/*
|
* Copyright 2016 Google Inc.
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#include "SkSLIRGenerator.h"
|
|
#include "limits.h"
|
#include <unordered_set>
|
|
#include "SkSLCompiler.h"
|
#include "SkSLParser.h"
|
#include "ast/SkSLASTBoolLiteral.h"
|
#include "ast/SkSLASTFieldSuffix.h"
|
#include "ast/SkSLASTFloatLiteral.h"
|
#include "ast/SkSLASTIndexSuffix.h"
|
#include "ast/SkSLASTIntLiteral.h"
|
#include "ast/SkSLASTNullLiteral.h"
|
#include "ir/SkSLAppendStage.h"
|
#include "ir/SkSLBinaryExpression.h"
|
#include "ir/SkSLBoolLiteral.h"
|
#include "ir/SkSLBreakStatement.h"
|
#include "ir/SkSLConstructor.h"
|
#include "ir/SkSLContinueStatement.h"
|
#include "ir/SkSLDiscardStatement.h"
|
#include "ir/SkSLDoStatement.h"
|
#include "ir/SkSLEnum.h"
|
#include "ir/SkSLExpressionStatement.h"
|
#include "ir/SkSLField.h"
|
#include "ir/SkSLFieldAccess.h"
|
#include "ir/SkSLFloatLiteral.h"
|
#include "ir/SkSLForStatement.h"
|
#include "ir/SkSLFunctionCall.h"
|
#include "ir/SkSLFunctionDeclaration.h"
|
#include "ir/SkSLFunctionDefinition.h"
|
#include "ir/SkSLFunctionReference.h"
|
#include "ir/SkSLIfStatement.h"
|
#include "ir/SkSLIndexExpression.h"
|
#include "ir/SkSLInterfaceBlock.h"
|
#include "ir/SkSLIntLiteral.h"
|
#include "ir/SkSLLayout.h"
|
#include "ir/SkSLNullLiteral.h"
|
#include "ir/SkSLPostfixExpression.h"
|
#include "ir/SkSLPrefixExpression.h"
|
#include "ir/SkSLReturnStatement.h"
|
#include "ir/SkSLSetting.h"
|
#include "ir/SkSLSwitchCase.h"
|
#include "ir/SkSLSwitchStatement.h"
|
#include "ir/SkSLSwizzle.h"
|
#include "ir/SkSLTernaryExpression.h"
|
#include "ir/SkSLUnresolvedFunction.h"
|
#include "ir/SkSLVariable.h"
|
#include "ir/SkSLVarDeclarations.h"
|
#include "ir/SkSLVarDeclarationsStatement.h"
|
#include "ir/SkSLVariableReference.h"
|
#include "ir/SkSLWhileStatement.h"
|
|
namespace SkSL {
|
|
class AutoSymbolTable {
|
public:
|
AutoSymbolTable(IRGenerator* ir)
|
: fIR(ir)
|
, fPrevious(fIR->fSymbolTable) {
|
fIR->pushSymbolTable();
|
}
|
|
~AutoSymbolTable() {
|
fIR->popSymbolTable();
|
SkASSERT(fPrevious == fIR->fSymbolTable);
|
}
|
|
IRGenerator* fIR;
|
std::shared_ptr<SymbolTable> fPrevious;
|
};
|
|
class AutoLoopLevel {
|
public:
|
AutoLoopLevel(IRGenerator* ir)
|
: fIR(ir) {
|
fIR->fLoopLevel++;
|
}
|
|
~AutoLoopLevel() {
|
fIR->fLoopLevel--;
|
}
|
|
IRGenerator* fIR;
|
};
|
|
class AutoSwitchLevel {
|
public:
|
AutoSwitchLevel(IRGenerator* ir)
|
: fIR(ir) {
|
fIR->fSwitchLevel++;
|
}
|
|
~AutoSwitchLevel() {
|
fIR->fSwitchLevel--;
|
}
|
|
IRGenerator* fIR;
|
};
|
|
IRGenerator::IRGenerator(const Context* context, std::shared_ptr<SymbolTable> symbolTable,
|
ErrorReporter& errorReporter)
|
: fContext(*context)
|
, fCurrentFunction(nullptr)
|
, fRootSymbolTable(symbolTable)
|
, fSymbolTable(symbolTable)
|
, fLoopLevel(0)
|
, fSwitchLevel(0)
|
, fTmpCount(0)
|
, fErrors(errorReporter) {}
|
|
void IRGenerator::pushSymbolTable() {
|
fSymbolTable.reset(new SymbolTable(std::move(fSymbolTable), &fErrors));
|
}
|
|
void IRGenerator::popSymbolTable() {
|
fSymbolTable = fSymbolTable->fParent;
|
}
|
|
static void fill_caps(const SKSL_CAPS_CLASS& caps,
|
std::unordered_map<String, Program::Settings::Value>* capsMap) {
|
#define CAP(name) \
|
capsMap->insert(std::make_pair(String(#name), Program::Settings::Value(caps.name())))
|
CAP(fbFetchSupport);
|
CAP(fbFetchNeedsCustomOutput);
|
CAP(dropsTileOnZeroDivide);
|
CAP(flatInterpolationSupport);
|
CAP(noperspectiveInterpolationSupport);
|
CAP(sampleVariablesSupport);
|
CAP(externalTextureSupport);
|
CAP(imageLoadStoreSupport);
|
CAP(mustEnableAdvBlendEqs);
|
CAP(mustEnableSpecificAdvBlendEqs);
|
CAP(mustDeclareFragmentShaderOutput);
|
CAP(mustDoOpBetweenFloorAndAbs);
|
CAP(atan2ImplementedAsAtanYOverX);
|
CAP(canUseAnyFunctionInShader);
|
CAP(floatIs32Bits);
|
CAP(integerSupport);
|
#undef CAP
|
}
|
|
void IRGenerator::start(const Program::Settings* settings,
|
std::vector<std::unique_ptr<ProgramElement>>* inherited) {
|
if (fStarted) {
|
this->popSymbolTable();
|
}
|
fSettings = settings;
|
fCapsMap.clear();
|
if (settings->fCaps) {
|
fill_caps(*settings->fCaps, &fCapsMap);
|
} else {
|
fCapsMap.insert(std::make_pair(String("integerSupport"),
|
Program::Settings::Value(true)));
|
}
|
this->pushSymbolTable();
|
fInvocations = -1;
|
fInputs.reset();
|
fSkPerVertex = nullptr;
|
fRTAdjust = nullptr;
|
fRTAdjustInterfaceBlock = nullptr;
|
if (inherited) {
|
for (const auto& e : *inherited) {
|
if (e->fKind == ProgramElement::kInterfaceBlock_Kind) {
|
InterfaceBlock& intf = (InterfaceBlock&) *e;
|
if (intf.fVariable.fName == Compiler::PERVERTEX_NAME) {
|
SkASSERT(!fSkPerVertex);
|
fSkPerVertex = &intf.fVariable;
|
}
|
}
|
}
|
}
|
}
|
|
std::unique_ptr<Extension> IRGenerator::convertExtension(const ASTExtension& extension) {
|
return std::unique_ptr<Extension>(new Extension(extension.fOffset, extension.fName));
|
}
|
|
std::unique_ptr<Statement> IRGenerator::convertStatement(const ASTStatement& statement) {
|
switch (statement.fKind) {
|
case ASTStatement::kBlock_Kind:
|
return this->convertBlock((ASTBlock&) statement);
|
case ASTStatement::kVarDeclaration_Kind:
|
return this->convertVarDeclarationStatement((ASTVarDeclarationStatement&) statement);
|
case ASTStatement::kExpression_Kind: {
|
std::unique_ptr<Statement> result =
|
this->convertExpressionStatement((ASTExpressionStatement&) statement);
|
if (!result) {
|
return nullptr;
|
}
|
if (fRTAdjust && Program::kGeometry_Kind == fKind) {
|
SkASSERT(result->fKind == Statement::kExpression_Kind);
|
Expression& expr = *((ExpressionStatement&) *result).fExpression;
|
if (expr.fKind == Expression::kFunctionCall_Kind) {
|
FunctionCall& fc = (FunctionCall&) expr;
|
if (fc.fFunction.fBuiltin && fc.fFunction.fName == "EmitVertex") {
|
std::vector<std::unique_ptr<Statement>> statements;
|
statements.push_back(getNormalizeSkPositionCode());
|
statements.push_back(std::move(result));
|
return std::unique_ptr<Block>(new Block(statement.fOffset,
|
std::move(statements),
|
fSymbolTable));
|
}
|
}
|
}
|
return result;
|
}
|
case ASTStatement::kIf_Kind:
|
return this->convertIf((ASTIfStatement&) statement);
|
case ASTStatement::kFor_Kind:
|
return this->convertFor((ASTForStatement&) statement);
|
case ASTStatement::kWhile_Kind:
|
return this->convertWhile((ASTWhileStatement&) statement);
|
case ASTStatement::kDo_Kind:
|
return this->convertDo((ASTDoStatement&) statement);
|
case ASTStatement::kSwitch_Kind:
|
return this->convertSwitch((ASTSwitchStatement&) statement);
|
case ASTStatement::kReturn_Kind:
|
return this->convertReturn((ASTReturnStatement&) statement);
|
case ASTStatement::kBreak_Kind:
|
return this->convertBreak((ASTBreakStatement&) statement);
|
case ASTStatement::kContinue_Kind:
|
return this->convertContinue((ASTContinueStatement&) statement);
|
case ASTStatement::kDiscard_Kind:
|
return this->convertDiscard((ASTDiscardStatement&) statement);
|
default:
|
ABORT("unsupported statement type: %d\n", statement.fKind);
|
}
|
}
|
|
std::unique_ptr<Block> IRGenerator::convertBlock(const ASTBlock& block) {
|
AutoSymbolTable table(this);
|
std::vector<std::unique_ptr<Statement>> statements;
|
for (size_t i = 0; i < block.fStatements.size(); i++) {
|
std::unique_ptr<Statement> statement = this->convertStatement(*block.fStatements[i]);
|
if (!statement) {
|
return nullptr;
|
}
|
statements.push_back(std::move(statement));
|
}
|
return std::unique_ptr<Block>(new Block(block.fOffset, std::move(statements), fSymbolTable));
|
}
|
|
std::unique_ptr<Statement> IRGenerator::convertVarDeclarationStatement(
|
const ASTVarDeclarationStatement& s) {
|
auto decl = this->convertVarDeclarations(*s.fDeclarations, Variable::kLocal_Storage);
|
if (!decl) {
|
return nullptr;
|
}
|
return std::unique_ptr<Statement>(new VarDeclarationsStatement(std::move(decl)));
|
}
|
|
std::unique_ptr<VarDeclarations> IRGenerator::convertVarDeclarations(const ASTVarDeclarations& decl,
|
Variable::Storage storage) {
|
std::vector<std::unique_ptr<VarDeclaration>> variables;
|
const Type* baseType = this->convertType(*decl.fType);
|
if (!baseType) {
|
return nullptr;
|
}
|
if (fKind != Program::kFragmentProcessor_Kind &&
|
(decl.fModifiers.fFlags & Modifiers::kIn_Flag) &&
|
baseType->kind() == Type::Kind::kMatrix_Kind) {
|
fErrors.error(decl.fOffset, "'in' variables may not have matrix type");
|
}
|
for (const auto& varDecl : decl.fVars) {
|
if (decl.fModifiers.fLayout.fLocation == 0 && decl.fModifiers.fLayout.fIndex == 0 &&
|
(decl.fModifiers.fFlags & Modifiers::kOut_Flag) && fKind == Program::kFragment_Kind &&
|
varDecl.fName != "sk_FragColor") {
|
