/* -----------------------------------------------------------------------------
|
Software License for The Fraunhofer FDK AAC Codec Library for Android
|
|
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
|
Forschung e.V. All rights reserved.
|
|
1. INTRODUCTION
|
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
|
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
|
scheme for digital audio. This FDK AAC Codec software is intended to be used on
|
a wide variety of Android devices.
|
|
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
|
general perceptual audio codecs. AAC-ELD is considered the best-performing
|
full-bandwidth communications codec by independent studies and is widely
|
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
|
specifications.
|
|
Patent licenses for necessary patent claims for the FDK AAC Codec (including
|
those of Fraunhofer) may be obtained through Via Licensing
|
(www.vialicensing.com) or through the respective patent owners individually for
|
the purpose of encoding or decoding bit streams in products that are compliant
|
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
|
Android devices already license these patent claims through Via Licensing or
|
directly from the patent owners, and therefore FDK AAC Codec software may
|
already be covered under those patent licenses when it is used for those
|
licensed purposes only.
|
|
Commercially-licensed AAC software libraries, including floating-point versions
|
with enhanced sound quality, are also available from Fraunhofer. Users are
|
encouraged to check the Fraunhofer website for additional applications
|
information and documentation.
|
|
2. COPYRIGHT LICENSE
|
|
Redistribution and use in source and binary forms, with or without modification,
|
are permitted without payment of copyright license fees provided that you
|
satisfy the following conditions:
|
|
You must retain the complete text of this software license in redistributions of
|
the FDK AAC Codec or your modifications thereto in source code form.
|
|
You must retain the complete text of this software license in the documentation
|
and/or other materials provided with redistributions of the FDK AAC Codec or
|
your modifications thereto in binary form. You must make available free of
|
charge copies of the complete source code of the FDK AAC Codec and your
|
modifications thereto to recipients of copies in binary form.
|
|
The name of Fraunhofer may not be used to endorse or promote products derived
|
from this library without prior written permission.
|
|
You may not charge copyright license fees for anyone to use, copy or distribute
|
the FDK AAC Codec software or your modifications thereto.
|
|
Your modified versions of the FDK AAC Codec must carry prominent notices stating
|
that you changed the software and the date of any change. For modified versions
|
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
|
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
|
AAC Codec Library for Android."
|
|
3. NO PATENT LICENSE
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
|
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
|
Fraunhofer provides no warranty of patent non-infringement with respect to this
|
software.
|
|
You may use this FDK AAC Codec software or modifications thereto only for
|
purposes that are authorized by appropriate patent licenses.
|
|
4. DISCLAIMER
|
|
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
|
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
|
including but not limited to the implied warranties of merchantability and
|
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
|
or consequential damages, including but not limited to procurement of substitute
|
goods or services; loss of use, data, or profits, or business interruption,
|
however caused and on any theory of liability, whether in contract, strict
|
liability, or tort (including negligence), arising in any way out of the use of
|
this software, even if advised of the possibility of such damage.
|
|
5. CONTACT INFORMATION
|
|
Fraunhofer Institute for Integrated Circuits IIS
|
Attention: Audio and Multimedia Departments - FDK AAC LL
|
Am Wolfsmantel 33
|
91058 Erlangen, Germany
|
|
www.iis.fraunhofer.de/amm
|
amm-info@iis.fraunhofer.de
|
----------------------------------------------------------------------------- */
|
|
/******************* Library for basic calculation routines ********************
|
|
Author(s): Haricharan Lakshman, Manuel Jander
|
|
Description: Trigonometric functions fixed point fractional implementation.
