lin
2025-07-31 065ea569db06206874bbfa18eb25ff6121aec09b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
/*---------------------------------------------------------------------------+
 |  fpu_system.h                                                             |
 |                                                                           |
 | Copyright (C) 1992,1994,1997                                              |
 |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      |
 |                       Australia.  E-mail   billm@suburbia.net             |
 |                                                                           |
 +---------------------------------------------------------------------------*/
 
#ifndef _FPU_SYSTEM_H
#define _FPU_SYSTEM_H
 
/* system dependent definitions */
 
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
 
#include <asm/desc.h>
#include <asm/mmu_context.h>
 
static inline struct desc_struct FPU_get_ldt_descriptor(unsigned seg)
{
   static struct desc_struct zero_desc;
   struct desc_struct ret = zero_desc;
 
#ifdef CONFIG_MODIFY_LDT_SYSCALL
   seg >>= 3;
   mutex_lock(&current->mm->context.lock);
   if (current->mm->context.ldt && seg < current->mm->context.ldt->size)
       ret = current->mm->context.ldt->entries[seg];
   mutex_unlock(&current->mm->context.lock);
#endif
   return ret;
}
 
#define SEG_D_SIZE(x)        ((x).b & (3 << 21))
#define SEG_G_BIT(x)        ((x).b & (1 << 23))
#define SEG_GRANULARITY(x)    (((x).b & (1 << 23)) ? 4096 : 1)
#define SEG_286_MODE(x)        ((x).b & ( 0xff000000 | 0xf0000 | (1 << 23)))
#define SEG_BASE_ADDR(s)    (((s).b & 0xff000000) \
                | (((s).b & 0xff) << 16) | ((s).a >> 16))
#define SEG_LIMIT(s)        (((s).b & 0xff0000) | ((s).a & 0xffff))
#define SEG_EXECUTE_ONLY(s)    (((s).b & ((1 << 11) | (1 << 9))) == (1 << 11))
#define SEG_WRITE_PERM(s)    (((s).b & ((1 << 11) | (1 << 9))) == (1 << 9))
#define SEG_EXPAND_DOWN(s)    (((s).b & ((1 << 11) | (1 << 10))) \
                == (1 << 10))
 
#define I387            (&current->thread.fpu.state)
#define FPU_info        (I387->soft.info)
 
#define FPU_CS            (*(unsigned short *) &(FPU_info->regs->cs))
#define FPU_SS            (*(unsigned short *) &(FPU_info->regs->ss))
#define FPU_DS            (*(unsigned short *) &(FPU_info->regs->ds))
#define FPU_EAX            (FPU_info->regs->ax)
#define FPU_EFLAGS        (FPU_info->regs->flags)
#define FPU_EIP            (FPU_info->regs->ip)
#define FPU_ORIG_EIP        (FPU_info->___orig_eip)
 
#define FPU_lookahead           (I387->soft.lookahead)
 
/* nz if ip_offset and cs_selector are not to be set for the current
   instruction. */
#define no_ip_update        (*(u_char *)&(I387->soft.no_update))
#define FPU_rm            (*(u_char *)&(I387->soft.rm))
 
/* Number of bytes of data which can be legally accessed by the current
   instruction. This only needs to hold a number <= 108, so a byte will do. */
#define access_limit        (*(u_char *)&(I387->soft.alimit))
 
#define partial_status        (I387->soft.swd)
#define control_word        (I387->soft.cwd)
#define fpu_tag_word        (I387->soft.twd)
#define registers        (I387->soft.st_space)
#define top            (I387->soft.ftop)
 
#define instruction_address    (*(struct address *)&I387->soft.fip)
#define operand_address        (*(struct address *)&I387->soft.foo)
 
#define FPU_access_ok(x,y,z)    if ( !access_ok(x,y,z) ) \
               math_abort(FPU_info,SIGSEGV)
#define FPU_abort        math_abort(FPU_info, SIGSEGV)
 
#undef FPU_IGNORE_CODE_SEGV
#ifdef FPU_IGNORE_CODE_SEGV
/* access_ok() is very expensive, and causes the emulator to run
   about 20% slower if applied to the code. Anyway, errors due to bad
   code addresses should be much rarer than errors due to bad data
   addresses. */
#define    FPU_code_access_ok(z)
#else
/* A simpler test than access_ok() can probably be done for
   FPU_code_access_ok() because the only possible error is to step
   past the upper boundary of a legal code area. */
#define    FPU_code_access_ok(z) FPU_access_ok(VERIFY_READ,(void __user *)FPU_EIP,z)
#endif
 
#define FPU_get_user(x,y)       get_user((x),(y))
#define FPU_put_user(x,y)       put_user((x),(y))
 
#endif