fErrors.error(decl.fOffset,
|
"out location=0, index=0 is reserved for sk_FragColor");
|
}
|
const Type* type = baseType;
|
std::vector<std::unique_ptr<Expression>> sizes;
|
for (const auto& rawSize : varDecl.fSizes) {
|
if (rawSize) {
|
auto size = this->coerce(this->convertExpression(*rawSize), *fContext.fInt_Type);
|
if (!size) {
|
return nullptr;
|
}
|
String name(type->fName);
|
int64_t count;
|
if (size->fKind == Expression::kIntLiteral_Kind) {
|
count = ((IntLiteral&) *size).fValue;
|
if (count <= 0) {
|
fErrors.error(size->fOffset, "array size must be positive");
|
}
|
name += "[" + to_string(count) + "]";
|
} else {
|
count = -1;
|
name += "[]";
|
}
|
type = new Type(name, Type::kArray_Kind, *type, (int) count);
|
fSymbolTable->takeOwnership((Type*) type);
|
sizes.push_back(std::move(size));
|
} else {
|
type = new Type(type->name() + "[]", Type::kArray_Kind, *type, -1);
|
fSymbolTable->takeOwnership((Type*) type);
|
sizes.push_back(nullptr);
|
}
|
}
|
auto var = std::unique_ptr<Variable>(new Variable(decl.fOffset, decl.fModifiers,
|
varDecl.fName, *type, storage));
|
if (var->fName == Compiler::RTADJUST_NAME) {
|
SkASSERT(!fRTAdjust);
|
SkASSERT(var->fType == *fContext.fFloat4_Type);
|
fRTAdjust = var.get();
|
}
|
std::unique_ptr<Expression> value;
|
if (varDecl.fValue) {
|
value = this->convertExpression(*varDecl.fValue);
|
if (!value) {
|
return nullptr;
|
}
|
value = this->coerce(std::move(value), *type);
|
if (!value) {
|
return nullptr;
|
}
|
var->fWriteCount = 1;
|
var->fInitialValue = value.get();
|
}
|
if (storage == Variable::kGlobal_Storage && varDecl.fName == "sk_FragColor" &&
|
(*fSymbolTable)[varDecl.fName]) {
|
// already defined, ignore
|
} else if (storage == Variable::kGlobal_Storage && (*fSymbolTable)[varDecl.fName] &&
|
(*fSymbolTable)[varDecl.fName]->fKind == Symbol::kVariable_Kind &&
|
((Variable*) (*fSymbolTable)[varDecl.fName])->fModifiers.fLayout.fBuiltin >= 0) {
|
// already defined, just update the modifiers
|
Variable* old = (Variable*) (*fSymbolTable)[varDecl.fName];
|
old->fModifiers = var->fModifiers;
|
} else {
|
variables.emplace_back(new VarDeclaration(var.get(), std::move(sizes),
|
std::move(value)));
|
fSymbolTable->add(varDecl.fName, std::move(var));
|
}
|
}
|
return std::unique_ptr<VarDeclarations>(new VarDeclarations(decl.fOffset,
|
baseType,
|
std::move(variables)));
|
}
|
|
std::unique_ptr<ModifiersDeclaration> IRGenerator::convertModifiersDeclaration(
|
const ASTModifiersDeclaration& m) {
|
Modifiers modifiers = m.fModifiers;
|
if (modifiers.fLayout.fInvocations != -1) {
|
fInvocations = modifiers.fLayout.fInvocations;
|
if (fSettings->fCaps && !fSettings->fCaps->gsInvocationsSupport()) {
|
modifiers.fLayout.fInvocations = -1;
|
Variable* invocationId = (Variable*) (*fSymbolTable)["sk_InvocationID"];
|
SkASSERT(invocationId);
|
invocationId->fModifiers.fFlags = 0;
|
invocationId->fModifiers.fLayout.fBuiltin = -1;
|
if (modifiers.fLayout.description() == "") {
|
return nullptr;
|
}
|
}
|
}
|
if (modifiers.fLayout.fMaxVertices != -1 && fInvocations > 0 && fSettings->fCaps &&
|
!fSettings->fCaps->gsInvocationsSupport()) {
|
modifiers.fLayout.fMaxVertices *= fInvocations;
|
}
|
return std::unique_ptr<ModifiersDeclaration>(new ModifiersDeclaration(modifiers));
|
}
|
|
std::unique_ptr<Statement> IRGenerator::convertIf(const ASTIfStatement& s) {
|
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*s.fTest),
|
*fContext.fBool_Type);
|
if (!test) {
|
return nullptr;
|
}
|
std::unique_ptr<Statement> ifTrue = this->convertStatement(*s.fIfTrue);
|
if (!ifTrue) {
|
return nullptr;
|
}
|
std::unique_ptr<Statement> ifFalse;
|
if (s.fIfFalse) {
|
ifFalse = this->convertStatement(*s.fIfFalse);
|
if (!ifFalse) {
|
return nullptr;
|
}
|
}
|
if (test->fKind == Expression::kBoolLiteral_Kind) {
|
// static boolean value, fold down to a single branch
|
if (((BoolLiteral&) *test).fValue) {
|
return ifTrue;
|
} else if (s.fIfFalse) {
|
return ifFalse;
|
} else {
|
// False & no else clause. Not an error, so don't return null!
|
std::vector<std::unique_ptr<Statement>> empty;
|
return std::unique_ptr<Statement>(new Block(s.fOffset, std::move(empty),
|
fSymbolTable));
|
}
|
}
|
return std::unique_ptr<Statement>(new IfStatement(s.fOffset, s.fIsStatic, std::move(test),
|
std::move(ifTrue), std::move(ifFalse)));
|
}
|
|
std::unique_ptr<Statement> IRGenerator::convertFor(const ASTForStatement& f) {
|
AutoLoopLevel level(this);
|
AutoSymbolTable table(this);
|
std::unique_ptr<Statement> initializer;
|
if (f.fInitializer) {
|
initializer = this->convertStatement(*f.fInitializer);
|
if (!initializer) {
|
return nullptr;
|
}
|
}
|
std::unique_ptr<Expression> test;
|
if (f.fTest) {
|
test = this->coerce(this->convertExpression(*f.fTest), *fContext.fBool_Type);
|
if (!test) {
|
return nullptr;
|
}
|
}
|
std::unique_ptr<Expression> next;
|
if (f.fNext) {
|
next = this->convertExpression(*f.fNext);
|
if (!next) {
|
return nullptr;
|
}
|
this->checkValid(*next);
|
}
|
std::unique_ptr<Statement> statement = this->convertStatement(*f.fStatement);
|
if (!statement) {
|
return nullptr;
|
}
|
return std::unique_ptr<Statement>(new ForStatement(f.fOffset, std::move(initializer),
|
std::move(test), std::move(next),
|
std::move(statement), fSymbolTable));
|
}
|
|
std::unique_ptr<Statement> IRGenerator::convertWhile(const ASTWhileStatement& w) {
|
AutoLoopLevel level(this);
|
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*w.fTest),
|
*fContext.fBool_Type);
|
if (!test) {
|
return nullptr;
|
}
|
std::unique_ptr<Statement> statement = this->convertStatement(*w.fStatement);
|
if (!statement) {
|
return nullptr;
|
}
|
return std::unique_ptr<Statement>(new WhileStatement(w.fOffset, std::move(test),
|
std::move(statement)));
|
}
|
|
std::unique_ptr<Statement> IRGenerator::convertDo(const ASTDoStatement& d) {
|
AutoLoopLevel level(this);
|
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*d.fTest),
|
*fContext.fBool_Type);
|
if (!test) {
|
return nullptr;
|
}
|
std::unique_ptr<Statement> statement = this->convertStatement(*d.fStatement);
|
if (!statement) {
|
return nullptr;
|
}
|
return std::unique_ptr<Statement>(new DoStatement(d.fOffset, std::move(statement),
|
std::move(test)));
|
}
|
|
std::unique_ptr<Statement> IRGenerator::convertSwitch(const ASTSwitchStatement& s) {
|
AutoSwitchLevel level(this);
|
std::unique_ptr<Expression> value = this->convertExpression(*s.fValue);
|
if (!value) {
|
return nullptr;
|
}
|
if (value->fType != *fContext.fUInt_Type && value->fType.kind() != Type::kEnum_Kind) {
|
value = this->coerce(std::move(value), *fContext.fInt_Type);
|
if (!value) {
|
return nullptr;
|
}
|
}
|
AutoSymbolTable table(this);
|
std::unordered_set<int> caseValues;
|
std::vector<std::unique_ptr<SwitchCase>> cases;
|
for (const auto& c : s.fCases) {
|
std::unique_ptr<Expression> caseValue;
|
if (c->fValue) {
|
caseValue = this->convertExpression(*c->fValue);
|
if (!caseValue) {
|
return nullptr;
|
}
|
caseValue = this->coerce(std::move(caseValue), value->fType);
|
if (!caseValue) {
|
return nullptr;
|
}
|
if (!caseValue->isConstant()) {
|
fErrors.error(caseValue->fOffset, "case value must be a constant");
|
return nullptr;
|
}
|
int64_t v;
|
this->getConstantInt(*caseValue, &v);
|
if (caseValues.find(v) != caseValues.end()) {
|
fErrors.error(caseValue->fOffset, "duplicate case value");
|
}
|
caseValues.insert(v);
|
}
|
std::vector<std::unique_ptr<Statement>> statements;
|
for (const auto& s : c->fStatements) {
|
std::unique_ptr<Statement> converted = this->convertStatement(*s);
|
if (!converted) {
|
return nullptr;
|
}
|
statements.push_back(std::move(converted));
|
}
|
cases.emplace_back(new SwitchCase(c->fOffset, std::move(caseValue),
|
std::move(statements)));
|
}
|
return std::unique_ptr<Statement>(new SwitchStatement(s.fOffset, s.fIsStatic,
|
std::move(value), std::move(cases),
|
fSymbolTable));
|
}
|
|
std::unique_ptr<Statement> IRGenerator::convertExpressionStatement(
|
const ASTExpressionStatement& s) {
|
std::unique_ptr<Expression> e = this->convertExpression(*s.fExpression);
|
if (!e) {
|
return nullptr;
|
}
|
this->checkValid(*e);
|
return std::unique_ptr<Statement>(new ExpressionStatement(std::move(e)));
|
}
|
|
std::unique_ptr<Statement> IRGenerator::convertReturn(const ASTReturnStatement& r) {
|
SkASSERT(fCurrentFunction);
|
// early returns from a vertex main function will bypass the sk_Position normalization, so
|
// SkASSERT that we aren't doing that. It is of course possible to fix this by adding a
|
// normalization before each return, but it will probably never actually be necessary.
