MemOperand(sp, 3 * kPointerSize));
|
sw(src2, MemOperand(sp, 2 * kPointerSize));
|
sw(src3, MemOperand(sp, 1 * kPointerSize));
|
sw(src4, MemOperand(sp, 0 * kPointerSize));
|
}
|
|
// Push five registers. Pushes leftmost register first (to highest address).
|
void Push(Register src1, Register src2, Register src3, Register src4,
|
Register src5) {
|
Subu(sp, sp, Operand(5 * kPointerSize));
|
sw(src1, MemOperand(sp, 4 * kPointerSize));
|
sw(src2, MemOperand(sp, 3 * kPointerSize));
|
sw(src3, MemOperand(sp, 2 * kPointerSize));
|
sw(src4, MemOperand(sp, 1 * kPointerSize));
|
sw(src5, MemOperand(sp, 0 * kPointerSize));
|
}
|
|
void Push(Register src, Condition cond, Register tst1, Register tst2) {
|
// Since we don't have conditional execution we use a Branch.
|
Branch(3, cond, tst1, Operand(tst2));
|
Subu(sp, sp, Operand(kPointerSize));
|
sw(src, MemOperand(sp, 0));
|
}
|
|
void SaveRegisters(RegList registers);
|
void RestoreRegisters(RegList registers);
|
|
void CallRecordWriteStub(Register object, Register address,
|
RememberedSetAction remembered_set_action,
|
SaveFPRegsMode fp_mode);
|
|
// Push multiple registers on the stack.
|
// Registers are saved in numerical order, with higher numbered registers
|
// saved in higher memory addresses.
|
void MultiPush(RegList regs);
|
void MultiPushFPU(RegList regs);
|
|
// Calculate how much stack space (in bytes) are required to store caller
|
// registers excluding those specified in the arguments.
|
int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
|
Register exclusion1 = no_reg,
|
Register exclusion2 = no_reg,
|
Register exclusion3 = no_reg) const;
|
|
// Push caller saved registers on the stack, and return the number of bytes
|
// stack pointer is adjusted.
|
int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
|
Register exclusion2 = no_reg,
|
Register exclusion3 = no_reg);
|
// Restore caller saved registers from the stack, and return the number of
|
// bytes stack pointer is adjusted.
|
int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
|
Register exclusion2 = no_reg,
|
Register exclusion3 = no_reg);
|
|
void pop(Register dst) {
|
lw(dst, MemOperand(sp, 0));
|
Addu(sp, sp, Operand(kPointerSize));
|
}
|
|
void Pop(Register dst) { pop(dst); }
|
|
// Pop two registers. Pops rightmost register first (from lower address).
|
void Pop(Register src1, Register src2) {
|
DCHECK(src1 != src2);
|
lw(src2, MemOperand(sp, 0 * kPointerSize));
|
lw(src1, MemOperand(sp, 1 * kPointerSize));
|
Addu(sp, sp, 2 * kPointerSize);
|
}
|
|
// Pop three registers. Pops rightmost register first (from lower address).
|
void Pop(Register src1, Register src2, Register src3) {
|
lw(src3, MemOperand(sp, 0 * kPointerSize));
|
lw(src2, MemOperand(sp, 1 * kPointerSize));
|
lw(src1, MemOperand(sp, 2 * kPointerSize));
|
Addu(sp, sp, 3 * kPointerSize);
|
}
|
|
void Pop(uint32_t count = 1) { Addu(sp, sp, Operand(count * kPointerSize)); }
|
|
// Pops multiple values from the stack and load them in the
|
// registers specified in regs. Pop order is the opposite as in MultiPush.
|
void MultiPop(RegList regs);
|
void MultiPopFPU(RegList regs);
|
|
// Load Scaled Address instructions. Parameter sa (shift argument) must be
|
// between [1, 31] (inclusive). On pre-r6 architectures the scratch register
|
// may be clobbered.
