/*
|
* Copyright 2013 Advanced Micro Devices, Inc.
|
*
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
* copy of this software and associated documentation files (the "Software"),
|
* to deal in the Software without restriction, including without limitation
|
* on the rights to use, copy, modify, merge, publish, distribute, sub
|
* license, and/or sell copies of the Software, and to permit persons to whom
|
* the Software is furnished to do so, subject to the following conditions:
|
*
|
* The above copyright notice and this permission notice (including the next
|
* paragraph) shall be included in all copies or substantial portions of the
|
* Software.
|
*
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
|
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
|
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
|
* USE OR OTHER DEALINGS IN THE SOFTWARE.
|
*/
|
|
#include "si_pipe.h"
|
#include "sid.h"
|
#include "radeon/r600_cs.h"
|
|
/* Recommended maximum sizes for optimal performance.
|
* Fall back to compute or SDMA if the size is greater.
|
*/
|
#define CP_DMA_COPY_PERF_THRESHOLD (64 * 1024) /* copied from Vulkan */
|
#define CP_DMA_CLEAR_PERF_THRESHOLD (32 * 1024) /* guess (clear is much slower) */
|
|
/* Set this if you want the ME to wait until CP DMA is done.
|
* It should be set on the last CP DMA packet. */
|
#define CP_DMA_SYNC (1 << 0)
|
|
/* Set this if the source data was used as a destination in a previous CP DMA
|
* packet. It's for preventing a read-after-write (RAW) hazard between two
|
* CP DMA packets. */
|
#define CP_DMA_RAW_WAIT (1 << 1)
|
#define CP_DMA_USE_L2 (1 << 2) /* CIK+ */
|
#define CP_DMA_CLEAR (1 << 3)
|
|
/* The max number of bytes that can be copied per packet. */
|
static inline unsigned cp_dma_max_byte_count(struct si_context *sctx)
|
{
|
unsigned max = sctx->b.chip_class >= GFX9 ?
|
S_414_BYTE_COUNT_GFX9(~0u) :
|
S_414_BYTE_COUNT_GFX6(~0u);
|
|
/* make it aligned for optimal performance */
|
return max & ~(SI_CPDMA_ALIGNMENT - 1);
|
}
|
|
|
/* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
|
* a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
|
* clear value.
|
*/
|
static void si_emit_cp_dma(struct si_context *sctx, uint64_t dst_va,
|
uint64_t src_va, unsigned size, unsigned flags,
|
enum r600_coherency coher)
|
{
|
struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
|
uint32_t header = 0, command = 0;
|
|
assert(size);
|
assert(size <= cp_dma_max_byte_count(sctx));
|
|
if (sctx->b.chip_class >= GFX9)
|
command |= S_414_BYTE_COUNT_GFX9(size);
|
else
|
command |= S_414_BYTE_COUNT_GFX6(size);
|
|
/* Sync flags. */
|
if (flags & CP_DMA_SYNC)
|
header |= S_411_CP_SYNC(1);
|
else {
|
if (sctx->b.chip_class >= GFX9)
|
command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
|
else
|
command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
|
}
|
|
if (flags & CP_DMA_RAW_WAIT)
|
command |= S_414_RAW_WAIT(1);
|
|
/* Src and dst flags. */
|
if (sctx->b.chip_class >= GFX9 && !(flags & CP_DMA_CLEAR) &&
|
src_va == dst_va)
|
header |= S_411_DSL_SEL(V_411_NOWHERE); /* prefetch only */
|
else if (flags & CP_DMA_USE_L2)
|
header |= S_411_DSL_SEL(V_411_DST_ADDR_TC_L2);
|
|
if (flags & CP_DMA_CLEAR)
|
header |= S_411_SRC_SEL(V_411_DATA);
|
else if (flags & CP_DMA_USE_L2)
|
header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
|
|
if (sctx->b.chip_class >= CIK) {
|
radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
|
radeon_emit(cs, header);
|
radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
|
radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
|
radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
|
radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
|
radeon_emit(cs, command);
|
} else {
|
header |= S_411_SRC_ADDR_HI(src_va >> 32);
|
|
radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0));
|
radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
|
radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
|
radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
|
radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
|
radeon_emit(cs, command);
|
}
|
|
/* CP DMA is executed in ME, but index buffers are read by PFP.
|
* This ensures that ME (CP DMA) is idle before PFP starts fetching
|
* indices. If we wanted to execute CP DMA in PFP, this packet
|
* should precede it.