|
SkASSERT(Program::kVertex_Kind != fKind || !fRTAdjust || "main" != fCurrentFunction->fName);
|
if (r.fExpression) {
|
std::unique_ptr<Expression> result = this->convertExpression(*r.fExpression);
|
if (!result) {
|
return nullptr;
|
}
|
if (fCurrentFunction->fReturnType == *fContext.fVoid_Type) {
|
fErrors.error(result->fOffset, "may not return a value from a void function");
|
} else {
|
result = this->coerce(std::move(result), fCurrentFunction->fReturnType);
|
if (!result) {
|
return nullptr;
|
}
|
}
|
return std::unique_ptr<Statement>(new ReturnStatement(std::move(result)));
|
} else {
|
if (fCurrentFunction->fReturnType != *fContext.fVoid_Type) {
|
fErrors.error(r.fOffset, "expected function to return '" +
|
fCurrentFunction->fReturnType.description() + "'");
|
}
|
return std::unique_ptr<Statement>(new ReturnStatement(r.fOffset));
|
}
|
}
|
|
std::unique_ptr<Statement> IRGenerator::convertBreak(const ASTBreakStatement& b) {
|
if (fLoopLevel > 0 || fSwitchLevel > 0) {
|
return std::unique_ptr<Statement>(new BreakStatement(b.fOffset));
|
} else {
|
fErrors.error(b.fOffset, "break statement must be inside a loop or switch");
|
return nullptr;
|
}
|
}
|
|
std::unique_ptr<Statement> IRGenerator::convertContinue(const ASTContinueStatement& c) {
|
if (fLoopLevel > 0) {
|
return std::unique_ptr<Statement>(new ContinueStatement(c.fOffset));
|
} else {
|
fErrors.error(c.fOffset, "continue statement must be inside a loop");
|
return nullptr;
|
}
|
}
|
|
std::unique_ptr<Statement> IRGenerator::convertDiscard(const ASTDiscardStatement& d) {
|
return std::unique_ptr<Statement>(new DiscardStatement(d.fOffset));
|
}
|
|
std::unique_ptr<Block> IRGenerator::applyInvocationIDWorkaround(std::unique_ptr<Block> main) {
|
Layout invokeLayout;
|
Modifiers invokeModifiers(invokeLayout, Modifiers::kHasSideEffects_Flag);
|
FunctionDeclaration* invokeDecl = new FunctionDeclaration(-1,
|
invokeModifiers,
|
"_invoke",
|
std::vector<const Variable*>(),
|
*fContext.fVoid_Type);
|
fProgramElements->push_back(std::unique_ptr<ProgramElement>(
|
new FunctionDefinition(-1, *invokeDecl, std::move(main))));
|
fSymbolTable->add(invokeDecl->fName, std::unique_ptr<FunctionDeclaration>(invokeDecl));
|
|
std::vector<std::unique_ptr<VarDeclaration>> variables;
|
Variable* loopIdx = (Variable*) (*fSymbolTable)["sk_InvocationID"];
|
SkASSERT(loopIdx);
|
std::unique_ptr<Expression> test(new BinaryExpression(-1,
|
std::unique_ptr<Expression>(new VariableReference(-1, *loopIdx)),
|
Token::LT,
|
std::unique_ptr<IntLiteral>(new IntLiteral(fContext, -1, fInvocations)),
|
*fContext.fBool_Type));
|
std::unique_ptr<Expression> next(new PostfixExpression(
|
std::unique_ptr<Expression>(
|
new VariableReference(-1,
|
*loopIdx,
|
VariableReference::kReadWrite_RefKind)),
|
Token::PLUSPLUS));
|
ASTIdentifier endPrimitiveID = ASTIdentifier(-1, "EndPrimitive");
|
std::unique_ptr<Expression> endPrimitive = this->convertExpression(endPrimitiveID);
|
SkASSERT(endPrimitive);
|
|
std::vector<std::unique_ptr<Statement>> loopBody;
|
std::vector<std::unique_ptr<Expression>> invokeArgs;
|
loopBody.push_back(std::unique_ptr<Statement>(new ExpressionStatement(
|
this->call(-1,
|
*invokeDecl,
|
std::vector<std::unique_ptr<Expression>>()))));
|
loopBody.push_back(std::unique_ptr<Statement>(new ExpressionStatement(
|
this->call(-1,
|
std::move(endPrimitive),
|
std::vector<std::unique_ptr<Expression>>()))));
|
std::unique_ptr<Expression> assignment(new BinaryExpression(-1,
|
std::unique_ptr<Expression>(new VariableReference(-1, *loopIdx)),
|
Token::EQ,
|
std::unique_ptr<IntLiteral>(new IntLiteral(fContext, -1, 0)),
|
*fContext.fInt_Type));
|
std::unique_ptr<Statement> initializer(new ExpressionStatement(std::move(assignment)));
|
std::unique_ptr<Statement> loop = std::unique_ptr<Statement>(
|
new ForStatement(-1,
|
std::move(initializer),
|
std::move(test),
|
std::move(next),
|
std::unique_ptr<Block>(new Block(-1, std::move(loopBody))),
|
fSymbolTable));
|
std::vector<std::unique_ptr<Statement>> children;
|
children.push_back(std::move(loop));
|
return std::unique_ptr<Block>(new Block(-1, std::move(children)));
|
}
|
|
std::unique_ptr<Statement> IRGenerator::getNormalizeSkPositionCode() {
|
// sk_Position = float4(sk_Position.xy * rtAdjust.xz + sk_Position.ww * rtAdjust.yw,
|
// 0,
|
// sk_Position.w);
|
SkASSERT(fSkPerVertex && fRTAdjust);
|
#define REF(var) std::unique_ptr<Expression>(\
|
new VariableReference(-1, *var, VariableReference::kRead_RefKind))
|
#define FIELD(var, idx) std::unique_ptr<Expression>(\
|
new FieldAccess(REF(var), idx, FieldAccess::kAnonymousInterfaceBlock_OwnerKind))
|
#define POS std::unique_ptr<Expression>(new FieldAccess(REF(fSkPerVertex), 0, \
|
FieldAccess::kAnonymousInterfaceBlock_OwnerKind))
|
#define ADJUST (fRTAdjustInterfaceBlock ? \
|
FIELD(fRTAdjustInterfaceBlock, fRTAdjustFieldIndex) : \
|
REF(fRTAdjust))
|
#define SWIZZLE(expr, ...) std::unique_ptr<Expression>(new Swizzle(fContext, expr, \
|
{ __VA_ARGS__ }))
|
#define OP(left, op, right) std::unique_ptr<Expression>( \
|
new BinaryExpression(-1, left, op, right, \
|
*fContext.fFloat2_Type))
|
std::vector<std::unique_ptr<Expression>> children;
|
children.push_back(OP(OP(SWIZZLE(POS, 0, 1), Token::STAR, SWIZZLE(ADJUST, 0, 2)),
|
Token::PLUS,
|
OP(SWIZZLE(POS, 3, 3), Token::STAR, SWIZZLE(ADJUST, 1, 3))));
|
children.push_back(std::unique_ptr<Expression>(new FloatLiteral(fContext, -1, 0.0)));
|
children.push_back(SWIZZLE(POS, 3));
|
std::unique_ptr<Expression> result = OP(POS, Token::EQ,
|
std::unique_ptr<Expression>(new Constructor(-1,
|
*fContext.fFloat4_Type,
|
std::move(children))));
|
return std::unique_ptr<Statement>(new ExpressionStatement(std::move(result)));
|
}
|
|
|
void IRGenerator::convertFunction(const ASTFunction& f) {
|
const Type* returnType = this->convertType(*f.fReturnType);
|
if (!returnType) {
|
return;
|
}
|
std::vector<const Variable*> parameters;
|
for (const auto& param : f.fParameters) {
|
const Type* type = this->convertType(*param->fType);
|
if (!type) {
|
return;
|
}
|
for (int j = (int) param->fSizes.size() - 1; j >= 0; j--) {
|
int size = param->fSizes[j];
|
String name = type->name() + "[" + to_string(size) + "]";
|
Type* newType = new Type(std::move(name), Type::kArray_Kind, *type, size);
|
fSymbolTable->takeOwnership(newType);
|
type = newType;
|
}
|
StringFragment name = param->fName;
|
Variable* var = new Variable(param->fOffset, param->fModifiers, name, *type,
|
Variable::kParameter_Storage);
|
fSymbolTable->takeOwnership(var);
|
parameters.push_back(var);
|
}
|
|
if (f.fName == "main") {
|
if (fKind == Program::kPipelineStage_Kind) {
|
bool valid;
|
switch (parameters.size()) {
|
case 3:
|
valid = parameters[0]->fType == *fContext.fInt_Type &&
|
parameters[0]->fModifiers.fFlags == 0 &&
|
parameters[1]->fType == *fContext.fInt_Type &&
|
parameters[1]->fModifiers.fFlags == 0 &&
|
parameters[2]->fType == *fContext.fHalf4_Type &&
|
parameters[2]->fModifiers.fFlags == (Modifiers::kIn_Flag |
|
Modifiers::kOut_Flag);
|
break;
|
case 1:
|
valid = parameters[0]->fType == *fContext.fHalf4_Type &&
|
parameters[0]->fModifiers.fFlags == (Modifiers::kIn_Flag |
|
Modifiers::kOut_Flag);
|
break;
|
default:
|
valid = false;
|
}
|
if (!valid) {
|
fErrors.error(f.fOffset, "pipeline stage 'main' must be declared main(int, "
|
"int, inout half4) or main(inout half4)");
|
return;
|
}
|
} else if (parameters.size()) {
|
fErrors.error(f.fOffset, "shader 'main' must have zero parameters");
|
}
|
}
|
|
// find existing declaration
|
const FunctionDeclaration* decl = nullptr;
|
auto entry = (*fSymbolTable)[f.fName];
|
if (entry) {
|
std::vector<const FunctionDeclaration*> functions;
|
switch (entry->fKind) {
|
case Symbol::kUnresolvedFunction_Kind:
|
functions = ((UnresolvedFunction*) entry)->fFunctions;
|
break;
|
case Symbol::kFunctionDeclaration_Kind:
|
functions.push_back((FunctionDeclaration*) entry);
|
break;
|
default:
|
fErrors.error(f.fOffset, "symbol '" + f.fName + "' was already defined");
|
return;
|
}
|
for (const auto& other : functions) {
|
SkASSERT(other->fName == f.fName);
|
if (parameters.size() == other->fParameters.size()) {
|
bool match = true;
|
for (size_t i = 0; i < parameters.size(); i++) {
|
if (parameters[i]->fType != other->fParameters[i]->fType) {
|
match = false;
|
break;
|
}
|
}
|
if (match) {
|
if (*returnType != other->fReturnType) {
|
FunctionDeclaration newDecl(f.fOffset, f.fModifiers, f.fName, parameters,
|
*returnType);
|
fErrors.error(f.fOffset, "functions '" + newDecl.description() +
|
"' and '" + other->description() +
|
"' differ only in return type");
|
return;
|
}
|
decl = other;
|
for (size_t i = 0; i < parameters.size(); i++) {
|
if (parameters[i]->fModifiers != other->fParameters[i]->fModifiers) {
|
fErrors.error(f.fOffset, "modifiers on parameter " +
|
to_string((uint64_t) i + 1) +
|
" differ between declaration and "
|
"definition");
|
return;
|
}
|
}
|
if (other->fDefined) {
|
fErrors.error(f.fOffset, "duplicate definition of " +
|
other->description());
|
}
|
break;
|
}
|
}
|
}
|
}
|
if (!decl) {
|
// couldn't find an existing declaration
|
auto newDecl = std::unique_ptr<FunctionDeclaration>(new FunctionDeclaration(f.fOffset,
|
f.fModifiers,
|
f.fName,
|
parameters,
|
*returnType));
|
decl = newDecl.get();
|
fSymbolTable->add(decl->fName, std::move(newDecl));
|
}
|
if (f.fBody) {
|
SkASSERT(!fCurrentFunction);
|
fCurrentFunction = decl;
|
decl->fDefined = true;
|
std::shared_ptr<SymbolTable> old = fSymbolTable;
|
AutoSymbolTable table(this);
|
if (f.fName == "main" && fKind == Program::kPipelineStage_Kind) {
|
if (parameters.size() == 3) {
|
parameters[0]->fModifiers.fLayout.fBuiltin = SK_MAIN_X_BUILTIN;
|
parameters[1]->fModifiers.fLayout.fBuiltin = SK_MAIN_Y_BUILTIN;
|
parameters[2]->fModifiers.fLayout.fBuiltin = SK_OUTCOLOR_BUILTIN;
|
} else {
|
SkASSERT(parameters.size() == 1);
|
parameters[0]->fModifiers.fLayout.fBuiltin = SK_OUTCOLOR_BUILTIN;
|
}
|
}
|
for (size_t i = 0; i < parameters.size(); i++) {
|
fSymbolTable->addWithoutOwnership(parameters[i]->fName, decl->fParameters[i]);
|
}
|
bool needInvocationIDWorkaround = fInvocations != -1 && f.fName == "main" &&
|
fSettings->fCaps &&
|
!fSettings->fCaps->gsInvocationsSupport();
|
SkASSERT(!fExtraVars.size());
|
std::unique_ptr<Block> body = this->convertBlock(*f.fBody);
|
for (auto& v : fExtraVars) {
|
body->fStatements.insert(body->fStatements.begin(), std::move(v));
|
}
|
fExtraVars.clear();
|
fCurrentFunction = nullptr;
|
if (!body) {
|
return;
|
}
|
if (needInvocationIDWorkaround) {
|
body = this->applyInvocationIDWorkaround(std::move(body));
|
}
|
// conservatively assume all user-defined functions have side effects
|
((Modifiers&) decl->fModifiers).fFlags |= Modifiers::kHasSideEffects_Flag;
|
if (Program::kVertex_Kind == fKind && f.fName == "main" && fRTAdjust) {
|
body->fStatements.insert(body->fStatements.end(), this->getNormalizeSkPositionCode());
|
}
|
fProgramElements->push_back(std::unique_ptr<FunctionDefinition>(
|
new FunctionDefinition(f.fOffset, *decl, std::move(body))));
|
}
|
}
|
|
std::unique_ptr<InterfaceBlock> IRGenerator::convertInterfaceBlock(const ASTInterfaceBlock& intf) {
|
std::shared_ptr<SymbolTable> old = fSymbolTable;
|
this->pushSymbolTable();
|
std::shared_ptr<SymbolTable> symbols = fSymbolTable;
|
