/*
|
* Copyright (C) 2012 The Android Open Source Project
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
#include "register_line.h"
|
|
#include "android-base/stringprintf.h"
|
|
#include "dex/dex_instruction-inl.h"
|
#include "method_verifier-inl.h"
|
#include "reg_type-inl.h"
|
#include "register_line-inl.h"
|
|
namespace art {
|
namespace verifier {
|
|
using android::base::StringPrintf;
|
|
bool RegisterLine::CheckConstructorReturn(MethodVerifier* verifier) const {
|
if (kIsDebugBuild && this_initialized_) {
|
// Ensure that there is no UninitializedThisReference type anymore if this_initialized_ is true.
|
for (size_t i = 0; i < num_regs_; i++) {
|
const RegType& type = GetRegisterType(verifier, i);
|
CHECK(!type.IsUninitializedThisReference() &&
|
!type.IsUnresolvedAndUninitializedThisReference())
|
<< i << ": " << type.IsUninitializedThisReference() << " in "
|
<< verifier->GetMethodReference().PrettyMethod();
|
}
|
}
|
if (!this_initialized_) {
|
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD)
|
<< "Constructor returning without calling superclass constructor";
|
}
|
return this_initialized_;
|
}
|
|
const RegType& RegisterLine::GetInvocationThis(MethodVerifier* verifier, const Instruction* inst,
|
bool allow_failure) {
|
DCHECK(inst->IsInvoke());
|
const size_t args_count = inst->VRegA();
|
if (args_count < 1) {
|
if (!allow_failure) {
|
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke lacks 'this'";
|
}
|
return verifier->GetRegTypeCache()->Conflict();
|
}
|
/* Get the element type of the array held in vsrc */
|
const uint32_t this_reg = inst->VRegC();
|
const RegType& this_type = GetRegisterType(verifier, this_reg);
|
if (!this_type.IsReferenceTypes()) {
|
if (!allow_failure) {
|
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD)
|
<< "tried to get class from non-reference register v" << this_reg
|
<< " (type=" << this_type << ")";
|
}
|
return verifier->GetRegTypeCache()->Conflict();
|
}
|
return this_type;
|
}
|
|
bool RegisterLine::VerifyRegisterTypeWide(MethodVerifier* verifier, uint32_t vsrc,
|
const RegType& check_type1,
|
const RegType& check_type2) {
|
DCHECK(check_type1.CheckWidePair(check_type2));
|
// Verify the src register type against the check type refining the type of the register
|
const RegType& src_type = GetRegisterType(verifier, vsrc);
|
if (!check_type1.IsAssignableFrom(src_type, verifier)) {
|
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << vsrc << " has type " << src_type
|
<< " but expected " << check_type1;
|
return false;
|
}
|
const RegType& src_type_h = GetRegisterType(verifier, vsrc + 1);
|
if (!src_type.CheckWidePair(src_type_h)) {
|
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register v" << vsrc << " has type "
|
<< src_type << "/" << src_type_h;
|
return false;
|
}
|
// The register at vsrc has a defined type, we know the lower-upper-bound, but this is less
|
// precise than the subtype in vsrc so leave it for reference types. For primitive types
|
// if they are a defined type then they are as precise as we can get, however, for constant
|
// types we may wish to refine them. Unfortunately constant propagation has rendered this useless.
|
return true;
|
}
|
|
void RegisterLine::MarkRefsAsInitialized(MethodVerifier* verifier, const RegType& uninit_type) {
|
DCHECK(uninit_type.IsUninitializedTypes());
|
const RegType& init_type = verifier->GetRegTypeCache()->FromUninitialized(uninit_type);
|
size_t changed = 0;
|
for (uint32_t i = 0; i < num_regs_; i++) {
|
if (GetRegisterType(verifier, i).Equals(uninit_type)) {
|
line_[i] = init_type.GetId();
|
changed++;
|
}
|
}
|
// Is this initializing "this"?