|
*/
|
if (coher == R600_COHERENCY_SHADER && flags & CP_DMA_SYNC) {
|
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
|
radeon_emit(cs, 0);
|
}
|
}
|
|
static unsigned get_flush_flags(struct si_context *sctx, enum r600_coherency coher)
|
{
|
switch (coher) {
|
default:
|
case R600_COHERENCY_NONE:
|
return 0;
|
case R600_COHERENCY_SHADER:
|
return SI_CONTEXT_INV_SMEM_L1 |
|
SI_CONTEXT_INV_VMEM_L1 |
|
(sctx->b.chip_class == SI ? SI_CONTEXT_INV_GLOBAL_L2 : 0);
|
case R600_COHERENCY_CB_META:
|
return SI_CONTEXT_FLUSH_AND_INV_CB;
|
}
|
}
|
|
static unsigned get_tc_l2_flag(struct si_context *sctx, enum r600_coherency coher)
|
{
|
if ((sctx->b.chip_class >= GFX9 && coher == R600_COHERENCY_CB_META) ||
|
(sctx->b.chip_class >= CIK && coher == R600_COHERENCY_SHADER))
|
return CP_DMA_USE_L2;
|
|
return 0;
|
}
|
|
static void si_cp_dma_prepare(struct si_context *sctx, struct pipe_resource *dst,
|
struct pipe_resource *src, unsigned byte_count,
|
uint64_t remaining_size, unsigned user_flags,
|
bool *is_first, unsigned *packet_flags)
|
{
|
/* Fast exit for a CPDMA prefetch. */
|
if ((user_flags & SI_CPDMA_SKIP_ALL) == SI_CPDMA_SKIP_ALL) {
|
*is_first = false;
|
return;
|
}
|
|
if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
|
/* Count memory usage in so that need_cs_space can take it into account. */
|
si_context_add_resource_size(&sctx->b.b, dst);
|
if (src)
|
si_context_add_resource_size(&sctx->b.b, src);
|
}
|
|
if (!(user_flags & SI_CPDMA_SKIP_CHECK_CS_SPACE))
|
si_need_cs_space(sctx);
|
|
/* This must be done after need_cs_space. */
|
if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
|
radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
|
(struct r600_resource*)dst,
|
RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
|
if (src)
|
radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
|
(struct r600_resource*)src,
|
RADEON_USAGE_READ, RADEON_PRIO_CP_DMA);
|
}
|
|
/* Flush the caches for the first copy only.
|
* Also wait for the previous CP DMA operations.
|
*/
|
if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC) && sctx->b.flags)
|
si_emit_cache_flush(sctx);
|
|
if (!(user_flags & SI_CPDMA_SKIP_SYNC_BEFORE) && *is_first)
|
*packet_flags |= CP_DMA_RAW_WAIT;
|
|
*is_first = false;
|
|
/* Do the synchronization after the last dma, so that all data
|
* is written to memory.
|
*/
|
if (!(user_flags & SI_CPDMA_SKIP_SYNC_AFTER) &&
|
byte_count == remaining_size)
|
*packet_flags |= CP_DMA_SYNC;
|
}
|
|
void si_clear_buffer(struct pipe_context *ctx, struct pipe_resource *dst,
|
uint64_t offset, uint64_t size, unsigned value,
|
enum r600_coherency coher)
|
{
|
struct si_context *sctx = (struct si_context*)ctx;
|
struct radeon_winsys *ws = sctx->b.ws;
|
struct r600_resource *rdst = r600_resource(dst);
|
unsigned tc_l2_flag = get_tc_l2_flag(sctx, coher);
|
unsigned flush_flags = get_flush_flags(sctx, coher);
|
uint64_t dma_clear_size;
|
bool is_first = true;
|
|
if (!size)
|
return;
|
|
dma_clear_size = size & ~3ull;
|
|
/* Mark the buffer range of destination as valid (initialized),
|
* so that transfer_map knows it should wait for the GPU when mapping
|
* that range. */
|
util_range_add(&rdst->valid_buffer_range, offset,
|
offset + dma_clear_size);
|
|
/* dma_clear_buffer can use clear_buffer on failure. Make sure that
|
* doesn't happen. We don't want an infinite recursion: */
|
if (sctx->b.dma.cs &&
|
!(dst->flags & PIPE_RESOURCE_FLAG_SPARSE) &&
|
(offset % 4 == 0) &&
|
/* CP DMA is very slow. Always use SDMA for big clears. This
|
* alone improves DeusEx:MD performance by 70%. */
|
(size > CP_DMA_CLEAR_PERF_THRESHOLD ||
|
/* Buffers not used by the GFX IB yet will be cleared by SDMA.