std::vector<Type::Field> fields;
|
bool haveRuntimeArray = false;
|
bool foundRTAdjust = false;
|
for (size_t i = 0; i < intf.fDeclarations.size(); i++) {
|
std::unique_ptr<VarDeclarations> decl = this->convertVarDeclarations(
|
*intf.fDeclarations[i],
|
Variable::kInterfaceBlock_Storage);
|
if (!decl) {
|
return nullptr;
|
}
|
for (const auto& stmt : decl->fVars) {
|
VarDeclaration& vd = (VarDeclaration&) *stmt;
|
if (haveRuntimeArray) {
|
fErrors.error(decl->fOffset,
|
"only the last entry in an interface block may be a runtime-sized "
|
"array");
|
}
|
if (vd.fVar == fRTAdjust) {
|
foundRTAdjust = true;
|
SkASSERT(vd.fVar->fType == *fContext.fFloat4_Type);
|
fRTAdjustFieldIndex = fields.size();
|
}
|
fields.push_back(Type::Field(vd.fVar->fModifiers, vd.fVar->fName,
|
&vd.fVar->fType));
|
if (vd.fValue) {
|
fErrors.error(decl->fOffset,
|
"initializers are not permitted on interface block fields");
|
}
|
if (vd.fVar->fModifiers.fFlags & (Modifiers::kIn_Flag |
|
Modifiers::kOut_Flag |
|
Modifiers::kUniform_Flag |
|
Modifiers::kBuffer_Flag |
|
Modifiers::kConst_Flag)) {
|
fErrors.error(decl->fOffset,
|
"interface block fields may not have storage qualifiers");
|
}
|
if (vd.fVar->fType.kind() == Type::kArray_Kind &&
|
vd.fVar->fType.columns() == -1) {
|
haveRuntimeArray = true;
|
}
|
}
|
}
|
this->popSymbolTable();
|
Type* type = new Type(intf.fOffset, intf.fTypeName, fields);
|
old->takeOwnership(type);
|
std::vector<std::unique_ptr<Expression>> sizes;
|
for (const auto& size : intf.fSizes) {
|
if (size) {
|
std::unique_ptr<Expression> converted = this->convertExpression(*size);
|
if (!converted) {
|
return nullptr;
|
}
|
String name = type->fName;
|
int64_t count;
|
if (converted->fKind == Expression::kIntLiteral_Kind) {
|
count = ((IntLiteral&) *converted).fValue;
|
if (count <= 0) {
|
fErrors.error(converted->fOffset, "array size must be positive");
|
}
|
name += "[" + to_string(count) + "]";
|
} else {
|
count = -1;
|
name += "[]";
|
}
|
type = new Type(name, Type::kArray_Kind, *type, (int) count);
|
symbols->takeOwnership((Type*) type);
|
sizes.push_back(std::move(converted));
|
} else {
|
type = new Type(type->name() + "[]", Type::kArray_Kind, *type, -1);
|
symbols->takeOwnership((Type*) type);
|
sizes.push_back(nullptr);
|
}
|
}
|
Variable* var = new Variable(intf.fOffset, intf.fModifiers,
|
intf.fInstanceName.fLength ? intf.fInstanceName : intf.fTypeName,
|
*type, Variable::kGlobal_Storage);
|
if (foundRTAdjust) {
|
fRTAdjustInterfaceBlock = var;
|
}
|
old->takeOwnership(var);
|
if (intf.fInstanceName.fLength) {
|
old->addWithoutOwnership(intf.fInstanceName, var);
|
} else {
|
for (size_t i = 0; i < fields.size(); i++) {
|
old->add(fields[i].fName, std::unique_ptr<Field>(new Field(intf.fOffset, *var,
|
(int) i)));
|
}
|
}
|
return std::unique_ptr<InterfaceBlock>(new InterfaceBlock(intf.fOffset,
|
var,
|
intf.fTypeName,
|
intf.fInstanceName,
|
std::move(sizes),
|
symbols));
|
}
|
|
void IRGenerator::getConstantInt(const Expression& value, int64_t* out) {
|
switch (value.fKind) {
|
case Expression::kIntLiteral_Kind:
|
*out = ((const IntLiteral&) value).fValue;
|
break;
|
case Expression::kVariableReference_Kind: {
|
const Variable& var = ((VariableReference&) value).fVariable;
|
if ((var.fModifiers.fFlags & Modifiers::kConst_Flag) &&
|
var.fInitialValue) {
|
this->getConstantInt(*var.fInitialValue, out);
|
}
|
break;
|
}
|
default:
|
fErrors.error(value.fOffset, "expected a constant int");
|
}
|
}
|
|
void IRGenerator::convertEnum(const ASTEnum& e) {
|
std::vector<Variable*> variables;
|
int64_t currentValue = 0;
|
Layout layout;
|
ASTType enumType(e.fOffset, e.fTypeName, ASTType::kIdentifier_Kind, {}, false);
|
const Type* type = this->convertType(enumType);
|
Modifiers modifiers(layout, Modifiers::kConst_Flag);
|
std::shared_ptr<SymbolTable> symbols(new SymbolTable(fSymbolTable, &fErrors));
|
fSymbolTable = symbols;
|
for (size_t i = 0; i < e.fNames.size(); i++) {
|
std::unique_ptr<Expression> value;
|
if (e.fValues[i]) {
|
value = this->convertExpression(*e.fValues[i]);
|
if (!value) {
|
fSymbolTable = symbols->fParent;
|
return;
|
}
|
this->getConstantInt(*value, ¤tValue);
|
}
|
value = std::unique_ptr<Expression>(new IntLiteral(fContext, e.fOffset, currentValue));
|
++currentValue;
|
auto var = std::unique_ptr<Variable>(new Variable(e.fOffset, modifiers, e.fNames[i],
|
*type, Variable::kGlobal_Storage,
|
value.get()));
|
variables.push_back(var.get());
|
symbols->add(e.fNames[i], std::move(var));
|
symbols->takeOwnership(value.release());
|
}
|
fProgramElements->push_back(std::unique_ptr<ProgramElement>(new Enum(e.fOffset, e.fTypeName,
|
symbols)));
|
fSymbolTable = symbols->fParent;
|
}
|
|
const Type* IRGenerator::convertType(const ASTType& type) {
|
const Symbol* result = (*fSymbolTable)[type.fName];
|
if (result && result->fKind == Symbol::kType_Kind) {
|
if (type.fNullable) {
|
if (((Type&) *result) == *fContext.fFragmentProcessor_Type) {
|
if (type.fSizes.size()) {
|
fErrors.error(type.fOffset, "type '" + type.fName + "' may not be used in "
|
"an array");
|
}
|
result = new Type(String(result->fName) + "?", Type::kNullable_Kind,
|
(const Type&) *result);
|
fSymbolTable->takeOwnership((Type*) result);
|
} else {
|
fErrors.error(type.fOffset, "type '" + type.fName + "' may not be nullable");
|
}
|
}
|
for (int size : type.fSizes) {
|
String name(result->fName);
|
name += "[";
|
if (size != -1) {
|
name += to_string(size);
|
}
|
name += "]";
|
result = new Type(name, Type::kArray_Kind, (const Type&) *result, size);
|
fSymbolTable->takeOwnership((Type*) result);
|
}
|
return (const Type*) result;
|
}
|
fErrors.error(type.fOffset, "unknown type '" + type.fName + "'");
|
return nullptr;
|
}
|
|
std::unique_ptr<Expression> IRGenerator::convertExpression(const ASTExpression& expr) {
|
switch (expr.fKind) {
|
case ASTExpression::kIdentifier_Kind:
|
return this->convertIdentifier((ASTIdentifier&) expr);
|
case ASTExpression::kBool_Kind:
|
return std::unique_ptr<Expression>(new BoolLiteral(fContext, expr.fOffset,
|
((ASTBoolLiteral&) expr).fValue));
|
case ASTExpression::kInt_Kind:
|
return std::unique_ptr<Expression>(new IntLiteral(fContext, expr.fOffset,
|
((ASTIntLiteral&) expr).fValue));
|
case ASTExpression::kFloat_Kind:
|
return std::unique_ptr<Expression>(new FloatLiteral(fContext, expr.fOffset,
|
((ASTFloatLiteral&) expr).fValue));
|
case ASTExpression::kBinary_Kind:
|
return this->convertBinaryExpression((ASTBinaryExpression&) expr);
|
case ASTExpression::kNull_Kind:
|
return std::unique_ptr<Expression>(new NullLiteral(fContext, expr.fOffset));
|
case ASTExpression::kPrefix_Kind:
|
return this->convertPrefixExpression((ASTPrefixExpression&) expr);
|
case ASTExpression::kSuffix_Kind:
|
return this->convertSuffixExpression((ASTSuffixExpression&) expr);
|
case ASTExpression::kTernary_Kind:
|
return this->convertTernaryExpression((ASTTernaryExpression&) expr);
|
default:
|
ABORT("unsupported expression type: %d\n", expr.fKind);
|
}
|
}
|
|
std::unique_ptr<Expression> IRGenerator::convertIdentifier(const ASTIdentifier& identifier) {
|
const Symbol* result = (*fSymbolTable)[identifier.fText];
|
if (!result) {
|
fErrors.error(identifier.fOffset, "unknown identifier '" + identifier.fText + "'");
|
return nullptr;
|
}
|
switch (result->fKind) {
|
case Symbol::kFunctionDeclaration_Kind: {
|
std::vector<const FunctionDeclaration*> f = {
|
(const FunctionDeclaration*) result
|
};
|
return std::unique_ptr<FunctionReference>(new FunctionReference(fContext,
|
identifier.fOffset,
|
f));
|
}
|
case Symbol::kUnresolvedFunction_Kind: {
|
const UnresolvedFunction* f = (const UnresolvedFunction*) result;
|
return std::unique_ptr<FunctionReference>(new FunctionReference(fContext,
|
identifier.fOffset,
|
f->fFunctions));
|
}
|
case Symbol::kVariable_Kind: {
|
const Variable* var = (const Variable*) result;
|
switch (var->fModifiers.fLayout.fBuiltin) {
|
case SK_WIDTH_BUILTIN:
|
fInputs.fRTWidth = true;
|
break;
|
case SK_HEIGHT_BUILTIN:
|
fInputs.fRTHeight = true;
|
break;
|
#ifndef SKSL_STANDALONE
|
case SK_FRAGCOORD_BUILTIN:
|
if (var->fModifiers.fLayout.fBuiltin == SK_FRAGCOORD_BUILTIN) {
|
fInputs.fFlipY = true;
|
if (fSettings->fFlipY &&
|
(!fSettings->fCaps ||
|
!fSettings->fCaps->fragCoordConventionsExtensionString())) {
|
fInputs.fRTHeight = true;
|
}
|
}
|
#endif
|
}
|
// default to kRead_RefKind; this will be corrected later if the variable is written to
|
return std::unique_ptr<VariableReference>(new VariableReference(
|
identifier.fOffset,
|
*var,
|
VariableReference::kRead_RefKind));
|
}
|
case Symbol::kField_Kind: {
|
const Field* field = (const Field*) result;
|
VariableReference* base = new VariableReference(identifier.fOffset, field->fOwner,
|
VariableReference::kRead_RefKind);
|
return std::unique_ptr<Expression>(new FieldAccess(
|
std::unique_ptr<Expression>(base),
|
field->fFieldIndex,
|
FieldAccess::kAnonymousInterfaceBlock_OwnerKind));
|
}
|
case Symbol::kType_Kind: {
|
const Type* t = (const Type*) result;
|
return std::unique_ptr<TypeReference>(new TypeReference(fContext, identifier.fOffset,
|
*t));
|
}
|
default:
|
ABORT("unsupported symbol type %d\n", result->fKind);
|
}
|
}
|
|
std::unique_ptr<Section> IRGenerator::convertSection(const ASTSection& s) {
|
return std::unique_ptr<Section>(new Section(s.fOffset, s.fName, s.fArgument, s.fText));
|
}
|
|
|
std::unique_ptr<Expression> IRGenerator::coerce(std::unique_ptr<Expression> expr,
|
const Type& type) {
|
if (!expr) {
|
return nullptr;
|
}
|
if (expr->fType == type) {
|
return expr;
|
}
|
this->checkValid(*expr);
|
if (expr->fType == *fContext.fInvalid_Type) {
|
return nullptr;
|
}
|
if (expr->coercionCost(type) == INT_MAX) {
|
fErrors.error(expr->fOffset, "expected '" + type.description() + "', but found '" +
|
expr->fType.description() + "'");
|
return nullptr;
|
}
|
if (type.kind() == Type::kScalar_Kind) {
|
std::vector<std::unique_ptr<Expression>> args;
|
args.push_back(std::move(expr));
|
std::unique_ptr<Expression> ctor;
|
if (type == *fContext.fFloatLiteral_Type) {
|
ctor = this->convertIdentifier(ASTIdentifier(-1, "float"));
|
} else if (type == *fContext.fIntLiteral_Type) {
|
ctor = this->convertIdentifier(ASTIdentifier(-1, "int"));
|
} else {
|
ctor = this->convertIdentifier(ASTIdentifier(-1, type.fName));
|
}
|
if (!ctor) {
|
printf("error, null identifier: %s\n", String(type.fName).c_str());
|
}
|
SkASSERT(ctor);
|
return this->call(-1, std::move(ctor), std::move(args));
|
}
|
if (expr->fKind == Expression::kNullLiteral_Kind) {
|
SkASSERT(type.kind() == Type::kNullable_Kind);
|
return std::unique_ptr<Expression>(new NullLiteral(expr->fOffset, type));
|
}
|
std::vector<std::unique_ptr<Expression>> args;
|
args.push_back(std::move(expr));
|
return std::unique_ptr<Expression>(new Constructor(-1, type, std::move(args)));
|
}
|
|
static bool is_matrix_multiply(const Type& left, const Type& right) {
|
if (left.kind() == Type::kMatrix_Kind) {
|
return right.kind() == Type::kMatrix_Kind || right.kind() == Type::kVector_Kind;
|
}
|
return left.kind() == Type::kVector_Kind && right.kind() == Type::kMatrix_Kind;
|
}
|
|
/**
|
* Determines the operand and result types of a binary expression. Returns true if the expression is
|
* legal, false otherwise. If false, the values of the out parameters are undefined.