|
void Lsa(Register rd, Register rs, Register rt, uint8_t sa,
|
Register scratch = at);
|
|
#define DEFINE_INSTRUCTION(instr) \
|
void instr(Register rd, Register rs, const Operand& rt); \
|
void instr(Register rd, Register rs, Register rt) { \
|
instr(rd, rs, Operand(rt)); \
|
} \
|
void instr(Register rs, Register rt, int32_t j) { instr(rs, rt, Operand(j)); }
|
|
#define DEFINE_INSTRUCTION2(instr) \
|
void instr(Register rs, const Operand& rt); \
|
void instr(Register rs, Register rt) { instr(rs, Operand(rt)); } \
|
void instr(Register rs, int32_t j) { instr(rs, Operand(j)); }
|
|
#define DEFINE_INSTRUCTION3(instr) \
|
void instr(Register rd_hi, Register rd_lo, Register rs, const Operand& rt); \
|
void instr(Register rd_hi, Register rd_lo, Register rs, Register rt) { \
|
instr(rd_hi, rd_lo, rs, Operand(rt)); \
|
} \
|
void instr(Register rd_hi, Register rd_lo, Register rs, int32_t j) { \
|
instr(rd_hi, rd_lo, rs, Operand(j)); \
|
}
|
|
DEFINE_INSTRUCTION(Addu);
|
DEFINE_INSTRUCTION(Subu);
|
DEFINE_INSTRUCTION(Mul);
|
DEFINE_INSTRUCTION(Div);
|
DEFINE_INSTRUCTION(Divu);
|
DEFINE_INSTRUCTION(Mod);
|
DEFINE_INSTRUCTION(Modu);
|
DEFINE_INSTRUCTION(Mulh);
|
DEFINE_INSTRUCTION2(Mult);
|
DEFINE_INSTRUCTION(Mulhu);
|
DEFINE_INSTRUCTION2(Multu);
|
DEFINE_INSTRUCTION2(Div);
|
DEFINE_INSTRUCTION2(Divu);
|
|
DEFINE_INSTRUCTION3(Div);
|
DEFINE_INSTRUCTION3(Mul);
|
DEFINE_INSTRUCTION3(Mulu);
|
|
DEFINE_INSTRUCTION(And);
|
DEFINE_INSTRUCTION(Or);
|
DEFINE_INSTRUCTION(Xor);
|
DEFINE_INSTRUCTION(Nor);
|
DEFINE_INSTRUCTION2(Neg);
|
|
DEFINE_INSTRUCTION(Slt);
|
DEFINE_INSTRUCTION(Sltu);
|
DEFINE_INSTRUCTION(Sle);
|
DEFINE_INSTRUCTION(Sleu);
|
DEFINE_INSTRUCTION(Sgt);
|
DEFINE_INSTRUCTION(Sgtu);
|
DEFINE_INSTRUCTION(Sge);
|
DEFINE_INSTRUCTION(Sgeu);
|
|
// MIPS32 R2 instruction macro.
|
DEFINE_INSTRUCTION(Ror);
|
|
#undef DEFINE_INSTRUCTION
|
#undef DEFINE_INSTRUCTION2
|
#undef DEFINE_INSTRUCTION3
|
|
void SmiUntag(Register reg) { sra(reg, reg, kSmiTagSize); }
|
|
void SmiUntag(Register dst, Register src) { sra(dst, src, kSmiTagSize); }
|
|
// Removes current frame and its arguments from the stack preserving
|
// the arguments and a return address pushed to the stack for the next call.
|
// Both |callee_args_count| and |caller_args_count_reg| do not include
|
// receiver. |callee_args_count| is not modified, |caller_args_count_reg|
|
// is trashed.
|
void PrepareForTailCall(const ParameterCount& callee_args_count,
|
Register caller_args_count_reg, Register scratch0,
|
Register scratch1);
|
|
int CalculateStackPassedWords(int num_reg_arguments,
|
int num_double_arguments);
|
|
// Before calling a C-function from generated code, align arguments on stack
|
// and add space for the four mips argument slots.
|
// After aligning the frame, non-register arguments must be stored on the
|
// stack, after the argument-slots using helper: CFunctionArgumentOperand().
|
// The argument count assumes all arguments are word sized.
|
// Some compilers/platforms require the stack to be aligned when calling
|
// C++ code.
|
// Needs a scratch register to do some arithmetic. This register will be
|
// trashed.
|
void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
|
Register scratch);
|
void PrepareCallCFunction(int num_reg_arguments, Register scratch);
|
|
// Arguments 1-4 are placed in registers a0 through a3 respectively.
|
// Arguments 5..n are stored to stack using following:
|
// sw(t0, CFunctionArgumentOperand(5));
|
|
// Calls a C function and cleans up the space for arguments allocated
|
// by PrepareCallCFunction. The called function is not allowed to trigger a
|
// garbage collection, since that might move the code and invalidate the
|
// return address (unless this is somehow accounted for by the called
|
// function).