|
* This happens to move most buffer clears to SDMA, including
|
* DCC and CMASK clears, because pipe->clear clears them before
|
* si_emit_framebuffer_state (in a draw call) adds them.
|
* For example, DeusEx:MD has 21 buffer clears per frame and all
|
* of them are moved to SDMA thanks to this. */
|
!ws->cs_is_buffer_referenced(sctx->b.gfx.cs, rdst->buf,
|
RADEON_USAGE_READWRITE))) {
|
sctx->b.dma_clear_buffer(ctx, dst, offset, dma_clear_size, value);
|
|
offset += dma_clear_size;
|
size -= dma_clear_size;
|
} else if (dma_clear_size >= 4) {
|
uint64_t va = rdst->gpu_address + offset;
|
|
offset += dma_clear_size;
|
size -= dma_clear_size;
|
|
/* Flush the caches. */
|
sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
|
SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags;
|
|
while (dma_clear_size) {
|
unsigned byte_count = MIN2(dma_clear_size, cp_dma_max_byte_count(sctx));
|
unsigned dma_flags = tc_l2_flag | CP_DMA_CLEAR;
|
|
si_cp_dma_prepare(sctx, dst, NULL, byte_count, dma_clear_size, 0,
|
&is_first, &dma_flags);
|
|
/* Emit the clear packet. */
|
si_emit_cp_dma(sctx, va, value, byte_count, dma_flags, coher);
|
|
dma_clear_size -= byte_count;
|
va += byte_count;
|
}
|
|
if (tc_l2_flag)
|
rdst->TC_L2_dirty = true;
|
|
/* If it's not a framebuffer fast clear... */
|
if (coher == R600_COHERENCY_SHADER)
|
sctx->b.num_cp_dma_calls++;
|
}
|
|
if (size) {
|
/* Handle non-dword alignment.
|
*
|
* This function is called for embedded texture metadata clears,
|
* but those should always be properly aligned. */
|
assert(dst->target == PIPE_BUFFER);
|
assert(size < 4);
|
|
pipe_buffer_write(ctx, dst, offset, size, &value);
|
}
|
}
|
|
static void si_pipe_clear_buffer(struct pipe_context *ctx,
|
struct pipe_resource *dst,
|
unsigned offset, unsigned size,
|
const void *clear_value_ptr,
|
int clear_value_size)
|
{
|
struct si_context *sctx = (struct si_context*)ctx;
|
uint32_t dword_value;
|
unsigned i;
|
|
assert(offset % clear_value_size == 0);
|
assert(size % clear_value_size == 0);
|
|
if (clear_value_size > 4) {
|
const uint32_t *u32 = clear_value_ptr;
|
bool clear_dword_duplicated = true;
|
|
/* See if we can lower large fills to dword fills. */
|
for (i = 1; i < clear_value_size / 4; i++)
|
if (u32[0] != u32[i]) {
|
clear_dword_duplicated = false;
|
break;
|
}
|
|
if (!clear_dword_duplicated) {
|
/* Use transform feedback for 64-bit, 96-bit, and
|
* 128-bit fills.
|
*/
|
union pipe_color_union clear_value;
|
|
memcpy(&clear_value, clear_value_ptr, clear_value_size);
|
si_blitter_begin(ctx, SI_DISABLE_RENDER_COND);
|
util_blitter_clear_buffer(sctx->blitter, dst, offset,
|
size, clear_value_size / 4,
|
&clear_value);
|
si_blitter_end(ctx);
|
return;
|
}
|
}
|
|
/* Expand the clear value to a dword. */
|
switch (clear_value_size) {
|
case 1:
|
dword_value = *(uint8_t*)clear_value_ptr;
|
dword_value |= (dword_value << 8) |
|
(dword_value << 16) |
|
(dword_value << 24);
|
break;
|
case 2:
|
dword_value = *(uint16_t*)clear_value_ptr;
|
dword_value |= dword_value << 16;
|
break;
|
default:
|
dword_value = *(uint32_t*)clear_value_ptr;
|
}
|
|
si_clear_buffer(ctx, dst, offset, size, dword_value,
|
R600_COHERENCY_SHADER);
|
}
|
|
/**
|
* Realign the CP DMA engine. This must be done after a copy with an unaligned
|
* size.