|
*/
|
static bool determine_binary_type(const Context& context,
|
Token::Kind op,
|
const Type& left,
|
const Type& right,
|
const Type** outLeftType,
|
const Type** outRightType,
|
const Type** outResultType,
|
bool tryFlipped) {
|
bool isLogical;
|
bool validMatrixOrVectorOp;
|
switch (op) {
|
case Token::EQ:
|
*outLeftType = &left;
|
*outRightType = &left;
|
*outResultType = &left;
|
return right.canCoerceTo(left);
|
case Token::EQEQ: // fall through
|
case Token::NEQ:
|
if (right.canCoerceTo(left)) {
|
*outLeftType = &left;
|
*outRightType = &left;
|
*outResultType = context.fBool_Type.get();
|
return true;
|
} if (left.canCoerceTo(right)) {
|
*outLeftType = &right;
|
*outRightType = &right;
|
*outResultType = context.fBool_Type.get();
|
return true;
|
}
|
return false;
|
case Token::LT: // fall through
|
case Token::GT: // fall through
|
case Token::LTEQ: // fall through
|
case Token::GTEQ:
|
isLogical = true;
|
validMatrixOrVectorOp = false;
|
break;
|
case Token::LOGICALOR: // fall through
|
case Token::LOGICALAND: // fall through
|
case Token::LOGICALXOR: // fall through
|
case Token::LOGICALOREQ: // fall through
|
case Token::LOGICALANDEQ: // fall through
|
case Token::LOGICALXOREQ:
|
*outLeftType = context.fBool_Type.get();
|
*outRightType = context.fBool_Type.get();
|
*outResultType = context.fBool_Type.get();
|
return left.canCoerceTo(*context.fBool_Type) &&
|
right.canCoerceTo(*context.fBool_Type);
|
case Token::STAREQ:
|
if (left.kind() == Type::kScalar_Kind) {
|
*outLeftType = &left;
|
*outRightType = &left;
|
*outResultType = &left;
|
return right.canCoerceTo(left);
|
}
|
// fall through
|
case Token::STAR:
|
if (is_matrix_multiply(left, right)) {
|
// determine final component type
|
if (determine_binary_type(context, Token::STAR, left.componentType(),
|
right.componentType(), outLeftType, outRightType,
|
outResultType, false)) {
|
*outLeftType = &(*outResultType)->toCompound(context, left.columns(),
|
left.rows());
|
*outRightType = &(*outResultType)->toCompound(context, right.columns(),
|
right.rows());
|
int leftColumns = left.columns();
|
int leftRows = left.rows();
|
int rightColumns;
|
int rightRows;
|
if (right.kind() == Type::kVector_Kind) {
|
// matrix * vector treats the vector as a column vector, so we need to
|
// transpose it
|
rightColumns = right.rows();
|
rightRows = right.columns();
|
SkASSERT(rightColumns == 1);
|
} else {
|
rightColumns = right.columns();
|
rightRows = right.rows();
|
}
|
if (rightColumns > 1) {
|
*outResultType = &(*outResultType)->toCompound(context, rightColumns,
|
leftRows);
|
} else {
|
// result was a column vector, transpose it back to a row
|
*outResultType = &(*outResultType)->toCompound(context, leftRows,
|
rightColumns);
|
}
|
return leftColumns == rightRows;
|
} else {
|
return false;
|
}
|
}
|
isLogical = false;
|
validMatrixOrVectorOp = true;
|
break;
|
case Token::PLUSEQ:
|
case Token::MINUSEQ:
|
case Token::SLASHEQ:
|
case Token::PERCENTEQ:
|
case Token::SHLEQ:
|
case Token::SHREQ:
|
if (left.kind() == Type::kScalar_Kind) {
|
*outLeftType = &left;
|
*outRightType = &left;
|
*outResultType = &left;
|
return right.canCoerceTo(left);
|
}
|
// fall through
|
case Token::PLUS: // fall through
|
case Token::MINUS: // fall through
|
case Token::SLASH: // fall through
|
isLogical = false;
|
validMatrixOrVectorOp = true;
|
break;
|
case Token::COMMA:
|
*outLeftType = &left;
|
*outRightType = &right;
|
*outResultType = &right;
|
return true;
|
default:
|
isLogical = false;
|
validMatrixOrVectorOp = false;
|
}
|
bool isVectorOrMatrix = left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind;
|
if (left.kind() == Type::kScalar_Kind && right.kind() == Type::kScalar_Kind &&
|
right.canCoerceTo(left)) {
|
if (left.priority() > right.priority()) {
|
*outLeftType = &left;
|
*outRightType = &left;
|
} else {
|
*outLeftType = &right;
|
*outRightType = &right;
|
}
|
if (isLogical) {
|
*outResultType = context.fBool_Type.get();
|
} else {
|
*outResultType = &left;
|
}
|
return true;
|
}
|
if (right.canCoerceTo(left) && isVectorOrMatrix && validMatrixOrVectorOp) {
|
*outLeftType = &left;
|
*outRightType = &left;
|
if (isLogical) {
|
*outResultType = context.fBool_Type.get();
|
} else {
|
*outResultType = &left;
|
}
|
return true;
|
}
|
if ((left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind) &&
|
(right.kind() == Type::kScalar_Kind)) {
|
if (determine_binary_type(context, op, left.componentType(), right, outLeftType,
|
outRightType, outResultType, false)) {
|
*outLeftType = &(*outLeftType)->toCompound(context, left.columns(), left.rows());
|
if (!isLogical) {
|
*outResultType = &(*outResultType)->toCompound(context, left.columns(),
|
left.rows());
|
}
|
return true;
|
}
|
return false;
|
}
|
if (tryFlipped) {
|
return determine_binary_type(context, op, right, left, outRightType, outLeftType,
|
outResultType, false);
|
}
|
return false;
|
}
|
|
static std::unique_ptr<Expression> short_circuit_boolean(const Context& context,
|
const Expression& left,
|
Token::Kind op,
|
const Expression& right) {
|
SkASSERT(left.fKind == Expression::kBoolLiteral_Kind);
|
bool leftVal = ((BoolLiteral&) left).fValue;
|
if (op == Token::LOGICALAND) {
|
// (true && expr) -> (expr) and (false && expr) -> (false)
|
return leftVal ? right.clone()
|
: std::unique_ptr<Expression>(new BoolLiteral(context, left.fOffset, false));
|
} else if (op == Token::LOGICALOR) {
|
// (true || expr) -> (true) and (false || expr) -> (expr)
|
return leftVal ? std::unique_ptr<Expression>(new BoolLiteral(context, left.fOffset, true))
|
: right.clone();
|
} else {
|
// Can't short circuit XOR
|
return nullptr;
|
}
|
}
|
|
std::unique_ptr<Expression> IRGenerator::constantFold(const Expression& left,
|
Token::Kind op,
|
const Expression& right) const {
|
// If the left side is a constant boolean literal, the right side does not need to be constant
|
// for short circuit optimizations to allow the constant to be folded.
|
if (left.fKind == Expression::kBoolLiteral_Kind && !right.isConstant()) {
|
return short_circuit_boolean(fContext, left, op, right);
|
} else if (right.fKind == Expression::kBoolLiteral_Kind && !left.isConstant()) {
|
// There aren't side effects in SKSL within expressions, so (left OP right) is equivalent to
|
// (right OP left) for short-circuit optimizations
|
return short_circuit_boolean(fContext, right, op, left);
|
}
|
|
// Other than the short-circuit cases above, constant folding requires both sides to be constant
|
if (!left.isConstant() || !right.isConstant()) {
|
return nullptr;
|
}
|
// Note that we expressly do not worry about precision and overflow here -- we use the maximum
|
// precision to calculate the results and hope the result makes sense. The plan is to move the
|
// Skia caps into SkSL, so we have access to all of them including the precisions of the various
|
// types, which will let us be more intelligent about this.