|
void CallCFunction(ExternalReference function, int num_arguments);
|
void CallCFunction(Register function, int num_arguments);
|
void CallCFunction(ExternalReference function, int num_reg_arguments,
|
int num_double_arguments);
|
void CallCFunction(Register function, int num_reg_arguments,
|
int num_double_arguments);
|
void MovFromFloatResult(DoubleRegister dst);
|
void MovFromFloatParameter(DoubleRegister dst);
|
|
// There are two ways of passing double arguments on MIPS, depending on
|
// whether soft or hard floating point ABI is used. These functions
|
// abstract parameter passing for the three different ways we call
|
// C functions from generated code.
|
void MovToFloatParameter(DoubleRegister src);
|
void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
|
void MovToFloatResult(DoubleRegister src);
|
|
// See comments at the beginning of Builtins::Generate_CEntry.
|
inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
|
inline void PrepareCEntryFunction(const ExternalReference& ref) {
|
li(a1, ref);
|
}
|
|
void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
|
Label* condition_met);
|
|
void CallStubDelayed(CodeStub* stub, COND_ARGS);
|
#undef COND_ARGS
|
|
// Call a runtime routine. This expects {centry} to contain a fitting CEntry
|
// builtin for the target runtime function and uses an indirect call.
|
void CallRuntimeWithCEntry(Runtime::FunctionId fid, Register centry);
|
|
// Performs a truncating conversion of a floating point number as used by
|
// the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
|
// succeeds, otherwise falls through if result is saturated. On return
|
// 'result' either holds answer, or is clobbered on fall through.
|
//
|
// Only public for the test code in test-code-stubs-arm.cc.
|
void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
|
Label* done);
|
|
// Performs a truncating conversion of a floating point number as used by
|
// the JS bitwise operations. See ECMA-262 9.5: ToInt32.
|
// Exits with 'result' holding the answer.
|
void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result,
|
DoubleRegister double_input, StubCallMode stub_mode);
|
|
// Conditional move.
|
void Movz(Register rd, Register rs, Register rt);
|
void Movn(Register rd, Register rs, Register rt);
|
void Movt(Register rd, Register rs, uint16_t cc = 0);
|
void Movf(Register rd, Register rs, uint16_t cc = 0);
|
|
void LoadZeroIfFPUCondition(Register dest);
|
void LoadZeroIfNotFPUCondition(Register dest);
|
|
void LoadZeroIfConditionNotZero(Register dest, Register condition);
|
void LoadZeroIfConditionZero(Register dest, Register condition);
|
void LoadZeroOnCondition(Register rd, Register rs, const Operand& rt,
|
Condition cond);
|
|
void Clz(Register rd, Register rs);
|
void Ctz(Register rd, Register rs);
|
void Popcnt(Register rd, Register rs);
|
|
// Int64Lowering instructions
|
void AddPair(Register dst_low, Register dst_high, Register left_low,
|
Register left_high, Register right_low, Register right_high,
|
Register scratch1, Register scratch2);
|
|
void SubPair(Register dst_low, Register dst_high, Register left_low,
|
Register left_high, Register right_low, Register right_high,
|
Register scratch1, Register scratch2);
|
|
void MulPair(Register dst_low, Register dst_high, Register left_low,
|
Register left_high, Register right_low, Register right_high,
|
Register scratch1, Register scratch2);
|
|
void ShlPair(Register dst_low, Register dst_high, Register src_low,
|
Register src_high, Register shift, Register scratch1,
|
Register scratch2);
|
|
void ShlPair(Register dst_low, Register dst_high, Register src_low,
|
Register src_high, uint32_t shift, Register scratch);
|
|
void ShrPair(Register dst_low, Register dst_high, Register src_low,
|
Register src_high, Register shift, Register scratch1,
|
Register scratch2);
|
|
void ShrPair(Register dst_low, Register dst_high, Register src_low,
|
Register src_high, uint32_t shift, Register scratch);
|
|
void SarPair(Register dst_low, Register dst_high, Register src_low,
|
Register src_high, Register shift, Register scratch1,
|
Register scratch2);
|
|
void SarPair(Register dst_low, Register dst_high, Register src_low,
|
Register src_high, uint32_t shift, Register scratch);
|
|
// MIPS32 R2 instruction macro.
|
void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
|
void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
|
void ExtractBits(Register dest, Register source, Register pos, int size,
|
bool sign_extend = false);
|
void InsertBits(Register dest, Register source, Register pos, int size);
|
|
void Seb(Register rd, Register rt);
|
void Seh(Register rd, Register rt);
|
void Neg_s(FPURegister fd, FPURegister fs);
|
void Neg_d(FPURegister fd, FPURegister fs);
|
|
// MIPS32 R6 instruction macros.