|
if (uninit_type.IsUninitializedThisReference() ||
|
uninit_type.IsUnresolvedAndUninitializedThisReference()) {
|
this_initialized_ = true;
|
}
|
DCHECK_GT(changed, 0u);
|
}
|
|
void RegisterLine::MarkAllRegistersAsConflicts(MethodVerifier* verifier) {
|
uint16_t conflict_type_id = verifier->GetRegTypeCache()->Conflict().GetId();
|
for (uint32_t i = 0; i < num_regs_; i++) {
|
line_[i] = conflict_type_id;
|
}
|
}
|
|
void RegisterLine::MarkAllRegistersAsConflictsExcept(MethodVerifier* verifier, uint32_t vsrc) {
|
uint16_t conflict_type_id = verifier->GetRegTypeCache()->Conflict().GetId();
|
for (uint32_t i = 0; i < num_regs_; i++) {
|
if (i != vsrc) {
|
line_[i] = conflict_type_id;
|
}
|
}
|
}
|
|
void RegisterLine::MarkAllRegistersAsConflictsExceptWide(MethodVerifier* verifier, uint32_t vsrc) {
|
uint16_t conflict_type_id = verifier->GetRegTypeCache()->Conflict().GetId();
|
for (uint32_t i = 0; i < num_regs_; i++) {
|
if ((i != vsrc) && (i != (vsrc + 1))) {
|
line_[i] = conflict_type_id;
|
}
|
}
|
}
|
|
std::string RegisterLine::Dump(MethodVerifier* verifier) const {
|
std::string result;
|
for (size_t i = 0; i < num_regs_; i++) {
|
result += StringPrintf("%zd:[", i);
|
result += GetRegisterType(verifier, i).Dump();
|
result += "],";
|
}
|
for (const auto& monitor : monitors_) {
|
result += StringPrintf("{%d},", monitor);
|
}
|
for (auto& pairs : reg_to_lock_depths_) {
|
result += StringPrintf("<%d -> %" PRIx64 ">",
|
pairs.first,
|
static_cast<uint64_t>(pairs.second));
|
}
|
return result;
|
}
|
|
void RegisterLine::MarkUninitRefsAsInvalid(MethodVerifier* verifier, const RegType& uninit_type) {
|
for (size_t i = 0; i < num_regs_; i++) {
|
if (GetRegisterType(verifier, i).Equals(uninit_type)) {
|
line_[i] = verifier->GetRegTypeCache()->Conflict().GetId();
|
ClearAllRegToLockDepths(i);
|
}
|
}
|
}
|
|
void RegisterLine::CopyResultRegister1(MethodVerifier* verifier, uint32_t vdst, bool is_reference) {
|
const RegType& type = verifier->GetRegTypeCache()->GetFromId(result_[0]);
|
if ((!is_reference && !type.IsCategory1Types()) ||
|
(is_reference && !type.IsReferenceTypes())) {
|
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD)
|
<< "copyRes1 v" << vdst << "<- result0" << " type=" << type;
|
} else {
|
DCHECK(verifier->GetRegTypeCache()->GetFromId(result_[1]).IsUndefined());
|
SetRegisterType<LockOp::kClear>(verifier, vdst, type);
|
result_[0] = verifier->GetRegTypeCache()->Undefined().GetId();
|
}
|
}
|
|
/*
|
* Implement "move-result-wide". Copy the category-2 value from the result
|
* register to another register, and reset the result register.