|
if (left.fKind == Expression::kBoolLiteral_Kind &&
|
right.fKind == Expression::kBoolLiteral_Kind) {
|
bool leftVal = ((BoolLiteral&) left).fValue;
|
bool rightVal = ((BoolLiteral&) right).fValue;
|
bool result;
|
switch (op) {
|
case Token::LOGICALAND: result = leftVal && rightVal; break;
|
case Token::LOGICALOR: result = leftVal || rightVal; break;
|
case Token::LOGICALXOR: result = leftVal ^ rightVal; break;
|
default: return nullptr;
|
}
|
return std::unique_ptr<Expression>(new BoolLiteral(fContext, left.fOffset, result));
|
}
|
#define RESULT(t, op) std::unique_ptr<Expression>(new t ## Literal(fContext, left.fOffset, \
|
leftVal op rightVal))
|
if (left.fKind == Expression::kIntLiteral_Kind && right.fKind == Expression::kIntLiteral_Kind) {
|
int64_t leftVal = ((IntLiteral&) left).fValue;
|
int64_t rightVal = ((IntLiteral&) right).fValue;
|
switch (op) {
|
case Token::PLUS: return RESULT(Int, +);
|
case Token::MINUS: return RESULT(Int, -);
|
case Token::STAR: return RESULT(Int, *);
|
case Token::SLASH:
|
if (rightVal) {
|
return RESULT(Int, /);
|
}
|
fErrors.error(right.fOffset, "division by zero");
|
return nullptr;
|
case Token::PERCENT:
|
if (rightVal) {
|
return RESULT(Int, %);
|
}
|
fErrors.error(right.fOffset, "division by zero");
|
return nullptr;
|
case Token::BITWISEAND: return RESULT(Int, &);
|
case Token::BITWISEOR: return RESULT(Int, |);
|
case Token::BITWISEXOR: return RESULT(Int, ^);
|
case Token::SHL: return RESULT(Int, <<);
|
case Token::SHR: return RESULT(Int, >>);
|
case Token::EQEQ: return RESULT(Bool, ==);
|
case Token::NEQ: return RESULT(Bool, !=);
|
case Token::GT: return RESULT(Bool, >);
|
case Token::GTEQ: return RESULT(Bool, >=);
|
case Token::LT: return RESULT(Bool, <);
|
case Token::LTEQ: return RESULT(Bool, <=);
|
default: return nullptr;
|
}
|
}
|
if (left.fKind == Expression::kFloatLiteral_Kind &&
|
right.fKind == Expression::kFloatLiteral_Kind) {
|
double leftVal = ((FloatLiteral&) left).fValue;
|
double rightVal = ((FloatLiteral&) right).fValue;
|
switch (op) {
|
case Token::PLUS: return RESULT(Float, +);
|
case Token::MINUS: return RESULT(Float, -);
|
case Token::STAR: return RESULT(Float, *);
|
case Token::SLASH:
|
if (rightVal) {
|
return RESULT(Float, /);
|
}
|
fErrors.error(right.fOffset, "division by zero");
|
return nullptr;
|
case Token::EQEQ: return RESULT(Bool, ==);
|
case Token::NEQ: return RESULT(Bool, !=);
|
case Token::GT: return RESULT(Bool, >);
|
case Token::GTEQ: return RESULT(Bool, >=);
|
case Token::LT: return RESULT(Bool, <);
|
case Token::LTEQ: return RESULT(Bool, <=);
|
default: return nullptr;
|
}
|
}
|
if (left.fType.kind() == Type::kVector_Kind && left.fType.componentType().isFloat() &&
|
left.fType == right.fType) {
|
SkASSERT(left.fKind == Expression::kConstructor_Kind);
|
SkASSERT(right.fKind == Expression::kConstructor_Kind);
|
std::vector<std::unique_ptr<Expression>> args;
|
#define RETURN_VEC_COMPONENTWISE_RESULT(op) \
|
for (int i = 0; i < left.fType.columns(); i++) { \
|
float value = ((Constructor&) left).getFVecComponent(i) op \
|
((Constructor&) right).getFVecComponent(i); \
|
args.emplace_back(new FloatLiteral(fContext, -1, value)); \
|
} \
|
return std::unique_ptr<Expression>(new Constructor(-1, left.fType, \
|
std::move(args)))
|
switch (op) {
|
case Token::EQEQ:
|
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
|
left.compareConstant(fContext, right)));
|
case Token::NEQ:
|
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
|
!left.compareConstant(fContext, right)));
|
case Token::PLUS: RETURN_VEC_COMPONENTWISE_RESULT(+);
|
case Token::MINUS: RETURN_VEC_COMPONENTWISE_RESULT(-);
|
case Token::STAR: RETURN_VEC_COMPONENTWISE_RESULT(*);
|
case Token::SLASH: RETURN_VEC_COMPONENTWISE_RESULT(/);
|
default: return nullptr;
|
}
|
}
|
if (left.fType.kind() == Type::kMatrix_Kind &&
|
right.fType.kind() == Type::kMatrix_Kind &&
|
left.fKind == right.fKind) {
|
switch (op) {
|
case Token::EQEQ:
|
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
|
left.compareConstant(fContext, right)));
|
case Token::NEQ:
|
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
|
!left.compareConstant(fContext, right)));
|
default:
|
return nullptr;
|
}
|
}
|
#undef RESULT
|
return nullptr;
|
}
|
|
std::unique_ptr<Expression> IRGenerator::convertBinaryExpression(
|
const ASTBinaryExpression& expression) {
|
std::unique_ptr<Expression> left = this->convertExpression(*expression.fLeft);
|
if (!left) {
|
return nullptr;
|
}
|
std::unique_ptr<Expression> right = this->convertExpression(*expression.fRight);
|
if (!right) {
|
return nullptr;
|
}
|
const Type* leftType;
|
const Type* rightType;
|
const Type* resultType;
|
const Type* rawLeftType;
|
if (left->fKind == Expression::kIntLiteral_Kind && right->fType.isInteger()) {
|
rawLeftType = &right->fType;
|
} else {
|
rawLeftType = &left->fType;
|
}
|
const Type* rawRightType;
|
if (right->fKind == Expression::kIntLiteral_Kind && left->fType.isInteger()) {
|
rawRightType = &left->fType;
|
} else {
|
rawRightType = &right->fType;
|
}
|
if (!determine_binary_type(fContext, expression.fOperator, *rawLeftType, *rawRightType,
|
&leftType, &rightType, &resultType,
|
!Compiler::IsAssignment(expression.fOperator))) {
|
fErrors.error(expression.fOffset, String("type mismatch: '") +
|
Compiler::OperatorName(expression.fOperator) +
|
"' cannot operate on '" + left->fType.description() +
|
"', '" + right->fType.description() + "'");
|
return nullptr;
|
}
|
if (Compiler::IsAssignment(expression.fOperator)) {
|
this->setRefKind(*left, expression.fOperator != Token::EQ ?
|
VariableReference::kReadWrite_RefKind :
|
VariableReference::kWrite_RefKind);
|
}
|
left = this->coerce(std::move(left), *leftType);
|
right = this->coerce(std::move(right), *rightType);
|
if (!left || !right) {
|
return nullptr;
|
}
|
std::unique_ptr<Expression> result = this->constantFold(*left.get(), expression.fOperator,
|
*right.get());
|
if (!result) {
|
result = std::unique_ptr<Expression>(new BinaryExpression(expression.fOffset,
|
std::move(left),
|
expression.fOperator,
|
std::move(right),
|
*resultType));
|
}
|
return result;
|
}
|
|
std::unique_ptr<Expression> IRGenerator::convertTernaryExpression(
|
const ASTTernaryExpression& expression) {
|
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*expression.fTest),
|
*fContext.fBool_Type);
|
if (!test) {
|
return nullptr;
|
}
|
std::unique_ptr<Expression> ifTrue = this->convertExpression(*expression.fIfTrue);
|
if (!ifTrue) {
|
return nullptr;
|
}
|
std::unique_ptr<Expression> ifFalse = this->convertExpression(*expression.fIfFalse);
|
if (!ifFalse) {
|
return nullptr;
|
}
|
const Type* trueType;
|
const Type* falseType;
|
const Type* resultType;
|
if (!determine_binary_type(fContext, Token::EQEQ, ifTrue->fType, ifFalse->fType, &trueType,
|
&falseType, &resultType, true) || trueType != falseType) {
|
fErrors.error(expression.fOffset, "ternary operator result mismatch: '" +
|
ifTrue->fType.description() + "', '" +
|
ifFalse->fType.description() + "'");
|
return nullptr;
|
}
|
ifTrue = this->coerce(std::move(ifTrue), *trueType);
|
if (!ifTrue) {
|
return nullptr;
|
}
|
ifFalse = this->coerce(std::move(ifFalse), *falseType);
|
if (!ifFalse) {
|
return nullptr;
|
}
|
if (test->fKind == Expression::kBoolLiteral_Kind) {
|
// static boolean test, just return one of the branches
|
if (((BoolLiteral&) *test).fValue) {
|
return ifTrue;
|
} else {
|
return ifFalse;
|
}
|
}
|
return std::unique_ptr<Expression>(new TernaryExpression(expression.fOffset,
|
std::move(test),
|
std::move(ifTrue),
|
std::move(ifFalse)));
|
}
|
|
std::unique_ptr<Expression> IRGenerator::call(int offset,
|
const FunctionDeclaration& function,
|
std::vector<std::unique_ptr<Expression>> arguments) {
|
if (function.fParameters.size() != arguments.size()) {
|
String msg = "call to '" + function.fName + "' expected " +
|
to_string((uint64_t) function.fParameters.size()) +
|
" argument";
|
if (function.fParameters.size() != 1) {
|
msg += "s";
|
}
|
msg += ", but found " + to_string((uint64_t) arguments.size());
|
fErrors.error(offset, msg);
|
return nullptr;
|
}
|
std::vector<const Type*> types;
|
const Type* returnType;
|
if (!function.determineFinalTypes(arguments, &types, &returnType)) {
|
String msg = "no match for " + function.fName + "(";
|
String separator;
|
for (size_t i = 0; i < arguments.size(); i++) {
|
msg += separator;
|
separator = ", ";
|
msg += arguments[i]->fType.description();
|
}
|
msg += ")";
|
fErrors.error(offset, msg);
|
return nullptr;
|
}
|
for (size_t i = 0; i < arguments.size(); i++) {
|
arguments[i] = this->coerce(std::move(arguments[i]), *types[i]);
|
if (!arguments[i]) {
|
return nullptr;
|
}
|
if (arguments[i] && (function.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag)) {
|
this->setRefKind(*arguments[i],
|
function.fParameters[i]->fModifiers.fFlags & Modifiers::kIn_Flag ?
|
VariableReference::kReadWrite_RefKind :
|
VariableReference::kPointer_RefKind);
|
}
|
}
|
return std::unique_ptr<FunctionCall>(new FunctionCall(offset, *returnType, function,
|
std::move(arguments)));
|
}
|
|
/**
|
* Determines the cost of coercing the arguments of a function to the required types. Cost has no
|
* particular meaning other than "lower costs are preferred". Returns INT_MAX if the call is not
|
* valid.
|
*/
|
int IRGenerator::callCost(const FunctionDeclaration& function,
|
const std::vector<std::unique_ptr<Expression>>& arguments) {
|
if (function.fParameters.size() != arguments.size()) {
|
return INT_MAX;
|
}
|
int total = 0;
|
std::vector<const Type*> types;
|
const Type* ignored;
|
if (!function.determineFinalTypes(arguments, &types, &ignored)) {
|
return INT_MAX;
|
}
|
for (size_t i = 0; i < arguments.size(); i++) {
|
int cost = arguments[i]->coercionCost(*types[i]);
|
if (cost != INT_MAX) {
|
total += cost;
|
} else {
|
return INT_MAX;
|
}
|
}
|
return total;
|
}
|
|
std::unique_ptr<Expression> IRGenerator::call(int offset,
|
std::unique_ptr<Expression> functionValue,
|
std::vector<std::unique_ptr<Expression>> arguments) {
|
if (functionValue->fKind == Expression::kTypeReference_Kind) {
|
return this->convertConstructor(offset,
|
((TypeReference&) *functionValue).fValue,
|
std::move(arguments));
|
}
|
if (functionValue->fKind != Expression::kFunctionReference_Kind) {
|
fErrors.error(offset, "'" + functionValue->description() + "' is not a function");
|
return nullptr;
|
}
|
FunctionReference* ref = (FunctionReference*) functionValue.get();
|
int bestCost = INT_MAX;
|
const FunctionDeclaration* best = nullptr;
|
if (ref->fFunctions.size() > 1) {
|
for (const auto& f : ref->fFunctions) {
|
int cost = this->callCost(*f, arguments);
|
if (cost < bestCost) {
|
bestCost = cost;
|
best = f;
|
}
|
}
|
if (best) {
|
return this->call(offset, *best, std::move(arguments));
|
}
|
String msg = "no match for " + ref->fFunctions[0]->fName + "(";
|
String separator;
|
for (size_t i = 0; i < arguments.size(); i++) {
|
msg += separator;
|
separator = ", ";
|
msg += arguments[i]->fType.description();
|
}
|
msg += ")";
|
fErrors.error(offset, msg);
|
return nullptr;
|
}
|
return this->call(offset, *ref->fFunctions[0], std::move(arguments));