|
void Bovc(Register rt, Register rs, Label* L);
|
void Bnvc(Register rt, Register rs, Label* L);
|
|
// Convert single to unsigned word.
|
void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch);
|
void Trunc_uw_s(Register rd, FPURegister fs, FPURegister scratch);
|
|
void Trunc_w_d(FPURegister fd, FPURegister fs);
|
void Round_w_d(FPURegister fd, FPURegister fs);
|
void Floor_w_d(FPURegister fd, FPURegister fs);
|
void Ceil_w_d(FPURegister fd, FPURegister fs);
|
|
// Round double functions
|
void Trunc_d_d(FPURegister fd, FPURegister fs);
|
void Round_d_d(FPURegister fd, FPURegister fs);
|
void Floor_d_d(FPURegister fd, FPURegister fs);
|
void Ceil_d_d(FPURegister fd, FPURegister fs);
|
|
// Round float functions
|
void Trunc_s_s(FPURegister fd, FPURegister fs);
|
void Round_s_s(FPURegister fd, FPURegister fs);
|
void Floor_s_s(FPURegister fd, FPURegister fs);
|
void Ceil_s_s(FPURegister fd, FPURegister fs);
|
|
// FP32 mode: Move the general purpose register into
|
// the high part of the double-register pair.
|
// FP64 mode: Move the general-purpose register into
|
// the higher 32 bits of the 64-bit coprocessor register,
|
// while leaving the low bits unchanged.
|
void Mthc1(Register rt, FPURegister fs);
|
|
// FP32 mode: move the high part of the double-register pair into
|
// general purpose register.
|
// FP64 mode: Move the higher 32 bits of the 64-bit coprocessor register into
|
// general-purpose register.
|
void Mfhc1(Register rt, FPURegister fs);
|
|
void Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
|
FPURegister scratch);
|
void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
|
FPURegister scratch);
|
void Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
|
FPURegister scratch);
|
void Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
|
FPURegister scratch);
|
|
// Change endianness
|
void ByteSwapSigned(Register dest, Register src, int operand_size);
|
void ByteSwapUnsigned(Register dest, Register src, int operand_size);
|
|
void Ulh(Register rd, const MemOperand& rs);
|
void Ulhu(Register rd, const MemOperand& rs);
|
void Ush(Register rd, const MemOperand& rs, Register scratch);
|
|
void Ulw(Register rd, const MemOperand& rs);
|
void Usw(Register rd, const MemOperand& rs);
|
|
void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch);
|
void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch);
|
|
void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch);
|
void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch);
|
|
void Ldc1(FPURegister fd, const MemOperand& src);
|
void Sdc1(FPURegister fs, const MemOperand& dst);
|
|
void Ll(Register rd, const MemOperand& rs);
|
void Sc(Register rd, const MemOperand& rs);
|
|
// Perform a floating-point min or max operation with the
|
// (IEEE-754-compatible) semantics of MIPS32's Release 6 MIN.fmt/MAX.fmt.
|
// Some cases, typically NaNs or +/-0.0, are expected to be rare and are
|
// handled in out-of-line code. The specific behaviour depends on supported
|
// instructions.
|
//
|
// These functions assume (and assert) that src1!=src2. It is permitted
|
// for the result to alias either input register.
|
void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2,
|
Label* out_of_line);
|
void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2,
|
Label* out_of_line);
|
void Float64Max(DoubleRegister dst, DoubleRegister src1, DoubleRegister src2,
|
Label* out_of_line);
|
void Float64Min(DoubleRegister dst, DoubleRegister src1, DoubleRegister src2,
|
Label* out_of_line);
|
|
// Generate out-of-line cases for the macros above.