|
*/
|
void RegisterLine::CopyResultRegister2(MethodVerifier* verifier, uint32_t vdst) {
|
const RegType& type_l = verifier->GetRegTypeCache()->GetFromId(result_[0]);
|
const RegType& type_h = verifier->GetRegTypeCache()->GetFromId(result_[1]);
|
if (!type_l.IsCategory2Types()) {
|
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD)
|
<< "copyRes2 v" << vdst << "<- result0" << " type=" << type_l;
|
} else {
|
DCHECK(type_l.CheckWidePair(type_h)); // Set should never allow this case
|
SetRegisterTypeWide(verifier, vdst, type_l, type_h); // also sets the high
|
result_[0] = verifier->GetRegTypeCache()->Undefined().GetId();
|
result_[1] = verifier->GetRegTypeCache()->Undefined().GetId();
|
}
|
}
|
|
void RegisterLine::CheckUnaryOp(MethodVerifier* verifier, const Instruction* inst,
|
const RegType& dst_type, const RegType& src_type) {
|
if (VerifyRegisterType(verifier, inst->VRegB_12x(), src_type)) {
|
SetRegisterType<LockOp::kClear>(verifier, inst->VRegA_12x(), dst_type);
|
}
|
}
|
|
void RegisterLine::CheckUnaryOpWide(MethodVerifier* verifier, const Instruction* inst,
|
const RegType& dst_type1, const RegType& dst_type2,
|
const RegType& src_type1, const RegType& src_type2) {
|
if (VerifyRegisterTypeWide(verifier, inst->VRegB_12x(), src_type1, src_type2)) {
|
SetRegisterTypeWide(verifier, inst->VRegA_12x(), dst_type1, dst_type2);
|
}
|
}
|
|
void RegisterLine::CheckUnaryOpToWide(MethodVerifier* verifier, const Instruction* inst,
|
const RegType& dst_type1, const RegType& dst_type2,
|
const RegType& src_type) {
|
if (VerifyRegisterType(verifier, inst->VRegB_12x(), src_type)) {
|
SetRegisterTypeWide(verifier, inst->VRegA_12x(), dst_type1, dst_type2);
|
}
|
}
|
|
void RegisterLine::CheckUnaryOpFromWide(MethodVerifier* verifier, const Instruction* inst,
|
const RegType& dst_type,
|
const RegType& src_type1, const RegType& src_type2) {
|
if (VerifyRegisterTypeWide(verifier, inst->VRegB_12x(), src_type1, src_type2)) {
|
SetRegisterType<LockOp::kClear>(verifier, inst->VRegA_12x(), dst_type);
|
}
|
}
|
|
void RegisterLine::CheckBinaryOp(MethodVerifier* verifier, const Instruction* inst,
|
const RegType& dst_type,
|
const RegType& src_type1, const RegType& src_type2,
|
bool check_boolean_op) {
|
const uint32_t vregB = inst->VRegB_23x();
|
const uint32_t vregC = inst->VRegC_23x();
|
if (VerifyRegisterType(verifier, vregB, src_type1) &&
|
VerifyRegisterType(verifier, vregC, src_type2)) {
|
if (check_boolean_op) {
|
DCHECK(dst_type.IsInteger());
|
if (GetRegisterType(verifier, vregB).IsBooleanTypes() &&
|
GetRegisterType(verifier, vregC).IsBooleanTypes()) {
|
SetRegisterType<LockOp::kClear>(verifier,
|
inst->VRegA_23x(),
|
verifier->GetRegTypeCache()->Boolean());
|
return;
|
}
|
}
|
SetRegisterType<LockOp::kClear>(verifier, inst->VRegA_23x(), dst_type);
|
}
|
}
|
|
void RegisterLine::CheckBinaryOpWide(MethodVerifier* verifier, const Instruction* inst,
|
const RegType& dst_type1, const RegType& dst_type2,
|
const RegType& src_type1_1, const RegType& src_type1_2,
|
const RegType& src_type2_1, const RegType& src_type2_2) {
|
if (VerifyRegisterTypeWide(verifier, inst->VRegB_23x(), src_type1_1, src_type1_2) &&
|
VerifyRegisterTypeWide(verifier, inst->VRegC_23x(), src_type2_1, src_type2_2)) {
|
SetRegisterTypeWide(verifier, inst->VRegA_23x(), dst_type1, dst_type2);
|
}
|
}
|
|
void RegisterLine::CheckBinaryOpWideShift(MethodVerifier* verifier, const Instruction* inst,
|
const RegType& long_lo_type, const RegType& long_hi_type,
|
const RegType& int_type) {
|
if (VerifyRegisterTypeWide(verifier, inst->VRegB_23x(), long_lo_type, long_hi_type) &&
|
VerifyRegisterType(verifier, inst->VRegC_23x(), int_type)) {