|
}
|
|
std::unique_ptr<Expression> IRGenerator::convertNumberConstructor(
|
int offset,
|
const Type& type,
|
std::vector<std::unique_ptr<Expression>> args) {
|
SkASSERT(type.isNumber());
|
if (args.size() != 1) {
|
fErrors.error(offset, "invalid arguments to '" + type.description() +
|
"' constructor, (expected exactly 1 argument, but found " +
|
to_string((uint64_t) args.size()) + ")");
|
return nullptr;
|
}
|
if (type == args[0]->fType) {
|
return std::move(args[0]);
|
}
|
if (type.isFloat() && args.size() == 1 && args[0]->fKind == Expression::kFloatLiteral_Kind) {
|
double value = ((FloatLiteral&) *args[0]).fValue;
|
return std::unique_ptr<Expression>(new FloatLiteral(offset, value, &type));
|
}
|
if (type.isFloat() && args.size() == 1 && args[0]->fKind == Expression::kIntLiteral_Kind) {
|
int64_t value = ((IntLiteral&) *args[0]).fValue;
|
return std::unique_ptr<Expression>(new FloatLiteral(offset, (double) value, &type));
|
}
|
if (args[0]->fKind == Expression::kIntLiteral_Kind && (type == *fContext.fInt_Type ||
|
type == *fContext.fUInt_Type)) {
|
return std::unique_ptr<Expression>(new IntLiteral(offset,
|
((IntLiteral&) *args[0]).fValue,
|
&type));
|
}
|
if (args[0]->fType == *fContext.fBool_Type) {
|
std::unique_ptr<IntLiteral> zero(new IntLiteral(fContext, offset, 0));
|
std::unique_ptr<IntLiteral> one(new IntLiteral(fContext, offset, 1));
|
return std::unique_ptr<Expression>(
|
new TernaryExpression(offset, std::move(args[0]),
|
this->coerce(std::move(one), type),
|
this->coerce(std::move(zero),
|
type)));
|
}
|
if (!args[0]->fType.isNumber()) {
|
fErrors.error(offset, "invalid argument to '" + type.description() +
|
"' constructor (expected a number or bool, but found '" +
|
args[0]->fType.description() + "')");
|
return nullptr;
|
}
|
return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args)));
|
}
|
|
int component_count(const Type& type) {
|
switch (type.kind()) {
|
case Type::kVector_Kind:
|
return type.columns();
|
case Type::kMatrix_Kind:
|
return type.columns() * type.rows();
|
default:
|
return 1;
|
}
|
}
|
|
std::unique_ptr<Expression> IRGenerator::convertCompoundConstructor(
|
int offset,
|
const Type& type,
|
std::vector<std::unique_ptr<Expression>> args) {
|
SkASSERT(type.kind() == Type::kVector_Kind || type.kind() == Type::kMatrix_Kind);
|
if (type.kind() == Type::kMatrix_Kind && args.size() == 1 &&
|
args[0]->fType.kind() == Type::kMatrix_Kind) {
|
// matrix from matrix is always legal
|
return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args)));
|
}
|
int actual = 0;
|
int expected = type.rows() * type.columns();
|
if (args.size() != 1 || expected != component_count(args[0]->fType) ||
|
type.componentType().isNumber() != args[0]->fType.componentType().isNumber()) {
|
for (size_t i = 0; i < args.size(); i++) {
|
if (args[i]->fType.kind() == Type::kVector_Kind) {
|
if (type.componentType().isNumber() !=
|
args[i]->fType.componentType().isNumber()) {
|
fErrors.error(offset, "'" + args[i]->fType.description() + "' is not a valid "
|
"parameter to '" + type.description() +
|
"' constructor");
|
return nullptr;
|
}
|
actual += args[i]->fType.columns();
|
} else if (args[i]->fType.kind() == Type::kScalar_Kind) {
|
actual += 1;
|
if (type.kind() != Type::kScalar_Kind) {
|
args[i] = this->coerce(std::move(args[i]), type.componentType());
|
if (!args[i]) {
|
return nullptr;
|
}
|
}
|
} else {
|
fErrors.error(offset, "'" + args[i]->fType.description() + "' is not a valid "
|
"parameter to '" + type.description() + "' constructor");
|
return nullptr;
|
}
|
}
|
if (actual != 1 && actual != expected) {
|
fErrors.error(offset, "invalid arguments to '" + type.description() +
|
"' constructor (expected " + to_string(expected) +
|
" scalars, but found " + to_string(actual) + ")");
|
return nullptr;
|
}
|
}
|
return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args)));
|
}
|
|
std::unique_ptr<Expression> IRGenerator::convertConstructor(
|
int offset,
|
const Type& type,
|
std::vector<std::unique_ptr<Expression>> args) {
|
// FIXME: add support for structs
|
Type::Kind kind = type.kind();
|
if (args.size() == 1 && args[0]->fType == type) {
|
// argument is already the right type, just return it
|
return std::move(args[0]);
|
}
|
if (type.isNumber()) {
|
return this->convertNumberConstructor(offset, type, std::move(args));
|
} else if (kind == Type::kArray_Kind) {
|
const Type& base = type.componentType();
|
for (size_t i = 0; i < args.size(); i++) {
|
args[i] = this->coerce(std::move(args[i]), base);
|
if (!args[i]) {
|
return nullptr;
|
}
|
}
|
return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args)));
|
} else if (kind == Type::kVector_Kind || kind == Type::kMatrix_Kind) {
|
return this->convertCompoundConstructor(offset, type, std::move(args));
|
} else {
|
fErrors.error(offset, "cannot construct '" + type.description() + "'");
|
return nullptr;
|
}
|
}
|
|
std::unique_ptr<Expression> IRGenerator::convertPrefixExpression(
|
const ASTPrefixExpression& expression) {
|
std::unique_ptr<Expression> base = this->convertExpression(*expression.fOperand);
|
if (!base) {
|
return nullptr;
|
}
|
switch (expression.fOperator) {
|
case Token::PLUS:
|
if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_Kind &&
|
base->fType != *fContext.fFloatLiteral_Type) {
|
fErrors.error(expression.fOffset,
|
"'+' cannot operate on '" + base->fType.description() + "'");
|
return nullptr;
|
}
|
return base;
|
case Token::MINUS:
|
if (base->fKind == Expression::kIntLiteral_Kind) {
|
return std::unique_ptr<Expression>(new IntLiteral(fContext, base->fOffset,
|
-((IntLiteral&) *base).fValue));
|
}
|
if (base->fKind == Expression::kFloatLiteral_Kind) {
|
double value = -((FloatLiteral&) *base).fValue;
|
return std::unique_ptr<Expression>(new FloatLiteral(fContext, base->fOffset,
|
value));
|
}
|
if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_Kind) {
|
fErrors.error(expression.fOffset,
|
"'-' cannot operate on '" + base->fType.description() + "'");
|
return nullptr;
|
}
|
return std::unique_ptr<Expression>(new PrefixExpression(Token::MINUS, std::move(base)));
|
case Token::PLUSPLUS:
|
if (!base->fType.isNumber()) {
|
fErrors.error(expression.fOffset,
|
String("'") + Compiler::OperatorName(expression.fOperator) +
|
"' cannot operate on '" + base->fType.description() + "'");
|
return nullptr;
|
}
|
this->setRefKind(*base, VariableReference::kReadWrite_RefKind);
|
break;
|
case Token::MINUSMINUS:
|
if (!base->fType.isNumber()) {
|
fErrors.error(expression.fOffset,
|
String("'") + Compiler::OperatorName(expression.fOperator) +
|
"' cannot operate on '" + base->fType.description() + "'");
|
return nullptr;
|
}
|
this->setRefKind(*base, VariableReference::kReadWrite_RefKind);
|
break;
|
case Token::LOGICALNOT:
|
if (base->fType != *fContext.fBool_Type) {
|
fErrors.error(expression.fOffset,
|
String("'") + Compiler::OperatorName(expression.fOperator) +
|
"' cannot operate on '" + base->fType.description() + "'");
|
return nullptr;
|
}
|
if (base->fKind == Expression::kBoolLiteral_Kind) {
|
return std::unique_ptr<Expression>(new BoolLiteral(fContext, base->fOffset,
|
!((BoolLiteral&) *base).fValue));
|
}
|
break;
|
case Token::BITWISENOT:
|
if (base->fType != *fContext.fInt_Type) {
|
fErrors.error(expression.fOffset,
|
String("'") + Compiler::OperatorName(expression.fOperator) +
|
"' cannot operate on '" + base->fType.description() + "'");
|
return nullptr;
|
}
|
break;
|
default:
|
ABORT("unsupported prefix operator\n");
|
}
|
return std::unique_ptr<Expression>(new PrefixExpression(expression.fOperator,
|
std::move(base)));
|
}
|
|
std::unique_ptr<Expression> IRGenerator::convertIndex(std::unique_ptr<Expression> base,
|
const ASTExpression& index) {
|
if (base->fKind == Expression::kTypeReference_Kind) {
|
if (index.fKind == ASTExpression::kInt_Kind) {
|
const Type& oldType = ((TypeReference&) *base).fValue;
|
int64_t size = ((const ASTIntLiteral&) index).fValue;
|
Type* newType = new Type(oldType.name() + "[" + to_string(size) + "]",
|
Type::kArray_Kind, oldType, size);
|
fSymbolTable->takeOwnership(newType);
|
return std::unique_ptr<Expression>(new TypeReference(fContext, base->fOffset,
|
*newType));
|
|
} else {
|
fErrors.error(base->fOffset, "array size must be a constant");
|
return nullptr;
|
}
|
}
|
if (base->fType.kind() != Type::kArray_Kind && base->fType.kind() != Type::kMatrix_Kind &&
|
base->fType.kind() != Type::kVector_Kind) {
|
fErrors.error(base->fOffset, "expected array, but found '" + base->fType.description() +
|
"'");
|
return nullptr;
|
}
|
std::unique_ptr<Expression> converted = this->convertExpression(index);
|
if (!converted) {
|
return nullptr;
|
}
|
if (converted->fType != *fContext.fUInt_Type) {
|
converted = this->coerce(std::move(converted), *fContext.fInt_Type);
|
if (!converted) {
|
return nullptr;
|
}
|
}
|
return std::unique_ptr<Expression>(new IndexExpression(fContext, std::move(base),
|
std::move(converted)));
|
}
|
|
std::unique_ptr<Expression> IRGenerator::convertField(std::unique_ptr<Expression> base,
|
StringFragment field) {
|
auto fields = base->fType.fields();
|
for (size_t i = 0; i < fields.size(); i++) {
|
if (fields[i].fName == field) {
|
return std::unique_ptr<Expression>(new FieldAccess(std::move(base), (int) i));
|
}
|
}
|
fErrors.error(base->fOffset, "type '" + base->fType.description() + "' does not have a "
|
"field named '" + field + "");
|
return nullptr;
|
}
|
|
std::unique_ptr<Expression> IRGenerator::convertSwizzle(std::unique_ptr<Expression> base,
|
StringFragment fields) {
|
if (base->fType.kind() != Type::kVector_Kind) {
|
fErrors.error(base->fOffset, "cannot swizzle type '" + base->fType.description() + "'");
|
return nullptr;
|
}
|
std::vector<int> swizzleComponents;
|
for (size_t i = 0; i < fields.fLength; i++) {
|
switch (fields[i]) {
|
case '0':
|
if (i != fields.fLength - 1) {
|
fErrors.error(base->fOffset,
|
"only the last swizzle component can be a constant");
|
}
|
swizzleComponents.push_back(SKSL_SWIZZLE_0);
|
break;
|
case '1':
|
if (i != fields.fLength - 1) {
|
fErrors.error(base->fOffset,
|
"only the last swizzle component can be a constant");
|
}
|
swizzleComponents.push_back(SKSL_SWIZZLE_1);
|
break;
|
case 'x': // fall through
|
case 'r': // fall through
|
case 's':
|
swizzleComponents.push_back(0);
|
break;
|
case 'y': // fall through
|
case 'g': // fall through
|
case 't':
|
if (base->fType.columns() >= 2) {
|
swizzleComponents.push_back(1);
|
break;
|
}
|
// fall through
|
case 'z': // fall through
|
case 'b': // fall through
|
case 'p':
|
if (base->fType.columns() >= 3) {
|
swizzleComponents.push_back(2);
|
break;
|
}
|
// fall through
|
case 'w': // fall through
|
case 'a': // fall through
|
case 'q':
|
if (base->fType.columns() >= 4) {
|
swizzleComponents.push_back(3);
|
break;
|
}
|
// fall through
|
default:
|
fErrors.error(base->fOffset, String::printf("invalid swizzle component '%c'",
|
fields[i]));
|
return nullptr;
|
}
|
}
|
SkASSERT(swizzleComponents.size() > 0);
|
if (swizzleComponents.size() > 4) {
|
fErrors.error(base->fOffset, "too many components in swizzle mask '" + fields + "'");
|
