/*
|
* Copyright (C) 2012 The Android Open Source Project
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
#ifndef ART_RUNTIME_VERIFIER_REGISTER_LINE_H_
|
#define ART_RUNTIME_VERIFIER_REGISTER_LINE_H_
|
|
#include <limits>
|
#include <memory>
|
#include <vector>
|
|
#include <android-base/logging.h>
|
|
#include "base/locks.h"
|
#include "base/safe_map.h"
|
#include "base/scoped_arena_containers.h"
|
|
namespace art {
|
|
class Instruction;
|
|
namespace verifier {
|
|
class MethodVerifier;
|
class RegType;
|
class RegTypeCache;
|
|
/*
|
* Register type categories, for type checking.
|
*
|
* The spec says category 1 includes boolean, byte, char, short, int, float, reference, and
|
* returnAddress. Category 2 includes long and double.
|
*
|
* We treat object references separately, so we have "category1nr". We don't support jsr/ret, so
|
* there is no "returnAddress" type.
|
*/
|
enum TypeCategory {
|
kTypeCategoryUnknown = 0,
|
kTypeCategory1nr = 1, // boolean, byte, char, short, int, float
|
kTypeCategory2 = 2, // long, double
|
kTypeCategoryRef = 3, // object reference
|
};
|
|
// What to do with the lock levels when setting the register type.
|
enum class LockOp {
|
kClear, // Clear the lock levels recorded.
|
kKeep // Leave the lock levels alone.
|
};
|
|
// During verification, we associate one of these with every "interesting" instruction. We track
|
// the status of all registers, and (if the method has any monitor-enter instructions) maintain a
|
// stack of entered monitors (identified by code unit offset).
|
class RegisterLine {
|
public:
|
using RegisterStackMask = uint32_t;
|
// A map from register to a bit vector of indices into the monitors_ stack.
|
using RegToLockDepthsMap = ScopedArenaSafeMap<uint32_t, RegisterStackMask>;
|
|
// Maximum number of nested monitors to track before giving up and
|
// taking the slow path.
|
static constexpr size_t kMaxMonitorStackDepth =
|
std::numeric_limits<RegisterStackMask>::digits;
|
|
// Create a register line of num_regs registers.
|
static RegisterLine* Create(size_t num_regs,
|
ScopedArenaAllocator& allocator,
|
RegTypeCache* reg_types);
|
|
// Implement category-1 "move" instructions. Copy a 32-bit value from "vsrc" to "vdst".
|
void CopyRegister1(MethodVerifier* verifier, uint32_t vdst, uint32_t vsrc, TypeCategory cat)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
// Implement category-2 "move" instructions. Copy a 64-bit value from "vsrc" to "vdst". This
|
// copies both halves of the register.
|
void CopyRegister2(MethodVerifier* verifier, uint32_t vdst, uint32_t vsrc)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
// Implement "move-result". Copy the category-1 value from the result register to another
|
// register, and reset the result register.
|
void CopyResultRegister1(MethodVerifier* verifier, uint32_t vdst, bool is_reference)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
// Implement "move-result-wide". Copy the category-2 value from the result register to another
|
// register, and reset the result register.
|
void CopyResultRegister2(MethodVerifier* verifier, uint32_t vdst)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
// Set the invisible result register to unknown
|
void SetResultTypeToUnknown(RegTypeCache* reg_types) REQUIRES_SHARED(Locks::mutator_lock_);
|
|
// Set the type of register N, verifying that the register is valid. If "newType" is the "Lo"
|
// part of a 64-bit value, register N+1 will be set to "newType+1".
|
// The register index was validated during the static pass, so we don't need to check it here.
|
//
|
// LockOp::kClear should be used by default; it will clear the lock levels associated with the
|
// register. An example is setting the register type because an instruction writes to the
|
// register.
|
// LockOp::kKeep keeps the lock levels of the register and only changes the register type. This
|
// is typical when the underlying value did not change, but we have "different" type information
|
// available now. An example is sharpening types after a check-cast. Note that when given kKeep,
|
// the new_type is dchecked to be a reference type.
