1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
| // This file is part of Eigen, a lightweight C++ template library
| // for linear algebra.
| //
| // Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
| //
| // This Source Code Form is subject to the terms of the Mozilla
| // Public License v. 2.0. If a copy of the MPL was not distributed
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
| #include "main.h"
| #include <Eigen/Geometry>
| #include <Eigen/LU>
| #include <Eigen/SVD>
|
|
| template<typename Scalar>
| void verify_euler(const Matrix<Scalar,3,1>& ea, int i, int j, int k)
| {
| typedef Matrix<Scalar,3,3> Matrix3;
| typedef Matrix<Scalar,3,1> Vector3;
| typedef AngleAxis<Scalar> AngleAxisx;
| using std::abs;
| Matrix3 m(AngleAxisx(ea[0], Vector3::Unit(i)) * AngleAxisx(ea[1], Vector3::Unit(j)) * AngleAxisx(ea[2], Vector3::Unit(k)));
| Vector3 eabis = m.eulerAngles(i, j, k);
| Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * AngleAxisx(eabis[2], Vector3::Unit(k)));
| VERIFY_IS_APPROX(m, mbis);
| /* If I==K, and ea[1]==0, then there no unique solution. */
| /* The remark apply in the case where I!=K, and |ea[1]| is close to pi/2. */
| if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(EIGEN_PI/2),test_precision<Scalar>())) )
| VERIFY((ea-eabis).norm() <= test_precision<Scalar>());
|
| // approx_or_less_than does not work for 0
| VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1)));
| VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI));
| VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[1]);
| VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI));
| VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]);
| VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI));
| }
|
| template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea)
| {
| verify_euler(ea, 0,1,2);
| verify_euler(ea, 0,1,0);
| verify_euler(ea, 0,2,1);
| verify_euler(ea, 0,2,0);
|
| verify_euler(ea, 1,2,0);
| verify_euler(ea, 1,2,1);
| verify_euler(ea, 1,0,2);
| verify_euler(ea, 1,0,1);
|
| verify_euler(ea, 2,0,1);
| verify_euler(ea, 2,0,2);
| verify_euler(ea, 2,1,0);
| verify_euler(ea, 2,1,2);
| }
|
| template<typename Scalar> void eulerangles()
| {
| typedef Matrix<Scalar,3,3> Matrix3;
| typedef Matrix<Scalar,3,1> Vector3;
| typedef Array<Scalar,3,1> Array3;
| typedef Quaternion<Scalar> Quaternionx;
| typedef AngleAxis<Scalar> AngleAxisx;
|
| Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
| Quaternionx q1;
| q1 = AngleAxisx(a, Vector3::Random().normalized());
| Matrix3 m;
| m = q1;
|
| Vector3 ea = m.eulerAngles(0,1,2);
| check_all_var(ea);
| ea = m.eulerAngles(0,1,0);
| check_all_var(ea);
|
| // Check with purely random Quaternion:
| q1.coeffs() = Quaternionx::Coefficients::Random().normalized();
| m = q1;
| ea = m.eulerAngles(0,1,2);
| check_all_var(ea);
| ea = m.eulerAngles(0,1,0);
| check_all_var(ea);
|
| // Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi].
| ea = (Array3::Random() + Array3(1,0,0))*Scalar(EIGEN_PI)*Array3(0.5,1,1);
| check_all_var(ea);
|
| ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
| check_all_var(ea);
|
| ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
| check_all_var(ea);
|
| ea[1] = 0;
| check_all_var(ea);
|
| ea.head(2).setZero();
| check_all_var(ea);
|
| ea.setZero();
| check_all_var(ea);
| }
|
| void test_geo_eulerangles()
| {
| for(int i = 0; i < g_repeat; i++) {
| CALL_SUBTEST_1( eulerangles<float>() );
| CALL_SUBTEST_2( eulerangles<double>() );
| }
| }
|
|