|
SetRegisterTypeWide(verifier, inst->VRegA_23x(), long_lo_type, long_hi_type);
|
}
|
}
|
|
void RegisterLine::CheckBinaryOp2addr(MethodVerifier* verifier, const Instruction* inst,
|
const RegType& dst_type, const RegType& src_type1,
|
const RegType& src_type2, bool check_boolean_op) {
|
const uint32_t vregA = inst->VRegA_12x();
|
const uint32_t vregB = inst->VRegB_12x();
|
if (VerifyRegisterType(verifier, vregA, src_type1) &&
|
VerifyRegisterType(verifier, vregB, src_type2)) {
|
if (check_boolean_op) {
|
DCHECK(dst_type.IsInteger());
|
if (GetRegisterType(verifier, vregA).IsBooleanTypes() &&
|
GetRegisterType(verifier, vregB).IsBooleanTypes()) {
|
SetRegisterType<LockOp::kClear>(verifier,
|
vregA,
|
verifier->GetRegTypeCache()->Boolean());
|
return;
|
}
|
}
|
SetRegisterType<LockOp::kClear>(verifier, vregA, dst_type);
|
}
|
}
|
|
void RegisterLine::CheckBinaryOp2addrWide(MethodVerifier* verifier, const Instruction* inst,
|
const RegType& dst_type1, const RegType& dst_type2,
|
const RegType& src_type1_1, const RegType& src_type1_2,
|
const RegType& src_type2_1, const RegType& src_type2_2) {
|
const uint32_t vregA = inst->VRegA_12x();
|
const uint32_t vregB = inst->VRegB_12x();
|
if (VerifyRegisterTypeWide(verifier, vregA, src_type1_1, src_type1_2) &&
|
VerifyRegisterTypeWide(verifier, vregB, src_type2_1, src_type2_2)) {
|
SetRegisterTypeWide(verifier, vregA, dst_type1, dst_type2);
|
}
|
}
|
|
void RegisterLine::CheckBinaryOp2addrWideShift(MethodVerifier* verifier, const Instruction* inst,
|
const RegType& long_lo_type, const RegType& long_hi_type,
|
const RegType& int_type) {
|
const uint32_t vregA = inst->VRegA_12x();
|
const uint32_t vregB = inst->VRegB_12x();
|
if (VerifyRegisterTypeWide(verifier, vregA, long_lo_type, long_hi_type) &&
|
VerifyRegisterType(verifier, vregB, int_type)) {
|
SetRegisterTypeWide(verifier, vregA, long_lo_type, long_hi_type);
|
}
|
}
|
|
void RegisterLine::CheckLiteralOp(MethodVerifier* verifier, const Instruction* inst,
|
const RegType& dst_type, const RegType& src_type,
|
bool check_boolean_op, bool is_lit16) {
|
const uint32_t vregA = is_lit16 ? inst->VRegA_22s() : inst->VRegA_22b();
|
const uint32_t vregB = is_lit16 ? inst->VRegB_22s() : inst->VRegB_22b();
|
if (VerifyRegisterType(verifier, vregB, src_type)) {
|
if (check_boolean_op) {
|
DCHECK(dst_type.IsInteger());
|
/* check vB with the call, then check the constant manually */
|
const uint32_t val = is_lit16 ? inst->VRegC_22s() : inst->VRegC_22b();
|
if (GetRegisterType(verifier, vregB).IsBooleanTypes() && (val == 0 || val == 1)) {
|
SetRegisterType<LockOp::kClear>(verifier,
|
vregA,
|
verifier->GetRegTypeCache()->Boolean());
|
return;
|
}
|
}
|
SetRegisterType<LockOp::kClear>(verifier, vregA, dst_type);
|
}
|
}
|
|
static constexpr uint32_t kVirtualNullRegister = std::numeric_limits<uint32_t>::max();
|
|
void RegisterLine::PushMonitor(MethodVerifier* verifier, uint32_t reg_idx, int32_t insn_idx) {
|
const RegType& reg_type = GetRegisterType(verifier, reg_idx);
|
if (!reg_type.IsReferenceTypes()) {
|
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-enter on non-object ("
|
<< reg_type << ")";
|
} else if (monitors_.size() >= kMaxMonitorStackDepth) {
|
verifier->Fail(VERIFY_ERROR_LOCKING);
|
if (kDumpLockFailures) {
|
VLOG(verifier) << "monitor-enter stack overflow while verifying "
|
<< verifier->GetMethodReference().PrettyMethod();
|
}
|
} else {
|
if (SetRegToLockDepth(reg_idx, monitors_.size())) {
|
// Null literals can establish aliases that we can't easily track. As such, handle the zero
|
// case as the 2^32-1 register (which isn't available in dex bytecode).