|
template <LockOp kLockOp>
|
ALWAYS_INLINE bool SetRegisterType(MethodVerifier* verifier,
|
uint32_t vdst,
|
const RegType& new_type)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
bool SetRegisterTypeWide(MethodVerifier* verifier,
|
uint32_t vdst,
|
const RegType& new_type1,
|
const RegType& new_type2)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
/* Set the type of the "result" register. */
|
void SetResultRegisterType(MethodVerifier* verifier, const RegType& new_type)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
void SetResultRegisterTypeWide(const RegType& new_type1, const RegType& new_type2)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
// Get the type of register vsrc.
|
const RegType& GetRegisterType(MethodVerifier* verifier, uint32_t vsrc) const;
|
|
ALWAYS_INLINE bool VerifyRegisterType(MethodVerifier* verifier,
|
uint32_t vsrc,
|
const RegType& check_type)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
bool VerifyRegisterTypeWide(MethodVerifier* verifier,
|
uint32_t vsrc,
|
const RegType& check_type1,
|
const RegType& check_type2)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
void CopyFromLine(const RegisterLine* src) {
|
DCHECK_EQ(num_regs_, src->num_regs_);
|
memcpy(&line_, &src->line_, num_regs_ * sizeof(uint16_t));
|
monitors_ = src->monitors_;
|
reg_to_lock_depths_ = src->reg_to_lock_depths_;
|
this_initialized_ = src->this_initialized_;
|
}
|
|
std::string Dump(MethodVerifier* verifier) const REQUIRES_SHARED(Locks::mutator_lock_);
|
|
void FillWithGarbage() {
|
memset(&line_, 0xf1, num_regs_ * sizeof(uint16_t));
|
monitors_.clear();
|
reg_to_lock_depths_.clear();
|
}
|
|
/*
|
* We're creating a new instance of class C at address A. Any registers holding instances
|
* previously created at address A must be initialized by now. If not, we mark them as "conflict"
|
* to prevent them from being used (otherwise, MarkRefsAsInitialized would mark the old ones and
|
* the new ones at the same time).
|
*/
|
void MarkUninitRefsAsInvalid(MethodVerifier* verifier, const RegType& uninit_type)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
/*
|
* Update all registers holding "uninit_type" to instead hold the corresponding initialized
|
* reference type. This is called when an appropriate constructor is invoked -- all copies of
|
* the reference must be marked as initialized.
|
*/
|
void MarkRefsAsInitialized(MethodVerifier* verifier, const RegType& uninit_type)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
/*
|
* Update all registers to be Conflict except vsrc.
|
*/
|
void MarkAllRegistersAsConflicts(MethodVerifier* verifier);
|
void MarkAllRegistersAsConflictsExcept(MethodVerifier* verifier, uint32_t vsrc);
|
void MarkAllRegistersAsConflictsExceptWide(MethodVerifier* verifier, uint32_t vsrc);
|
|
void SetThisInitialized() {
|
this_initialized_ = true;
|
}
|
|
void CopyThisInitialized(const RegisterLine& src) {
|
this_initialized_ = src.this_initialized_;
|
}
|
|
/*
|
* Check constraints on constructor return. Specifically, make sure that the "this" argument got
|
* initialized.
|
* The "this" argument to <init> uses code offset kUninitThisArgAddr, which puts it at the start
|
* of the list in slot 0. If we see a register with an uninitialized slot 0 reference, we know it
|
* somehow didn't get initialized.
|
*/
|
bool CheckConstructorReturn(MethodVerifier* verifier) const;
|
|
// Compare two register lines. Returns 0 if they match.
|
// Using this for a sort is unwise, since the value can change based on machine endianness.
|
int CompareLine(const RegisterLine* line2) const {
|
if (monitors_ != line2->monitors_) {
|
return 1;
|
}
|
// TODO: DCHECK(reg_to_lock_depths_ == line2->reg_to_lock_depths_);
|
return memcmp(&line_, &line2->line_, num_regs_ * sizeof(uint16_t));
|
}
|
|
size_t NumRegs() const {
|
return num_regs_;
|
}
|
|
// Return how many bytes of memory a register line uses.