|
*
|
* \param size Remaining size to the CP DMA alignment.
|
*/
|
static void si_cp_dma_realign_engine(struct si_context *sctx, unsigned size,
|
unsigned user_flags, bool *is_first)
|
{
|
uint64_t va;
|
unsigned dma_flags = 0;
|
unsigned scratch_size = SI_CPDMA_ALIGNMENT * 2;
|
|
assert(size < SI_CPDMA_ALIGNMENT);
|
|
/* Use the scratch buffer as the dummy buffer. The 3D engine should be
|
* idle at this point.
|
*/
|
if (!sctx->scratch_buffer ||
|
sctx->scratch_buffer->b.b.width0 < scratch_size) {
|
r600_resource_reference(&sctx->scratch_buffer, NULL);
|
sctx->scratch_buffer = (struct r600_resource*)
|
si_aligned_buffer_create(&sctx->screen->b,
|
R600_RESOURCE_FLAG_UNMAPPABLE,
|
PIPE_USAGE_DEFAULT,
|
scratch_size, 256);
|
if (!sctx->scratch_buffer)
|
return;
|
|
si_mark_atom_dirty(sctx, &sctx->scratch_state);
|
}
|
|
si_cp_dma_prepare(sctx, &sctx->scratch_buffer->b.b,
|
&sctx->scratch_buffer->b.b, size, size, user_flags,
|
is_first, &dma_flags);
|
|
va = sctx->scratch_buffer->gpu_address;
|
si_emit_cp_dma(sctx, va, va + SI_CPDMA_ALIGNMENT, size, dma_flags,
|
R600_COHERENCY_SHADER);
|
}
|
|
/**
|
* Do memcpy between buffers using CP DMA.
|
*
|
* \param user_flags bitmask of SI_CPDMA_*
|
*/
|
void si_copy_buffer(struct si_context *sctx,
|
struct pipe_resource *dst, struct pipe_resource *src,
|
uint64_t dst_offset, uint64_t src_offset, unsigned size,
|
unsigned user_flags)
|
{
|
uint64_t main_dst_offset, main_src_offset;
|
unsigned skipped_size = 0;
|
unsigned realign_size = 0;
|
unsigned tc_l2_flag = get_tc_l2_flag(sctx, R600_COHERENCY_SHADER);
|
unsigned flush_flags = get_flush_flags(sctx, R600_COHERENCY_SHADER);
|
bool is_first = true;
|
|
if (!size)
|
return;
|
|
if (dst != src || dst_offset != src_offset) {
|
/* Mark the buffer range of destination as valid (initialized),
|
* so that transfer_map knows it should wait for the GPU when mapping
|
* that range. */
|
util_range_add(&r600_resource(dst)->valid_buffer_range, dst_offset,
|
dst_offset + size);
|
}
|
|
dst_offset += r600_resource(dst)->gpu_address;
|
src_offset += r600_resource(src)->gpu_address;
|
|
/* The workarounds aren't needed on Fiji and beyond. */
|
if (sctx->b.family <= CHIP_CARRIZO ||
|
sctx->b.family == CHIP_STONEY) {
|
/* If the size is not aligned, we must add a dummy copy at the end
|
* just to align the internal counter. Otherwise, the DMA engine
|
* would slow down by an order of magnitude for following copies.
|
*/
|
if (size % SI_CPDMA_ALIGNMENT)
|
realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
|
|
/* If the copy begins unaligned, we must start copying from the next
|
* aligned block and the skipped part should be copied after everything
|
* else has been copied. Only the src alignment matters, not dst.
