/**************************************************************************
|
*
|
* Copyright 2009 VMware, Inc.
|
* All Rights Reserved.
|
*
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
* copy of this software and associated documentation files (the
|
* "Software"), to deal in the Software without restriction, including
|
* without limitation the rights to use, copy, modify, merge, publish,
|
* distribute, sub license, and/or sell copies of the Software, and to
|
* permit persons to whom the Software is furnished to do so, subject to
|
* the following conditions:
|
*
|
* The above copyright notice and this permission notice (including the
|
* next paragraph) shall be included in all copies or substantial portions
|
* of the Software.
|
*
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
|
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
|
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
*
|
**************************************************************************/
|
|
/**
|
* The rast code is concerned with rasterization of command bins.
|
* Each screen tile has a bin associated with it. To render the
|
* scene we iterate over the tile bins and execute the commands
|
* in each bin.
|
* We'll do that with multiple threads...
|
*/
|
|
|
#ifndef LP_RAST_H
|
#define LP_RAST_H
|
|
#include "pipe/p_compiler.h"
|
#include "util/u_pack_color.h"
|
#include "lp_jit.h"
|
|
|
struct lp_rasterizer;
|
struct lp_scene;
|
struct lp_fence;
|
struct cmd_bin;
|
|
#define FIXED_TYPE_WIDTH 64
|
/** For sub-pixel positioning */
|
#define FIXED_ORDER 8
|
#define FIXED_ONE (1<<FIXED_ORDER)
|
#define FIXED_SHIFT (FIXED_TYPE_WIDTH - 1)
|
/** Maximum length of an edge in a primitive in pixels.
|
* If the framebuffer is large we have to think about fixed-point
|
* integer overflow. Coordinates need ((FIXED_TYPE_WIDTH/2) - 1) bits
|
* to be able to fit product of two such coordinates inside
|
* FIXED_TYPE_WIDTH, any larger and we could overflow a
|
* FIXED_TYPE_WIDTH_-bit int.
|
*/
|
#define MAX_FIXED_LENGTH (1 << (((FIXED_TYPE_WIDTH/2) - 1) - FIXED_ORDER))
|
|
#define MAX_FIXED_LENGTH32 (1 << (((32/2) - 1) - FIXED_ORDER))
|
|
/* Rasterizer output size going to jit fs, width/height */
|
#define LP_RASTER_BLOCK_SIZE 4
|
|
#define LP_MAX_ACTIVE_BINNED_QUERIES 64
|
|
#define IMUL64(a, b) (((int64_t)(a)) * ((int64_t)(b)))
|
|
struct lp_rasterizer_task;
|
|
|
/**
|
* Rasterization state.
|
* Objects of this type are put into the shared data bin and pointed
|
* to by commands in the per-tile bins.
|
*/
|
struct lp_rast_state {
|
/* State for the shader. This also contains state which feeds into
|
* the fragment shader, such as blend color and alpha ref value.
|
*/
|
struct lp_jit_context jit_context;
|
|
/* The shader itself. Probably we also need to pass a pointer to
|
* the tile color/z/stencil data somehow
|
*/
|
struct lp_fragment_shader_variant *variant;
|
};
|
|
|
/**
|
* Coefficients necessary to run the shader at a given location.
|
* First coefficient is position.
|
* These pointers point into the bin data buffer.
|
*/
|
struct lp_rast_shader_inputs {
|
unsigned frontfacing:1; /** True for front-facing */
|
unsigned disable:1; /** Partially binned, disable this command */
|
unsigned opaque:1; /** Is opaque */
|
unsigned pad0:29; /* wasted space */
|
unsigned stride; /* how much to advance data between a0, dadx, dady */
|
unsigned layer; /* the layer to render to (from gs, already clamped) */
|
unsigned viewport_index; /* the active viewport index (from gs, already clamped) */
|
/* followed by a0, dadx, dady and planes[] */
|
};
|
|
struct lp_rast_plane {
|
/* edge function values at minx,miny ?? */
|
int64_t c;
|
|
int32_t dcdx;
|
int32_t dcdy;
|
|
/* one-pixel sized trivial reject offsets for each plane */
|
uint32_t eo;
|
/*
|
* We rely on this struct being 64bit aligned (ideally it would be 128bit
|
* but that's quite the waste) and therefore on 32bit we need padding
|
* since otherwise (even with the 64bit number in there) it wouldn't be.