|
ALWAYS_INLINE static size_t ComputeSize(size_t num_regs);
|
|
/*
|
* Get the "this" pointer from a non-static method invocation. This returns the RegType so the
|
* caller can decide whether it needs the reference to be initialized or not. (Can also return
|
* kRegTypeZero if the reference can only be zero at this point.)
|
*
|
* The argument count is in vA, and the first argument is in vC, for both "simple" and "range"
|
* versions. We just need to make sure vA is >= 1 and then return vC.
|
* allow_failure will return Conflict() instead of causing a verification failure if there is an
|
* error.
|
*/
|
const RegType& GetInvocationThis(MethodVerifier* verifier,
|
const Instruction* inst,
|
bool allow_failure = false)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
/*
|
* Verify types for a simple two-register instruction (e.g. "neg-int").
|
* "dst_type" is stored into vA, and "src_type" is verified against vB.
|
*/
|
void CheckUnaryOp(MethodVerifier* verifier,
|
const Instruction* inst,
|
const RegType& dst_type,
|
const RegType& src_type)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
void CheckUnaryOpWide(MethodVerifier* verifier,
|
const Instruction* inst,
|
const RegType& dst_type1,
|
const RegType& dst_type2,
|
const RegType& src_type1,
|
const RegType& src_type2)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
void CheckUnaryOpToWide(MethodVerifier* verifier,
|
const Instruction* inst,
|
const RegType& dst_type1,
|
const RegType& dst_type2,
|
const RegType& src_type)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
void CheckUnaryOpFromWide(MethodVerifier* verifier,
|
const Instruction* inst,
|
const RegType& dst_type,
|
const RegType& src_type1,
|
const RegType& src_type2)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
/*
|
* Verify types for a simple three-register instruction (e.g. "add-int").
|
* "dst_type" is stored into vA, and "src_type1"/"src_type2" are verified
|
* against vB/vC.
|
*/
|
void CheckBinaryOp(MethodVerifier* verifier,
|
const Instruction* inst,
|
const RegType& dst_type,
|
const RegType& src_type1,
|
const RegType& src_type2,
|
bool check_boolean_op)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
void CheckBinaryOpWide(MethodVerifier* verifier,
|
const Instruction* inst,
|
const RegType& dst_type1,
|
const RegType& dst_type2,
|
const RegType& src_type1_1,
|
const RegType& src_type1_2,
|
const RegType& src_type2_1,
|
const RegType& src_type2_2)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
void CheckBinaryOpWideShift(MethodVerifier* verifier,
|
const Instruction* inst,
|
const RegType& long_lo_type,
|
const RegType& long_hi_type,
|
const RegType& int_type)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
/*
|
* Verify types for a binary "2addr" operation. "src_type1"/"src_type2"
|
* are verified against vA/vB, then "dst_type" is stored into vA.
|
*/
|
void CheckBinaryOp2addr(MethodVerifier* verifier,
|
const Instruction* inst,
|
const RegType& dst_type,
|
const RegType& src_type1,
|
const RegType& src_type2,
|
bool check_boolean_op)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
void CheckBinaryOp2addrWide(MethodVerifier* verifier,
|
const Instruction* inst,
|
const RegType& dst_type1,
|
const RegType& dst_type2,
|
const RegType& src_type1_1,
|
const RegType& src_type1_2,
|
const RegType& src_type2_1,
|
const RegType& src_type2_2)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
void CheckBinaryOp2addrWideShift(MethodVerifier* verifier,
|
const Instruction* inst,
|
const RegType& long_lo_type,
|
const RegType& long_hi_type,
|
const RegType& int_type)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
/*
|
* Verify types for A two-register instruction with a literal constant (e.g. "add-int/lit8").
|
* "dst_type" is stored into vA, and "src_type" is verified against vB.
|
*
|
* If "check_boolean_op" is set, we use the constant value in vC.
|
*/
|
void CheckLiteralOp(MethodVerifier* verifier,
|
const Instruction* inst,
|
const RegType& dst_type,
|
const RegType& src_type,
|
bool check_boolean_op,
|
bool is_lit16)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
// Verify/push monitor onto the monitor stack, locking the value in reg_idx at location insn_idx.