|
void Float32MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
|
void Float32MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
|
void Float64MaxOutOfLine(DoubleRegister dst, DoubleRegister src1,
|
DoubleRegister src2);
|
void Float64MinOutOfLine(DoubleRegister dst, DoubleRegister src1,
|
DoubleRegister src2);
|
|
bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }
|
|
void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
|
|
inline void Move(Register dst, Handle<HeapObject> handle) { li(dst, handle); }
|
inline void Move(Register dst, Smi* smi) { li(dst, Operand(smi)); }
|
|
inline void Move(Register dst, Register src) {
|
if (dst != src) {
|
mov(dst, src);
|
}
|
}
|
|
inline void Move_d(FPURegister dst, FPURegister src) {
|
if (dst != src) {
|
mov_d(dst, src);
|
}
|
}
|
|
inline void Move_s(FPURegister dst, FPURegister src) {
|
if (dst != src) {
|
mov_s(dst, src);
|
}
|
}
|
|
inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); }
|
|
inline void Move(Register dst_low, Register dst_high, FPURegister src) {
|
mfc1(dst_low, src);
|
Mfhc1(dst_high, src);
|
}
|
|
inline void FmoveHigh(Register dst_high, FPURegister src) {
|
Mfhc1(dst_high, src);
|
}
|
|
inline void FmoveHigh(FPURegister dst, Register src_high) {
|
Mthc1(src_high, dst);
|
}
|
|
inline void FmoveLow(Register dst_low, FPURegister src) {
|
mfc1(dst_low, src);
|
}
|
|
void FmoveLow(FPURegister dst, Register src_low);
|
|
inline void Move(FPURegister dst, Register src_low, Register src_high) {
|
mtc1(src_low, dst);
|
Mthc1(src_high, dst);
|
}
|
|
void Move(FPURegister dst, float imm) { Move(dst, bit_cast<uint32_t>(imm)); }
|
void Move(FPURegister dst, double imm) { Move(dst, bit_cast<uint64_t>(imm)); }
|
void Move(FPURegister dst, uint32_t src);
|
void Move(FPURegister dst, uint64_t src);
|
|
// -------------------------------------------------------------------------
|
// Overflow operations.
|
|
// AddOverflow sets overflow register to a negative value if
|
// overflow occured, otherwise it is zero or positive
|
void AddOverflow(Register dst, Register left, const Operand& right,
|
Register overflow);
|
// SubOverflow sets overflow register to a negative value if
|
// overflow occured, otherwise it is zero or positive
|
void SubOverflow(Register dst, Register left, const Operand& right,
|
Register overflow);
|
// MulOverflow sets overflow register to zero if no overflow occured
|
void MulOverflow(Register dst, Register left, const Operand& right,
|
Register overflow);
|
|
// Number of instructions needed for calculation of switch table entry address
|
#ifdef _MIPS_ARCH_MIPS32R6
|
static constexpr int kSwitchTablePrologueSize = 5;
|
#else
|
static constexpr int kSwitchTablePrologueSize = 10;
|
#endif
|
// GetLabelFunction must be lambda '[](size_t index) -> Label*' or a
|
// functor/function with 'Label *func(size_t index)' declaration.
|
template <typename Func>
|
void GenerateSwitchTable(Register index, size_t case_count,
|
Func GetLabelFunction);
|
|
// Load an object from the root table.
|
void LoadRoot(Register destination, Heap::RootListIndex index) override;
|
void LoadRoot(Register destination, Heap::RootListIndex index, Condition cond,
|
Register src1, const Operand& src2);
|
|
// If the value is a NaN, canonicalize the value else, do nothing.
|
void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
|
|
// ---------------------------------------------------------------------------
|
// FPU macros. These do not handle special cases like NaN or +- inf.
|
|
// Convert unsigned word to double.
|
void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch);
|
|
// Convert double to unsigned word.
|
void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
|
void Trunc_uw_d(Register rd, FPURegister fs, FPURegister scratch);
|
|
// Jump the register contains a smi.
|
void JumpIfSmi(Register value, Label* smi_label, Register scratch = at,
|
BranchDelaySlot bd = PROTECT);
|
|
void JumpIfEqual(Register a, int32_t b, Label* dest) {
|
li(kScratchReg, Operand(b));
|
Branch(dest, eq, a, Operand(kScratchReg));
|
}
|
|
void JumpIfLessThan(Register a, int32_t b, Label* dest) {
|
li(kScratchReg, Operand(b));
|
Branch(dest, lt, a, Operand(kScratchReg));
|
}
|
|
// Push a standard frame, consisting of ra, fp, context and JS function.
|
void PushStandardFrame(Register function_reg);
|
|
// Get the actual activation frame alignment for target environment.
|
static int ActivationFrameAlignment();
|
|
// Compute the start of the generated instruction stream from the current PC.
|
// This is an alternative to embedding the {CodeObject} handle as a reference.