|
|
*******************************************************************************/
|
|
#include "FDK_trigFcts.h"
|
|
#include "fixpoint_math.h"
|
|
#define IMPROVE_ATAN2_ACCURACY 1 /* 0 --> 59 dB SNR 1 --> 65 dB SNR */
|
#define MINSFTAB 7
|
#define MAXSFTAB 25
|
|
#if IMPROVE_ATAN2_ACCURACY
|
static const FIXP_DBL f_atan_expand_range[MAXSFTAB - (MINSFTAB - 1)] = {
|
/*****************************************************************************
|
*
|
* Table holds fixp_atan() output values which are outside of input range
|
* of fixp_atan() to improve SNR of fixp_atan2().
|
*
|
* This Table might also be used in fixp_atan() so there a wider input
|
* range can be covered, too.
|
*
|
*****************************************************************************/
|
FL2FXCONST_DBL(7.775862990872099e-001),
|
FL2FXCONST_DBL(7.814919928673978e-001),
|
FL2FXCONST_DBL(7.834450483314648e-001),
|
FL2FXCONST_DBL(7.844216021392089e-001),
|
FL2FXCONST_DBL(7.849098823026687e-001),
|
FL2FXCONST_DBL(7.851540227918509e-001),
|
FL2FXCONST_DBL(7.852760930873737e-001),
|
FL2FXCONST_DBL(7.853371282415015e-001),
|
FL2FXCONST_DBL(7.853676458193612e-001),
|
FL2FXCONST_DBL(7.853829046083906e-001),
|
FL2FXCONST_DBL(7.853905340029177e-001),
|
FL2FXCONST_DBL(7.853943487001828e-001),
|
FL2FXCONST_DBL(7.853962560488155e-001),
|
FL2FXCONST_DBL(7.853972097231319e-001),
|
FL2FXCONST_DBL(7.853976865602901e-001),
|
FL2FXCONST_DBL(7.853979249788692e-001),
|
FL2FXCONST_DBL(7.853980441881587e-001),
|
FL2FXCONST_DBL(7.853981037928035e-001),
|
FL2FXCONST_DBL(7.853981335951259e-001)
|
/* pi/4 = 0.785398163397448 = pi/2/ATO_SCALE */
|
};
|
#endif
|
|
FIXP_DBL fixp_atan2(FIXP_DBL y, FIXP_DBL x) {
|
FIXP_DBL q;
|
FIXP_DBL at; /* atan out */
|
FIXP_DBL at2; /* atan2 out */
|
FIXP_DBL ret = FL2FXCONST_DBL(-1.0f);
|
INT sf, sfo, stf;
|
|
/* --- division */
|
|
if (y > FL2FXCONST_DBL(0.0f)) {
|
if (x > FL2FXCONST_DBL(0.0f)) {
|
q = fDivNormHighPrec(y, x, &sf); /* both pos. */
|
} else if (x < FL2FXCONST_DBL(0.0f)) {
|
q = -fDivNormHighPrec(y, -x, &sf); /* x neg. */
|
} else { /* (x == FL2FXCONST_DBL(0.0f)) */
|
q = FL2FXCONST_DBL(+1.0f); /* y/x = pos/zero = +Inf */
|
sf = 0;
|
}
|
} else if (y < FL2FXCONST_DBL(0.0f)) {
|
if (x > FL2FXCONST_DBL(0.0f)) {
|
q = -fDivNormHighPrec(-y, x, &sf); /* y neg. */
|
} else if (x < FL2FXCONST_DBL(0.0f)) {
|
q = fDivNormHighPrec(-y, -x, &sf); /* both neg. */
|
} else { /* (x == FL2FXCONST_DBL(0.0f)) */
|
q = FL2FXCONST_DBL(-1.0f); /* y/x = neg/zero = -Inf */