|
if (reg_type.IsZero()) {
|
SetRegToLockDepth(kVirtualNullRegister, monitors_.size());
|
}
|
|
monitors_.push_back(insn_idx);
|
} else {
|
verifier->Fail(VERIFY_ERROR_LOCKING);
|
if (kDumpLockFailures) {
|
VLOG(verifier) << "unexpected monitor-enter on register v" << reg_idx << " in "
|
<< verifier->GetMethodReference().PrettyMethod();
|
}
|
}
|
}
|
}
|
|
void RegisterLine::PopMonitor(MethodVerifier* verifier, uint32_t reg_idx) {
|
const RegType& reg_type = GetRegisterType(verifier, reg_idx);
|
if (!reg_type.IsReferenceTypes()) {
|
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-exit on non-object (" << reg_type << ")";
|
} else if (monitors_.empty()) {
|
verifier->Fail(VERIFY_ERROR_LOCKING);
|
if (kDumpLockFailures) {
|
VLOG(verifier) << "monitor-exit stack underflow while verifying "
|
<< verifier->GetMethodReference().PrettyMethod();
|
}
|
} else {
|
monitors_.pop_back();
|
|
bool success = IsSetLockDepth(reg_idx, monitors_.size());
|
|
if (!success && reg_type.IsZero()) {
|
// Null literals can establish aliases that we can't easily track. As such, handle the zero
|
// case as the 2^32-1 register (which isn't available in dex bytecode).
|
success = IsSetLockDepth(kVirtualNullRegister, monitors_.size());
|
if (success) {
|
reg_idx = kVirtualNullRegister;
|
}
|
}
|
|
if (!success) {
|
verifier->Fail(VERIFY_ERROR_LOCKING);
|
if (kDumpLockFailures) {
|
VLOG(verifier) << "monitor-exit not unlocking the top of the monitor stack while verifying "
|
<< verifier->GetMethodReference().PrettyMethod();
|
}
|
} else {
|
// Record the register was unlocked. This clears all aliases, thus it will also clear the
|
// null lock, if necessary.
|
ClearRegToLockDepth(reg_idx, monitors_.size());
|
}
|
}
|
}
|
|
bool FindLockAliasedRegister(uint32_t src,
|
const RegisterLine::RegToLockDepthsMap& src_map,
|
const RegisterLine::RegToLockDepthsMap& search_map) {
|
auto it = src_map.find(src);
|
if (it == src_map.end()) {
|
// "Not locked" is trivially aliased.
|
return true;
|
}
|
uint32_t src_lock_levels = it->second;
|
if (src_lock_levels == 0) {
|
// "Not locked" is trivially aliased.
|
return true;
|
}
|
|
// Scan the map for the same value.
|
for (const std::pair<const uint32_t, uint32_t>& pair : search_map) {
|
if (pair.first != src && pair.second == src_lock_levels) {
|
return true;
|
}
|
}
|
|
// Nothing found, no alias.
|
return false;
|
}
|
|
bool RegisterLine::MergeRegisters(MethodVerifier* verifier, const RegisterLine* incoming_line) {
|
bool changed = false;
|
DCHECK(incoming_line != nullptr);
|
for (size_t idx = 0; idx < num_regs_; idx++) {
|
if (line_[idx] != incoming_line->line_[idx]) {
|
const RegType& incoming_reg_type = incoming_line->GetRegisterType(verifier, idx);
|
const RegType& cur_type = GetRegisterType(verifier, idx);
|
const RegType& new_type = cur_type.Merge(
|
incoming_reg_type, verifier->GetRegTypeCache(), verifier);
|
changed = changed || !cur_type.Equals(new_type);
|
line_[idx] = new_type.GetId();
|
}
|
}
|
if (monitors_.size() > 0 || incoming_line->monitors_.size() > 0) {
|
if (monitors_.size() != incoming_line->monitors_.size()) {
|
verifier->Fail(VERIFY_ERROR_LOCKING);
|
if (kDumpLockFailures) {
|
VLOG(verifier) << "mismatched stack depths (depth=" << MonitorStackDepth()
|
<< ", incoming depth=" << incoming_line->MonitorStackDepth() << ") in "
|
<< verifier->GetMethodReference().PrettyMethod();
|
}
|
} else if (reg_to_lock_depths_ != incoming_line->reg_to_lock_depths_) {
|
for (uint32_t idx = 0; idx < num_regs_; idx++) {
|
size_t depths = reg_to_lock_depths_.count(idx);
|
size_t incoming_depths = incoming_line->reg_to_lock_depths_.count(idx);
|
if (depths != incoming_depths) {
|
// Stack levels aren't matching. This is potentially bad, as we don't do a
|
// flow-sensitive analysis.