|
void ComputeCodeStartAddress(Register dst);
|
|
void ResetSpeculationPoisonRegister();
|
|
protected:
|
void BranchLong(Label* L, BranchDelaySlot bdslot);
|
|
inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
|
|
inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);
|
|
private:
|
bool has_double_zero_reg_set_ = false;
|
|
void CallCFunctionHelper(Register function_base, int16_t function_offset,
|
int num_reg_arguments, int num_double_arguments);
|
|
void CompareF(SecondaryField sizeField, FPUCondition cc, FPURegister cmp1,
|
FPURegister cmp2);
|
|
void CompareIsNanF(SecondaryField sizeField, FPURegister cmp1,
|
FPURegister cmp2);
|
|
void BranchShortMSA(MSABranchDF df, Label* target, MSABranchCondition cond,
|
MSARegister wt, BranchDelaySlot bd = PROTECT);
|
|
bool CalculateOffset(Label* L, int32_t& offset, OffsetSize bits);
|
bool CalculateOffset(Label* L, int32_t& offset, OffsetSize bits,
|
Register& scratch, const Operand& rt);
|
|
void BranchShortHelperR6(int32_t offset, Label* L);
|
void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot);
|
bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond,
|
Register rs, const Operand& rt);
|
bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs,
|
const Operand& rt, BranchDelaySlot bdslot);
|
bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
|
const Operand& rt, BranchDelaySlot bdslot);
|
|
void BranchAndLinkShortHelperR6(int32_t offset, Label* L);
|
void BranchAndLinkShortHelper(int16_t offset, Label* L,
|
BranchDelaySlot bdslot);
|
void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT);
|
void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
|
bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond,
|
Register rs, const Operand& rt);
|
bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond,
|
Register rs, const Operand& rt,
|
BranchDelaySlot bdslot);
|
bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
|
Register rs, const Operand& rt,
|
BranchDelaySlot bdslot);
|
void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot);
|
|
template <typename RoundFunc>
|
void RoundDouble(FPURegister dst, FPURegister src, FPURoundingMode mode,
|
RoundFunc round);
|
|
template <typename RoundFunc>
|
void RoundFloat(FPURegister dst, FPURegister src, FPURoundingMode mode,
|
RoundFunc round);
|
|
// Push a fixed frame, consisting of ra, fp.
|
void PushCommonFrame(Register marker_reg = no_reg);
|
};
|
|
// MacroAssembler implements a collection of frequently used macros.
|
class MacroAssembler : public TurboAssembler {
|
public:
|
MacroAssembler(Isolate* isolate, void* buffer, int size,
|
CodeObjectRequired create_code_object)
|
: MacroAssembler(isolate, AssemblerOptions::Default(isolate), buffer,
|
size, create_code_object) {}
|
MacroAssembler(Isolate* isolate, const AssemblerOptions& options,
|
void* buffer, int size, CodeObjectRequired create_code_object);
|
|
// Swap two registers. If the scratch register is omitted then a slightly
|
// less efficient form using xor instead of mov is emitted.
|
void Swap(Register reg1, Register reg2, Register scratch = no_reg);
|
|
void PushRoot(Heap::RootListIndex index) {
|
UseScratchRegisterScope temps(this);
|
Register scratch = temps.Acquire();
|
LoadRoot(scratch, index);
|
Push(scratch);
|
}
|
|
// Compare the object in a register to a value and jump if they are equal.
|
void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
|
UseScratchRegisterScope temps(this);
|
Register scratch = temps.Acquire();
|
LoadRoot(scratch, index);
|
Branch(if_equal, eq, with, Operand(scratch));
|
}
|
|
// Compare the object in a register to a value and jump if they are not equal.
|
void JumpIfNotRoot(Register with, Heap::RootListIndex index,
|
Label* if_not_equal) {
|
UseScratchRegisterScope temps(this);
|
Register scratch = temps.Acquire();
|
LoadRoot(scratch, index);
|
Branch(if_not_equal, ne, with, Operand(scratch));
|
}
|
|
// ---------------------------------------------------------------------------
|
// GC Support
|
|
// Notify the garbage collector that we wrote a pointer into an object.
|
// |object| is the object being stored into, |value| is the object being
|
// stored. value and scratch registers are clobbered by the operation.
|
// The offset is the offset from the start of the object, not the offset from
|
// the tagged HeapObject pointer. For use with FieldOperand(reg, off).
|
void RecordWriteField(
|
Register object, int offset, Register value, Register scratch,
|
RAStatus ra_status, SaveFPRegsMode save_fp,
|
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
|
SmiCheck smi_check = INLINE_SMI_CHECK);
|
|
// For a given |object| notify the garbage collector that the slot |address|
|
// has been written. |value| is the object being stored. The value and
|
// address registers are clobbered by the operation.