|
sf = 0;
|
}
|
} else { /* (y == FL2FXCONST_DBL(0.0f)) */
|
q = FL2FXCONST_DBL(0.0f);
|
sf = 0;
|
}
|
sfo = sf;
|
|
/* --- atan() */
|
|
if (sfo > ATI_SF) {
|
/* --- could not calc fixp_atan() here bec of input data out of range */
|
/* ==> therefore give back boundary values */
|
|
#if IMPROVE_ATAN2_ACCURACY
|
if (sfo > MAXSFTAB) sfo = MAXSFTAB;
|
#endif
|
|
if (q > FL2FXCONST_DBL(0.0f)) {
|
#if IMPROVE_ATAN2_ACCURACY
|
at = +f_atan_expand_range[sfo - ATI_SF - 1];
|
#else
|
at = FL2FXCONST_DBL(+M_PI / 2 / ATO_SCALE);
|
#endif
|
} else if (q < FL2FXCONST_DBL(0.0f)) {
|
#if IMPROVE_ATAN2_ACCURACY
|
at = -f_atan_expand_range[sfo - ATI_SF - 1];
|
#else
|
at = FL2FXCONST_DBL(-M_PI / 2 / ATO_SCALE);
|
#endif
|
} else { /* q == FL2FXCONST_DBL(0.0f) */
|
at = FL2FXCONST_DBL(0.0f);
|
}
|
} else {
|
/* --- calc of fixp_atan() is possible; input data within range */
|
/* ==> set q on fixed scale level as desired from fixp_atan() */
|
stf = sfo - ATI_SF;
|
if (stf > 0)
|
q = q << (INT)fMin(stf, DFRACT_BITS - 1);
|
else
|
q = q >> (INT)fMin(-stf, DFRACT_BITS - 1);
|
at = fixp_atan(q); /* ATO_SF */
|
}
|
|
// --- atan2()
|
|
at2 = at >> (AT2O_SF - ATO_SF); // now AT2O_SF for atan2
|
if (x > FL2FXCONST_DBL(0.0f)) {
|
ret = at2;
|
} else if (x < FL2FXCONST_DBL(0.0f)) {
|
if (y >= FL2FXCONST_DBL(0.0f)) {
|
ret = at2 + FL2FXCONST_DBL(M_PI / AT2O_SCALE);
|
} else {
|
ret = at2 - FL2FXCONST_DBL(M_PI / AT2O_SCALE);
|
}
|
} else {
|
// x == 0
|
if (y > FL2FXCONST_DBL(0.0f)) {
|
ret = FL2FXCONST_DBL(+M_PI / 2 / AT2O_SCALE);
|
} else if (y < FL2FXCONST_DBL(0.0f)) {
|
ret = FL2FXCONST_DBL(-M_PI / 2 / AT2O_SCALE);
|
} else if (y == FL2FXCONST_DBL(0.0f)) {
|
ret = FL2FXCONST_DBL(0.0f);
|
}
|
}
|
return ret;
|
}
|
|
FIXP_DBL fixp_atan(FIXP_DBL x) {
|
INT sign;
|
FIXP_DBL result, temp;
|
|
/* SNR of fixp_atan() = 56 dB */
|
FIXP_DBL P281 = (FIXP_DBL)0x00013000; // 0.281 in q18
|
FIXP_DBL ONEP571 = (FIXP_DBL)0x6487ef00; // 1.571 in q30
|
|
if (x < FIXP_DBL(0)) {
|
sign = 1;
|
x = -x;
|
} else {
|
sign = 0;
|
}
|
FDK_ASSERT(FL2FXCONST_DBL(1.0 / 64.0) == Q(Q_ATANINP));
|
/* calc of arctan */
|
if (x < FL2FXCONST_DBL(1.0 / 64.0))
|
/*
|
Chebyshev polynomial approximation of atan(x)
|
5th-order approximation: atan(x) = a1*x + a2*x^3 + a3*x^5 = x(a1 + x^2*(a2 +
|
a3*x^2)); a1 = 0.9949493661166540f, a2 = 0.2870606355326520f, a3 =
|
0.0780371764464410f; 7th-order approximation: atan(x) = a1*x + a2*x^3 +
|
a3*x^5 + a3*x^7 = x(a1 + x^2*(a2 + x^2*(a3 + a4*x^2))); a1 =