|
*/
|
if (src_offset % SI_CPDMA_ALIGNMENT) {
|
skipped_size = SI_CPDMA_ALIGNMENT - (src_offset % SI_CPDMA_ALIGNMENT);
|
/* The main part will be skipped if the size is too small. */
|
skipped_size = MIN2(skipped_size, size);
|
size -= skipped_size;
|
}
|
}
|
|
/* Flush the caches. */
|
if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC))
|
sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
|
SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags;
|
|
/* This is the main part doing the copying. Src is always aligned. */
|
main_dst_offset = dst_offset + skipped_size;
|
main_src_offset = src_offset + skipped_size;
|
|
while (size) {
|
unsigned dma_flags = tc_l2_flag;
|
unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx));
|
|
si_cp_dma_prepare(sctx, dst, src, byte_count,
|
size + skipped_size + realign_size,
|
user_flags, &is_first, &dma_flags);
|
|
si_emit_cp_dma(sctx, main_dst_offset, main_src_offset,
|
byte_count, dma_flags, R600_COHERENCY_SHADER);
|
|
size -= byte_count;
|
main_src_offset += byte_count;
|
main_dst_offset += byte_count;
|
}
|
|
/* Copy the part we skipped because src wasn't aligned. */
|
if (skipped_size) {
|
unsigned dma_flags = tc_l2_flag;
|
|
si_cp_dma_prepare(sctx, dst, src, skipped_size,
|
skipped_size + realign_size, user_flags,
|
&is_first, &dma_flags);
|
|
si_emit_cp_dma(sctx, dst_offset, src_offset, skipped_size,
|
dma_flags, R600_COHERENCY_SHADER);
|
}
|
|
/* Finally, realign the engine if the size wasn't aligned. */
|
if (realign_size)
|
si_cp_dma_realign_engine(sctx, realign_size, user_flags,
|
&is_first);
|
|
if (tc_l2_flag)
|
r600_resource(dst)->TC_L2_dirty = true;
|
|
/* If it's not a prefetch... */
|
if (dst_offset != src_offset)
|
sctx->b.num_cp_dma_calls++;
|
}
|
|
void cik_prefetch_TC_L2_async(struct si_context *sctx, struct pipe_resource *buf,
|
uint64_t offset, unsigned size)
|
{
|
assert(sctx->b.chip_class >= CIK);
|
|
si_copy_buffer(sctx, buf, buf, offset, offset, size, SI_CPDMA_SKIP_ALL);
|
}
|
|
static void cik_prefetch_shader_async(struct si_context *sctx,
|
struct si_pm4_state *state)
|
{
|
struct pipe_resource *bo = &state->bo[0]->b.b;
|
assert(state->nbo == 1);
|
|
cik_prefetch_TC_L2_async(sctx, bo, 0, bo->width0);
|
}
|
|
static void cik_prefetch_VBO_descriptors(struct si_context *sctx)
|
{
|
if (!sctx->vertex_elements)
|
return;
|
|
cik_prefetch_TC_L2_async(sctx, &sctx->vertex_buffers.buffer->b.b,
|
sctx->vertex_buffers.gpu_address -
|
sctx->vertex_buffers.buffer->gpu_address,
|
sctx->vertex_elements->desc_list_byte_size);
|
}
|
|
void cik_emit_prefetch_L2(struct si_context *sctx)
|
{
|
/* Prefetch shaders and VBO descriptors to TC L2. */
|
if (sctx->b.chip_class >= GFX9) {
|
/* Choose the right spot for the VBO prefetch. */
|
if (sctx->tes_shader.cso) {
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_HS)
|
cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
|
cik_prefetch_VBO_descriptors(sctx);
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_GS)
|
cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
|
cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
|
} else if (sctx->gs_shader.cso) {
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_GS)
|
cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
|
cik_prefetch_VBO_descriptors(sctx);
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
|
cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
|
} else {
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
|
cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
|
cik_prefetch_VBO_descriptors(sctx);
|
}
|
} else {
|
/* SI-CI-VI */
|
/* Choose the right spot for the VBO prefetch. */
|
if (sctx->tes_shader.cso) {
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_LS)
|
cik_prefetch_shader_async(sctx, sctx->queued.named.ls);
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
|
cik_prefetch_VBO_descriptors(sctx);
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_HS)
|
cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_ES)
|
cik_prefetch_shader_async(sctx, sctx->queued.named.es);
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_GS)
|
cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
|
cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
|
} else if (sctx->gs_shader.cso) {
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_ES)
|
cik_prefetch_shader_async(sctx, sctx->queued.named.es);
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
|
cik_prefetch_VBO_descriptors(sctx);
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_GS)
|
cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
|
cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
|
} else {
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
|
cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
|
cik_prefetch_VBO_descriptors(sctx);
|
}
|
}
|
|
if (sctx->prefetch_L2_mask & SI_PREFETCH_PS)
|
cik_prefetch_shader_async(sctx, sctx->queued.named.ps);
|
|
sctx->prefetch_L2_mask = 0;
|
}
|
|
void si_init_cp_dma_functions(struct si_context *sctx)
|
{
|
sctx->b.b.clear_buffer = si_pipe_clear_buffer;
|
}
|