|
void RecordWrite(
|
Register object, Register address, Register value, RAStatus ra_status,
|
SaveFPRegsMode save_fp,
|
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
|
SmiCheck smi_check = INLINE_SMI_CHECK);
|
|
void Pref(int32_t hint, const MemOperand& rs);
|
|
// Push and pop the registers that can hold pointers, as defined by the
|
// RegList constant kSafepointSavedRegisters.
|
void PushSafepointRegisters();
|
void PopSafepointRegisters();
|
|
// Truncates a double using a specific rounding mode, and writes the value
|
// to the result register.
|
// The except_flag will contain any exceptions caused by the instruction.
|
// If check_inexact is kDontCheckForInexactConversion, then the inexact
|
// exception is masked.
|
void EmitFPUTruncate(
|
FPURoundingMode rounding_mode, Register result,
|
DoubleRegister double_input, Register scratch,
|
DoubleRegister double_scratch, Register except_flag,
|
CheckForInexactConversion check_inexact = kDontCheckForInexactConversion);
|
|
// Enter exit frame.
|
// argc - argument count to be dropped by LeaveExitFrame.
|
// save_doubles - saves FPU registers on stack, currently disabled.
|
// stack_space - extra stack space.
|
void EnterExitFrame(bool save_doubles, int stack_space = 0,
|
StackFrame::Type frame_type = StackFrame::EXIT);
|
|
// Leave the current exit frame.
|
void LeaveExitFrame(bool save_doubles, Register arg_count,
|
bool do_return = NO_EMIT_RETURN,
|
bool argument_count_is_length = false);
|
|
// Make sure the stack is aligned. Only emits code in debug mode.
|
void AssertStackIsAligned();
|
|
// Load the global proxy from the current context.
|
void LoadGlobalProxy(Register dst) {
|
LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
|
}
|
|
void LoadNativeContextSlot(int index, Register dst);
|
|
// -------------------------------------------------------------------------
|
// JavaScript invokes.
|
|
// Invoke the JavaScript function code by either calling or jumping.
|
void InvokeFunctionCode(Register function, Register new_target,
|
const ParameterCount& expected,
|
const ParameterCount& actual, InvokeFlag flag);
|
|
// On function call, call into the debugger if necessary.
|
void CheckDebugHook(Register fun, Register new_target,
|
const ParameterCount& expected,
|
const ParameterCount& actual);
|
|
// Invoke the JavaScript function in the given register. Changes the
|
// current context to the context in the function before invoking.
|
void InvokeFunction(Register function, Register new_target,
|
const ParameterCount& actual, InvokeFlag flag);
|
|
void InvokeFunction(Register function, const ParameterCount& expected,
|
const ParameterCount& actual, InvokeFlag flag);
|
|
// Frame restart support.
|
void MaybeDropFrames();
|
|
// Exception handling.
|
|
// Push a new stack handler and link into stack handler chain.
|
void PushStackHandler();
|
|
// Unlink the stack handler on top of the stack from the stack handler chain.
|
// Must preserve the result register.
|
void PopStackHandler();
|
|
// -------------------------------------------------------------------------
|
// Support functions.
|
|
void GetObjectType(Register function,
|
Register map,
|
Register type_reg);
|
|
// -------------------------------------------------------------------------
|
// Runtime calls.
|
|
#define COND_ARGS Condition cond = al, Register rs = zero_reg, \
|
const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
|
|
// Call a code stub.
|
void CallStub(CodeStub* stub,
|
COND_ARGS);
|
|
// Tail call a code stub (jump).
|
void TailCallStub(CodeStub* stub, COND_ARGS);
|
|
#undef COND_ARGS
|
|
// Call a runtime routine.
|
void CallRuntime(const Runtime::Function* f, int num_arguments,
|
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
|
|
// Convenience function: Same as above, but takes the fid instead.
|
void CallRuntime(Runtime::FunctionId fid,
|
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
|
const Runtime::Function* function = Runtime::FunctionForId(fid);
|
CallRuntime(function, function->nargs, save_doubles);
|
}
|
|
// Convenience function: Same as above, but takes the fid instead.
|
void CallRuntime(Runtime::FunctionId id, int num_arguments,
|
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
|
CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
|
}
|
|
// Convenience function: tail call a runtime routine (jump).
|
void TailCallRuntime(Runtime::FunctionId fid);
|
|
// Jump to the builtin routine.