|
0.9991334482227801, a2 = -0.3205332923816640, a3 = 0.1449824901444650, a4 =
|
-0.0382544649702990; 7th-order approximation in use (the most accurate
|
solution)
|
*/
|
{
|
x <<= ATI_SF;
|
FIXP_DBL x2 = fPow2(x);
|
temp = fMultAddDiv2((FL2FXCONST_DBL(0.1449824901444650f) >> 1), x2,
|
FL2FXCONST_DBL(-0.0382544649702990));
|
temp = fMultAddDiv2((FL2FXCONST_DBL(-0.3205332923816640f) >> 2), x2, temp);
|
temp = fMultAddDiv2((FL2FXCONST_DBL(0.9991334482227801f) >> 3), x2, temp);
|
result = fMult(x, (temp << 2));
|
} else if (x < FL2FXCONST_DBL(1.28 / 64.0)) {
|
FIXP_DBL delta_fix;
|
FIXP_DBL PI_BY_4 = FL2FXCONST_DBL(3.1415926 / 4.0) >> 1; /* pi/4 in q30 */
|
|
delta_fix = (x - FL2FXCONST_DBL(1.0 / 64.0)) << 5; /* q30 */
|
result = PI_BY_4 + (delta_fix >> 1) - (fPow2Div2(delta_fix));
|
} else {
|
/* Other approximation for |x| > 1.28 */
|
INT res_e;
|
|
temp = fPow2Div2(x); /* q25 * q25 - (DFRACT_BITS-1) - 1 = q18 */
|
temp = temp + P281; /* q18 + q18 = q18 */
|
result = fDivNorm(x, temp, &res_e);
|
result = scaleValue(result,
|
(Q_ATANOUT - Q_ATANINP + 18 - DFRACT_BITS + 1) + res_e);
|
result = ONEP571 - result; /* q30 + q30 = q30 */
|
}
|
if (sign) {
|
result = -result;
|
}
|
|
return (result);
|
}
|
|
#include "FDK_tools_rom.h"
|
|
FIXP_DBL fixp_cos(FIXP_DBL x, int scale) {
|
FIXP_DBL residual, error, sine, cosine;
|
|
residual = fixp_sin_cos_residual_inline(x, scale, &sine, &cosine);
|
error = fMult(sine, residual);
|
|
#ifdef SINETABLE_16BIT
|
return cosine - error;
|
#else
|
/* Undo downscaling by 1 which was done at fixp_sin_cos_residual_inline */
|
return SATURATE_LEFT_SHIFT(cosine - error, 1, DFRACT_BITS);
|
#endif
|
}
|
|
FIXP_DBL fixp_sin(FIXP_DBL x, int scale) {
|
FIXP_DBL residual, error, sine, cosine;
|
|
residual = fixp_sin_cos_residual_inline(x, scale, &sine, &cosine);
|
error = fMult(cosine, residual);
|
|
#ifdef SINETABLE_16BIT
|
return sine + error;
|
#else
|
return SATURATE_LEFT_SHIFT(sine + error, 1, DFRACT_BITS);
|
#endif
|
}
|
|
void fixp_cos_sin(FIXP_DBL x, int scale, FIXP_DBL *cos, FIXP_DBL *sin) {
|
FIXP_DBL residual, error0, error1, sine, cosine;
|
|
residual = fixp_sin_cos_residual_inline(x, scale, &sine, &cosine);
|
error0 = fMult(sine, residual);
|
error1 = fMult(cosine, residual);
|
|
#ifdef SINETABLE_16BIT
|
*cos = cosine - error0;
|
*sin = sine + error1;
|
#else
|
*cos = SATURATE_LEFT_SHIFT(cosine - error0, 1, DFRACT_BITS);
|
*sin = SATURATE_LEFT_SHIFT(sine + error1, 1, DFRACT_BITS);
|
#endif
|
}
|