return nullptr;
|
}
|
return std::unique_ptr<Expression>(new Swizzle(fContext, std::move(base), swizzleComponents));
|
}
|
|
std::unique_ptr<Expression> IRGenerator::getCap(int offset, String name) {
|
auto found = fCapsMap.find(name);
|
if (found == fCapsMap.end()) {
|
fErrors.error(offset, "unknown capability flag '" + name + "'");
|
return nullptr;
|
}
|
String fullName = "sk_Caps." + name;
|
return std::unique_ptr<Expression>(new Setting(offset, fullName,
|
found->second.literal(fContext, offset)));
|
}
|
|
std::unique_ptr<Expression> IRGenerator::getArg(int offset, String name) const {
|
auto found = fSettings->fArgs.find(name);
|
if (found == fSettings->fArgs.end()) {
|
return nullptr;
|
}
|
String fullName = "sk_Args." + name;
|
return std::unique_ptr<Expression>(new Setting(offset,
|
fullName,
|
found->second.literal(fContext, offset)));
|
}
|
|
std::unique_ptr<Expression> IRGenerator::convertTypeField(int offset, const Type& type,
|
StringFragment field) {
|
std::unique_ptr<Expression> result;
|
for (const auto& e : *fProgramElements) {
|
if (e->fKind == ProgramElement::kEnum_Kind && type.name() == ((Enum&) *e).fTypeName) {
|
std::shared_ptr<SymbolTable> old = fSymbolTable;
|
fSymbolTable = ((Enum&) *e).fSymbols;
|
result = convertIdentifier(ASTIdentifier(offset, field));
|
fSymbolTable = old;
|
}
|
}
|
if (!result) {
|
fErrors.error(offset, "type '" + type.fName + "' does not have a field named '" + field +
|
"'");
|
}
|
return result;
|
}
|
|
std::unique_ptr<Expression> IRGenerator::convertAppend(int offset,
|
const std::vector<std::unique_ptr<ASTExpression>>& args) {
|
#ifndef SKSL_STANDALONE
|
if (args.size() < 2) {
|
fErrors.error(offset, "'append' requires at least two arguments");
|
return nullptr;
|
}
|
std::unique_ptr<Expression> pipeline = this->convertExpression(*args[0]);
|
if (!pipeline) {
|
return nullptr;
|
}
|
if (pipeline->fType != *fContext.fSkRasterPipeline_Type) {
|
fErrors.error(offset, "first argument of 'append' must have type 'SkRasterPipeline'");
|
return nullptr;
|
}
|
if (ASTExpression::kIdentifier_Kind != args[1]->fKind) {
|
fErrors.error(offset, "'" + args[1]->description() + "' is not a valid stage");
|
return nullptr;
|
}
|
StringFragment name = ((const ASTIdentifier&) *args[1]).fText;
|
SkRasterPipeline::StockStage stage = SkRasterPipeline::premul;
|
std::vector<std::unique_ptr<Expression>> stageArgs;
|
stageArgs.push_back(std::move(pipeline));
|
for (size_t i = 2; i < args.size(); ++i) {
|
std::unique_ptr<Expression> arg = this->convertExpression(*args[i]);
|
if (!arg) {
|
return nullptr;
|
}
|
stageArgs.push_back(std::move(arg));
|
}
|
size_t expectedArgs = 0;
|
// FIXME use a map
|
if ("premul" == name) {
|
stage = SkRasterPipeline::premul;
|
}
|
else if ("unpremul" == name) {
|
stage = SkRasterPipeline::unpremul;
|
}
|
else if ("clamp_0" == name) {
|
stage = SkRasterPipeline::clamp_0;
|
}
|
else if ("clamp_1" == name) {
|
stage = SkRasterPipeline::clamp_1;
|
}
|
else if ("matrix_4x5" == name) {
|
expectedArgs = 1;
|
stage = SkRasterPipeline::matrix_4x5;
|
if (1 == stageArgs.size() && stageArgs[0]->fType.fName != "float[20]") {
|
fErrors.error(offset, "pipeline stage '" + name + "' expected a float[20] argument");
|
return nullptr;
|
}
|
}
|
else {
|
bool found = false;
|
for (const auto& e : *fProgramElements) {
|
if (ProgramElement::kFunction_Kind == e->fKind) {
|
const FunctionDefinition& f = (const FunctionDefinition&) *e;
|
if (f.fDeclaration.fName == name) {
|
stage = SkRasterPipeline::callback;
|
std::vector<const FunctionDeclaration*> functions = { &f.fDeclaration };
|
stageArgs.emplace_back(new FunctionReference(fContext, offset, functions));
|
found = true;
|
break;
|
}
|
}
|
}
|
if (!found) {
|
fErrors.error(offset, "'" + name + "' is not a valid pipeline stage");
|
return nullptr;
|
}
|
}
|
if (args.size() != expectedArgs + 2) {
|
fErrors.error(offset, "pipeline stage '" + name + "' expected an additional argument " +
|
"count of " + to_string((int) expectedArgs) + ", but found " +
|
to_string((int) args.size() - 1));
|
return nullptr;
|
}
|
return std::unique_ptr<Expression>(new AppendStage(fContext, offset, stage,
|
std::move(stageArgs)));
|
#else
|
SkASSERT(false);
|
return nullptr;
|
#endif
|
}
|
|
std::unique_ptr<Expression> IRGenerator::convertSuffixExpression(
|
const ASTSuffixExpression& expression) {
|
std::unique_ptr<Expression> base = this->convertExpression(*expression.fBase);
|
if (!base) {
|
return nullptr;
|
}
|
switch (expression.fSuffix->fKind) {
|
case ASTSuffix::kIndex_Kind: {
|
const ASTExpression* expr = ((ASTIndexSuffix&) *expression.fSuffix).fExpression.get();
|
if (expr) {
|
return this->convertIndex(std::move(base), *expr);
|
} else if (base->fKind == Expression::kTypeReference_Kind) {
|
const Type& oldType = ((TypeReference&) *base).fValue;
|
Type* newType = new Type(oldType.name() + "[]", Type::kArray_Kind, oldType,
|
-1);
|
fSymbolTable->takeOwnership(newType);
|
return std::unique_ptr<Expression>(new TypeReference(fContext, base->fOffset,
|
*newType));
|
} else {
|
fErrors.error(expression.fOffset, "'[]' must follow a type name");
|
return nullptr;
|
}
|
}
|
case ASTSuffix::kCall_Kind: {
|
auto rawArguments = &((ASTCallSuffix&) *expression.fSuffix).fArguments;
|
if (Expression::kFunctionReference_Kind == base->fKind &&
|
"append" == ((const FunctionReference&) *base).fFunctions[0]->fName) {
|
return convertAppend(expression.fOffset, *rawArguments);
|
}
|
std::vector<std::unique_ptr<Expression>> arguments;
|
for (size_t i = 0; i < rawArguments->size(); i++) {
|
std::unique_ptr<Expression> converted =
|
this->convertExpression(*(*rawArguments)[i]);
|
if (!converted) {
|
return nullptr;
|
}
|
arguments.push_back(std::move(converted));
|
}
|
return this->call(expression.fOffset, std::move(base), std::move(arguments));
|
}
|
case ASTSuffix::kField_Kind: {
|
StringFragment field = ((ASTFieldSuffix&) *expression.fSuffix).fField;
|
if (base->fType == *fContext.fSkCaps_Type) {
|
return this->getCap(expression.fOffset, field);
|
}
|
if (base->fType == *fContext.fSkArgs_Type) {
|
return this->getArg(expression.fOffset, field);
|
}
|
if (base->fKind == Expression::kTypeReference_Kind) {
|
return this->convertTypeField(base->fOffset, ((TypeReference&) *base).fValue,
|
field);
|
}
|
switch (base->fType.kind()) {
|
case Type::kVector_Kind:
|
return this->convertSwizzle(std::move(base), field);
|
case Type::kOther_Kind:
|
case Type::kStruct_Kind:
|
return this->convertField(std::move(base), field);
|
default:
|
fErrors.error(base->fOffset, "cannot swizzle value of type '" +
|
base->fType.description() + "'");
|
return nullptr;
|
}
|
}
|
case ASTSuffix::kPostIncrement_Kind:
|
if (!base->fType.isNumber()) {
|
fErrors.error(expression.fOffset,
|
"'++' cannot operate on '" + base->fType.description() + "'");
|
return nullptr;
|
}
|
this->setRefKind(*base, VariableReference::kReadWrite_RefKind);
|
return std::unique_ptr<Expression>(new PostfixExpression(std::move(base),
|
Token::PLUSPLUS));
|
case ASTSuffix::kPostDecrement_Kind:
|
if (!base->fType.isNumber()) {
|
fErrors.error(expression.fOffset,
|
"'--' cannot operate on '" + base->fType.description() + "'");
|
return nullptr;
|
}
|
this->setRefKind(*base, VariableReference::kReadWrite_RefKind);
|
return std::unique_ptr<Expression>(new PostfixExpression(std::move(base),
|
Token::MINUSMINUS));
|
default:
|
ABORT("unsupported suffix operator");
|
}
|
}
|
|
void IRGenerator::checkValid(const Expression& expr) {
|
switch (expr.fKind) {
|
case Expression::kFunctionReference_Kind:
|
fErrors.error(expr.fOffset, "expected '(' to begin function call");
|
break;
|
case Expression::kTypeReference_Kind:
|
fErrors.error(expr.fOffset, "expected '(' to begin constructor invocation");
|
break;
|
default:
|
if (expr.fType == *fContext.fInvalid_Type) {
|
fErrors.error(expr.fOffset, "invalid expression");
|
}
|
}
|
}
|
|
static bool has_duplicates(const Swizzle& swizzle) {
|
int bits = 0;
|
for (int idx : swizzle.fComponents) {
|
SkASSERT(idx >= 0 && idx <= 3);
|
int bit = 1 << idx;
|
if (bits & bit) {
|
return true;
|
}
|
bits |= bit;
|
}
|
return false;
|
}
|
|
void IRGenerator::setRefKind(const Expression& expr, VariableReference::RefKind kind) {
|
switch (expr.fKind) {
|
case Expression::kVariableReference_Kind: {
|
const Variable& var = ((VariableReference&) expr).fVariable;
|
if (var.fModifiers.fFlags & (Modifiers::kConst_Flag | Modifiers::kUniform_Flag)) {
|
fErrors.error(expr.fOffset,
|
"cannot modify immutable variable '" + var.fName + "'");
|
}
|
((VariableReference&) expr).setRefKind(kind);
|
break;
|
}
|
case Expression::kFieldAccess_Kind:
|
this->setRefKind(*((FieldAccess&) expr).fBase, kind);
|
break;
|
case Expression::kSwizzle_Kind:
|
if (has_duplicates((Swizzle&) expr)) {
|
fErrors.error(expr.fOffset,
|
"cannot write to the same swizzle field more than once");
|
}
|
this->setRefKind(*((Swizzle&) expr).fBase, kind);
|
break;
|
case Expression::kIndex_Kind:
|
this->setRefKind(*((IndexExpression&) expr).fBase, kind);
|
break;
|
case Expression::kTernary_Kind: {
|
TernaryExpression& t = (TernaryExpression&) expr;
|
this->setRefKind(*t.fIfTrue, kind);
|
this->setRefKind(*t.fIfFalse, kind);
|
break;
|
}
|
default:
|
fErrors.error(expr.fOffset, "cannot assign to '" + expr.description() + "'");
|
break;
|
}
|
}
|
|
void IRGenerator::convertProgram(Program::Kind kind,
|
const char* text,
|
size_t length,
|
SymbolTable& types,
|
std::vector<std::unique_ptr<ProgramElement>>* out) {
|
fKind = kind;
|
fProgramElements = out;
|
Parser parser(text, length, types, fErrors);
|
std::vector<std::unique_ptr<ASTDeclaration>> parsed = parser.file();
|
if (fErrors.errorCount()) {
|
return;
|
}
|
for (size_t i = 0; i < parsed.size(); i++) {
|
ASTDeclaration& decl = *parsed[i];
|
switch (decl.fKind) {
|
case ASTDeclaration::kVar_Kind: {
|
std::unique_ptr<VarDeclarations> s = this->convertVarDeclarations(
|
(ASTVarDeclarations&) decl,
|
Variable::kGlobal_Storage);
|
if (s) {
|
fProgramElements->push_back(std::move(s));
|
}
|
break;
|
}
|
case ASTDeclaration::kEnum_Kind: {
|
this->convertEnum((ASTEnum&) decl);
|
break;
|
}
|
case ASTDeclaration::kFunction_Kind: {
|
this->convertFunction((ASTFunction&) decl);
|
break;
|
}
|
case ASTDeclaration::kModifiers_Kind: {
|
std::unique_ptr<ModifiersDeclaration> f = this->convertModifiersDeclaration(
|
(ASTModifiersDeclaration&) decl);
|
if (f) {
|
fProgramElements->push_back(std::move(f));
|
}
|
break;
|
}
|
case ASTDeclaration::kInterfaceBlock_Kind: {
|
std::unique_ptr<InterfaceBlock> i = this->convertInterfaceBlock(
|
(ASTInterfaceBlock&) decl);
|
if (i) {
|
fProgramElements->push_back(std::move(i));
|
}
|
break;
|
}
|
case ASTDeclaration::kExtension_Kind: {
|
std::unique_ptr<Extension> e = this->convertExtension((ASTExtension&) decl);
|
if (e) {
|
fProgramElements->push_back(std::move(e));
|
}
|
break;
|
}
|
case ASTDeclaration::kSection_Kind: {
|
std::unique_ptr<Section> s = this->convertSection((ASTSection&) decl);
|
if (s) {
|
fProgramElements->push_back(std::move(s));
|
}
|
break;
|
}
|
default:
|
ABORT("unsupported declaration: %s\n", decl.description().c_str());
|
}
|
}
|
}
|
|
|
}
|