|
*/
|
uint32_t pad;
|
};
|
|
/**
|
* Rasterization information for a triangle known to be in this bin,
|
* plus inputs to run the shader:
|
* These fields are tile- and bin-independent.
|
* Objects of this type are put into the lp_setup_context::data buffer.
|
*/
|
struct lp_rast_triangle {
|
#ifdef DEBUG
|
float v[3][2];
|
float pad0;
|
float pad1;
|
#endif
|
|
/* inputs for the shader */
|
struct lp_rast_shader_inputs inputs;
|
/* planes are also allocated here */
|
};
|
|
|
struct lp_rast_clear_rb {
|
union util_color color_val;
|
unsigned cbuf;
|
};
|
|
|
#define GET_A0(inputs) ((float (*)[4])((inputs)+1))
|
#define GET_DADX(inputs) ((float (*)[4])((char *)((inputs) + 1) + (inputs)->stride))
|
#define GET_DADY(inputs) ((float (*)[4])((char *)((inputs) + 1) + 2 * (inputs)->stride))
|
#define GET_PLANES(tri) ((struct lp_rast_plane *)((char *)(&(tri)->inputs + 1) + 3 * (tri)->inputs.stride))
|
|
|
|
struct lp_rasterizer *
|
lp_rast_create( unsigned num_threads );
|
|
void
|
lp_rast_destroy( struct lp_rasterizer * );
|
|
void
|
lp_rast_queue_scene( struct lp_rasterizer *rast,
|
struct lp_scene *scene );
|
|
void
|
lp_rast_finish( struct lp_rasterizer *rast );
|
|
|
union lp_rast_cmd_arg {
|
const struct lp_rast_shader_inputs *shade_tile;
|
struct {
|
const struct lp_rast_triangle *tri;
|
unsigned plane_mask;
|
} triangle;
|
const struct lp_rast_state *set_state;
|
const struct lp_rast_clear_rb *clear_rb;
|
struct {
|
uint64_t value;
|
uint64_t mask;
|
} clear_zstencil;
|
const struct lp_rast_state *state;
|
struct lp_fence *fence;
|
struct llvmpipe_query *query_obj;
|
};
|
|
|
/* Cast wrappers. Hopefully these compile to noops!
|
*/
|
static inline union lp_rast_cmd_arg
|
lp_rast_arg_inputs( const struct lp_rast_shader_inputs *shade_tile )
|
{
|
union lp_rast_cmd_arg arg;
|
arg.shade_tile = shade_tile;
|
return arg;
|
}
|
|
static inline union lp_rast_cmd_arg
|
lp_rast_arg_triangle( const struct lp_rast_triangle *triangle,
|
unsigned plane_mask)
|
{
|
union lp_rast_cmd_arg arg;
|
arg.triangle.tri = triangle;
|
arg.triangle.plane_mask = plane_mask;
|
return arg;
|
}
|
|
/**
|
* Build argument for a contained triangle.
|
*
|
* All planes are enabled, so instead of the plane mask we pass the upper
|
* left coordinates of the a block that fully encloses the triangle.