|
// However, this could be an alias of something locked in one path, and the alias was
|
// destroyed in another path. It is fine to drop this as long as there's another alias
|
// for the lock around. The last vanishing alias will then report that things would be
|
// left unlocked. We need to check for aliases for both lock levels.
|
//
|
// Example (lock status in curly braces as pair of register and lock leels):
|
//
|
// lock v1 {v1=1}
|
// | |
|
// v0 = v1 {v0=1, v1=1} v0 = v2 {v1=1}
|
// | |
|
// {v1=1}
|
// // Dropping v0, as the status can't be merged
|
// // but the lock info ("locked at depth 1" and)
|
// // "not locked at all") is available.
|
if (!FindLockAliasedRegister(idx,
|
reg_to_lock_depths_,
|
reg_to_lock_depths_) ||
|
!FindLockAliasedRegister(idx,
|
incoming_line->reg_to_lock_depths_,
|
reg_to_lock_depths_)) {
|
verifier->Fail(VERIFY_ERROR_LOCKING);
|
if (kDumpLockFailures) {
|
VLOG(verifier) << "mismatched stack depths for register v" << idx
|
<< ": " << depths << " != " << incoming_depths << " in "
|
<< verifier->GetMethodReference().PrettyMethod();
|
}
|
break;
|
}
|
// We found aliases, set this to zero.
|
reg_to_lock_depths_.erase(idx);
|
} else if (depths > 0) {
|
// Check whether they're actually the same levels.
|
uint32_t locked_levels = reg_to_lock_depths_.find(idx)->second;
|
uint32_t incoming_locked_levels = incoming_line->reg_to_lock_depths_.find(idx)->second;
|
if (locked_levels != incoming_locked_levels) {
|
// Lock levels aren't matching. This is potentially bad, as we don't do a
|
// flow-sensitive analysis.
|
// However, this could be an alias of something locked in one path, and the alias was
|
// destroyed in another path. It is fine to drop this as long as there's another alias
|
// for the lock around. The last vanishing alias will then report that things would be
|
// left unlocked. We need to check for aliases for both lock levels.
|
//
|
// Example (lock status in curly braces as pair of register and lock leels):
|
//
|
// lock v1 {v1=1}
|
// lock v2 {v1=1, v2=2}
|
// | |
|
// v0 = v1 {v0=1, v1=1, v2=2} v0 = v2 {v0=2, v1=1, v2=2}
|
// | |
|
// {v1=1, v2=2}
|
// // Dropping v0, as the status can't be
|
// // merged but the lock info ("locked at
|
// // depth 1" and "locked at depth 2") is
|
// // available.
|
if (!FindLockAliasedRegister(idx,
|
reg_to_lock_depths_,
|
reg_to_lock_depths_) ||
|
!FindLockAliasedRegister(idx,
|
incoming_line->reg_to_lock_depths_,
|
reg_to_lock_depths_)) {
|
// No aliases for both current and incoming, we'll lose information.
|
verifier->Fail(VERIFY_ERROR_LOCKING);
|
if (kDumpLockFailures) {
|
VLOG(verifier) << "mismatched lock levels for register v" << idx << ": "
|
<< std::hex << locked_levels << std::dec << " != "
|
<< std::hex << incoming_locked_levels << std::dec << " in "
|
<< verifier->GetMethodReference().PrettyMethod();
|
}
|
break;
|
}
|
// We found aliases, set this to zero.
|
reg_to_lock_depths_.erase(idx);
|
}
|
}
|
}
|
}
|
}
|
|
// Check whether "this" was initialized in both paths.
|
if (this_initialized_ && !incoming_line->this_initialized_) {
|
this_initialized_ = false;
|
changed = true;
|
}
|
return changed;
|
}
|
|
} // namespace verifier
|
} // namespace art
|