|
void PushMonitor(MethodVerifier* verifier, uint32_t reg_idx, int32_t insn_idx)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
// Verify/pop monitor from monitor stack ensuring that we believe the monitor is locked
|
void PopMonitor(MethodVerifier* verifier, uint32_t reg_idx)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
// Stack of currently held monitors and where they were locked
|
size_t MonitorStackDepth() const {
|
return monitors_.size();
|
}
|
|
// We expect no monitors to be held at certain points, such a method returns. Verify the stack
|
// is empty, queueing a LOCKING error else.
|
void VerifyMonitorStackEmpty(MethodVerifier* verifier) const;
|
|
bool MergeRegisters(MethodVerifier* verifier, const RegisterLine* incoming_line)
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
size_t GetMonitorEnterCount() const {
|
return monitors_.size();
|
}
|
|
uint32_t GetMonitorEnterDexPc(size_t i) const {
|
return monitors_[i];
|
}
|
|
// We give access to the lock depth map to avoid an expensive poll loop for FindLocksAtDexPC.
|
template <typename T>
|
void IterateRegToLockDepths(T fn) const {
|
for (const auto& pair : reg_to_lock_depths_) {
|
const uint32_t reg = pair.first;
|
uint32_t depths = pair.second;
|
uint32_t depth = 0;
|
while (depths != 0) {
|
if ((depths & 1) != 0) {
|
fn(reg, depth);
|
}
|
depths >>= 1;
|
depth++;
|
}
|
}
|
}
|
|
private:
|
void CopyRegToLockDepth(size_t dst, size_t src) {
|
auto it = reg_to_lock_depths_.find(src);
|
if (it != reg_to_lock_depths_.end()) {
|
reg_to_lock_depths_.Put(dst, it->second);
|
}
|
}
|
|
bool IsSetLockDepth(size_t reg, size_t depth) {
|
auto it = reg_to_lock_depths_.find(reg);
|
if (it != reg_to_lock_depths_.end()) {
|
return (it->second & (1 << depth)) != 0;
|
} else {
|
return false;
|
}
|
}
|
|
bool SetRegToLockDepth(size_t reg, size_t depth) {
|
CHECK_LT(depth, kMaxMonitorStackDepth);
|
if (IsSetLockDepth(reg, depth)) {
|
return false; // Register already holds lock so locking twice is erroneous.
|
}
|
auto it = reg_to_lock_depths_.find(reg);
|
if (it == reg_to_lock_depths_.end()) {
|
reg_to_lock_depths_.Put(reg, 1 << depth);
|
} else {
|
it->second |= (1 << depth);
|
}
|
return true;
|
}
|
|
void ClearRegToLockDepth(size_t reg, size_t depth);
|
|
void ClearAllRegToLockDepths(size_t reg) {
|
reg_to_lock_depths_.erase(reg);
|
}
|
|
RegisterLine(size_t num_regs, ScopedArenaAllocator& allocator, RegTypeCache* reg_types);
|
|
// Storage for the result register's type, valid after an invocation.
|
uint16_t result_[2];
|
|
// Length of reg_types_
|
const uint32_t num_regs_;
|
|
// A stack of monitor enter locations.
|
ScopedArenaVector<uint32_t> monitors_;
|
|
// A map from register to a bit vector of indices into the monitors_ stack. As we pop the monitor
|
// stack we verify that monitor-enter/exit are correctly nested. That is, if there was a
|
// monitor-enter on v5 and then on v6, we expect the monitor-exit to be on v6 then on v5.
|
RegToLockDepthsMap reg_to_lock_depths_;
|
|
// Whether "this" initialization (a constructor supercall) has happened.
|
bool this_initialized_;
|
|
// An array of RegType Ids associated with each dex register.
|
uint16_t line_[1];
|
|
DISALLOW_COPY_AND_ASSIGN(RegisterLine);
|
};
|
|
class RegisterLineArenaDelete : public ArenaDelete<RegisterLine> {
|
public:
|
void operator()(RegisterLine* ptr) const;
|
};
|
|
} // namespace verifier
|
} // namespace art
|
|
#endif // ART_RUNTIME_VERIFIER_REGISTER_LINE_H_
|