|
*/
|
static inline union lp_rast_cmd_arg
|
lp_rast_arg_triangle_contained( const struct lp_rast_triangle *triangle,
|
unsigned x, unsigned y)
|
{
|
union lp_rast_cmd_arg arg;
|
arg.triangle.tri = triangle;
|
arg.triangle.plane_mask = x | (y << 8);
|
return arg;
|
}
|
|
static inline union lp_rast_cmd_arg
|
lp_rast_arg_state( const struct lp_rast_state *state )
|
{
|
union lp_rast_cmd_arg arg;
|
arg.set_state = state;
|
return arg;
|
}
|
|
static inline union lp_rast_cmd_arg
|
lp_rast_arg_fence( struct lp_fence *fence )
|
{
|
union lp_rast_cmd_arg arg;
|
arg.fence = fence;
|
return arg;
|
}
|
|
|
static inline union lp_rast_cmd_arg
|
lp_rast_arg_clearzs( uint64_t value, uint64_t mask )
|
{
|
union lp_rast_cmd_arg arg;
|
arg.clear_zstencil.value = value;
|
arg.clear_zstencil.mask = mask;
|
return arg;
|
}
|
|
|
static inline union lp_rast_cmd_arg
|
lp_rast_arg_query( struct llvmpipe_query *pq )
|
{
|
union lp_rast_cmd_arg arg;
|
arg.query_obj = pq;
|
return arg;
|
}
|
|
static inline union lp_rast_cmd_arg
|
lp_rast_arg_null( void )
|
{
|
union lp_rast_cmd_arg arg;
|
arg.set_state = NULL;
|
return arg;
|
}
|
|
|
/**
|
* Binnable Commands.
|
* These get put into bins by the setup code and are called when
|
* the bins are executed.
|
*/
|
#define LP_RAST_OP_CLEAR_COLOR 0x0
|
#define LP_RAST_OP_CLEAR_ZSTENCIL 0x1
|
#define LP_RAST_OP_TRIANGLE_1 0x2
|
#define LP_RAST_OP_TRIANGLE_2 0x3
|
#define LP_RAST_OP_TRIANGLE_3 0x4
|
#define LP_RAST_OP_TRIANGLE_4 0x5
|
#define LP_RAST_OP_TRIANGLE_5 0x6
|
#define LP_RAST_OP_TRIANGLE_6 0x7
|
#define LP_RAST_OP_TRIANGLE_7 0x8
|
#define LP_RAST_OP_TRIANGLE_8 0x9
|
#define LP_RAST_OP_TRIANGLE_3_4 0xa
|
#define LP_RAST_OP_TRIANGLE_3_16 0xb
|
#define LP_RAST_OP_TRIANGLE_4_16 0xc
|
#define LP_RAST_OP_SHADE_TILE 0xd
|
#define LP_RAST_OP_SHADE_TILE_OPAQUE 0xe
|
#define LP_RAST_OP_BEGIN_QUERY 0xf
|
#define LP_RAST_OP_END_QUERY 0x10
|
#define LP_RAST_OP_SET_STATE 0x11
|
#define LP_RAST_OP_TRIANGLE_32_1 0x12
|
#define LP_RAST_OP_TRIANGLE_32_2 0x13
|
#define LP_RAST_OP_TRIANGLE_32_3 0x14
|
#define LP_RAST_OP_TRIANGLE_32_4 0x15
|
#define LP_RAST_OP_TRIANGLE_32_5 0x16
|
#define LP_RAST_OP_TRIANGLE_32_6 0x17
|
#define LP_RAST_OP_TRIANGLE_32_7 0x18
|
#define LP_RAST_OP_TRIANGLE_32_8 0x19
|
#define LP_RAST_OP_TRIANGLE_32_3_4 0x1a
|
#define LP_RAST_OP_TRIANGLE_32_3_16 0x1b
|
#define LP_RAST_OP_TRIANGLE_32_4_16 0x1c
|
|
#define LP_RAST_OP_MAX 0x1d
|
#define LP_RAST_OP_MASK 0xff
|
|
void
|
lp_debug_bins( struct lp_scene *scene );
|
void
|
lp_debug_draw_bins_by_cmd_length( struct lp_scene *scene );
|
void
|
lp_debug_draw_bins_by_coverage( struct lp_scene *scene );
|
|
|
#endif
|