# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
#
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
# you may not use this file except in compliance with the License.
|
# You may obtain a copy of the License at
|
#
|
# http://www.apache.org/licenses/LICENSE-2.0
|
#
|
# Unless required by applicable law or agreed to in writing, software
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# See the License for the specific language governing permissions and
|
# limitations under the License.
|
# ==============================================================================
|
"""Export an RNN cell in SavedModel format."""
|
|
from __future__ import absolute_import
|
from __future__ import division
|
from __future__ import print_function
|
|
from absl import app
|
from absl import flags
|
import numpy as np
|
|
import tensorflow.compat.v2 as tf
|
|
FLAGS = flags.FLAGS
|
|
flags.DEFINE_string("export_dir", None, "Directory to export SavedModel.")
|
|
|
def main(argv):
|
del argv
|
|
root = tf.train.Checkpoint()
|
# Create a cell and attach to our trackable.
|
root.rnn_cell = tf.keras.layers.LSTMCell(units=10, recurrent_initializer=None)
|
|
# Wrap the rnn_cell.__call__ function and assign to next_state.
|
root.next_state = tf.function(root.rnn_cell.__call__, autograph=False)
|
|
# Wrap the rnn_cell.get_initial_function using a decorator and assign to an
|
# attribute with the same name.
|
@tf.function(input_signature=[tf.TensorSpec([None, None], tf.float32)])
|
def get_initial_state(tensor):
|
return root.rnn_cell.get_initial_state(tensor, None, None)
|
|
root.get_initial_state = get_initial_state
|
|
# Construct an initial_state, then call next_state explicitly to trigger a
|
# trace for serialization (we need an explicit call, because next_state has
|
# not been annotated with an input_signature).
|
initial_state = root.get_initial_state(
|
tf.constant(np.random.uniform(size=[3, 10]).astype(np.float32)))
|
root.next_state(
|
tf.constant(np.random.uniform(size=[3, 19]).astype(np.float32)),
|
initial_state)
|
|
tf.saved_model.save(root, FLAGS.export_dir)
|
|
|
if __name__ == "__main__":
|
tf.enable_v2_behavior()
|
app.run(main)
|