|
void JumpToExternalReference(const ExternalReference& builtin,
|
BranchDelaySlot bd = PROTECT,
|
bool builtin_exit_frame = false);
|
|
// Generates a trampoline to jump to the off-heap instruction stream.
|
void JumpToInstructionStream(Address entry);
|
|
// ---------------------------------------------------------------------------
|
// In-place weak references.
|
void LoadWeakValue(Register out, Register in, Label* target_if_cleared);
|
|
// -------------------------------------------------------------------------
|
// StatsCounter support.
|
|
void IncrementCounter(StatsCounter* counter, int value,
|
Register scratch1, Register scratch2);
|
void DecrementCounter(StatsCounter* counter, int value,
|
Register scratch1, Register scratch2);
|
|
// -------------------------------------------------------------------------
|
// Smi utilities.
|
|
void SmiTag(Register reg) {
|
Addu(reg, reg, reg);
|
}
|
|
void SmiTag(Register dst, Register src) { Addu(dst, src, src); }
|
|
// Test if the register contains a smi.
|
inline void SmiTst(Register value, Register scratch) {
|
And(scratch, value, Operand(kSmiTagMask));
|
}
|
|
// Untag the source value into destination and jump if source is a smi.
|
// Souce and destination can be the same register.
|
void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
|
|
// Jump if the register contains a non-smi.
|
void JumpIfNotSmi(Register value,
|
Label* not_smi_label,
|
Register scratch = at,
|
BranchDelaySlot bd = PROTECT);
|
|
// Jump if either of the registers contain a smi.
|
void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
|
|
// Abort execution if argument is a smi, enabled via --debug-code.
|
void AssertNotSmi(Register object);
|
void AssertSmi(Register object);
|
|
// Abort execution if argument is not a Constructor, enabled via --debug-code.
|
void AssertConstructor(Register object);
|
|
// Abort execution if argument is not a JSFunction, enabled via --debug-code.
|
void AssertFunction(Register object);
|
|
// Abort execution if argument is not a JSBoundFunction,
|
// enabled via --debug-code.
|
void AssertBoundFunction(Register object);
|
|
// Abort execution if argument is not a JSGeneratorObject (or subclass),
|
// enabled via --debug-code.
|
void AssertGeneratorObject(Register object);
|
|
// Abort execution if argument is not undefined or an AllocationSite, enabled
|
// via --debug-code.
|
void AssertUndefinedOrAllocationSite(Register object, Register scratch);
|
|
template<typename Field>
|
void DecodeField(Register dst, Register src) {
|
Ext(dst, src, Field::kShift, Field::kSize);
|
}
|
|
template<typename Field>
|
void DecodeField(Register reg) {
|
DecodeField<Field>(reg, reg);
|
}
|
|
void EnterBuiltinFrame(Register context, Register target, Register argc);
|
void LeaveBuiltinFrame(Register context, Register target, Register argc);
|
|
|
private:
|
// Helper functions for generating invokes.
|
void InvokePrologue(const ParameterCount& expected,
|
const ParameterCount& actual, Label* done,
|
bool* definitely_mismatches, InvokeFlag flag);
|
|
// Compute memory operands for safepoint stack slots.
|
static int SafepointRegisterStackIndex(int reg_code);
|
|
// Needs access to SafepointRegisterStackIndex for compiled frame
|
// traversal.
|
friend class StandardFrame;
|
};
|
|
template <typename Func>
|
void TurboAssembler::GenerateSwitchTable(Register index, size_t case_count,
|
Func GetLabelFunction) {
|
Label here;
|
BlockTrampolinePoolFor(case_count + kSwitchTablePrologueSize);
|
UseScratchRegisterScope temps(this);
|
Register scratch = temps.Acquire();
|
if (kArchVariant >= kMips32r6) {
|
addiupc(scratch, 5);
|
Lsa(scratch, scratch, index, kPointerSizeLog2);
|
lw(scratch, MemOperand(scratch));
|
} else {
|
push(ra);
|
bal(&here);
|
sll(scratch, index, kPointerSizeLog2); // Branch delay slot.
|
bind(&here);
|
addu(scratch, scratch, ra);
|
pop(ra);
|
lw(scratch, MemOperand(scratch, 6 * v8::internal::kInstrSize));
|
}
|
jr(scratch);
|
nop(); // Branch delay slot nop.
|
for (size_t index = 0; index < case_count; ++index) {
|
dd(GetLabelFunction(index));
|
}
|
}
|
|
#define ACCESS_MASM(masm) masm->
|
|
} // namespace internal
|
} // namespace v8
|
|
#endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
|