/*
|
* Copyright (C) 2012 The Android Open Source Project
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
#include "reg_type_cache-inl.h"
|
|
#include <type_traits>
|
|
#include "base/aborting.h"
|
#include "base/arena_bit_vector.h"
|
#include "base/bit_vector-inl.h"
|
#include "base/casts.h"
|
#include "base/scoped_arena_allocator.h"
|
#include "base/stl_util.h"
|
#include "class_linker-inl.h"
|
#include "dex/descriptors_names.h"
|
#include "dex/dex_file-inl.h"
|
#include "mirror/class-inl.h"
|
#include "mirror/object-inl.h"
|
#include "reg_type-inl.h"
|
|
namespace art {
|
namespace verifier {
|
|
bool RegTypeCache::primitive_initialized_ = false;
|
uint16_t RegTypeCache::primitive_count_ = 0;
|
const PreciseConstType* RegTypeCache::small_precise_constants_[kMaxSmallConstant -
|
kMinSmallConstant + 1];
|
|
ALWAYS_INLINE static inline bool MatchingPrecisionForClass(const RegType* entry, bool precise)
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
if (entry->IsPreciseReference() == precise) {
|
// We were or weren't looking for a precise reference and we found what we need.
|
return true;
|
} else {
|
if (!precise && entry->GetClass()->CannotBeAssignedFromOtherTypes()) {
|
// We weren't looking for a precise reference, as we're looking up based on a descriptor, but
|
// we found a matching entry based on the descriptor. Return the precise entry in that case.
|
return true;
|
}
|
return false;
|
}
|
}
|
|
void RegTypeCache::FillPrimitiveAndSmallConstantTypes() {
|
// Note: this must have the same order as CreatePrimitiveAndSmallConstantTypes.
|
entries_.push_back(UndefinedType::GetInstance());
|
entries_.push_back(ConflictType::GetInstance());
|
entries_.push_back(NullType::GetInstance());
|
entries_.push_back(BooleanType::GetInstance());
|
entries_.push_back(ByteType::GetInstance());
|
entries_.push_back(ShortType::GetInstance());
|
entries_.push_back(CharType::GetInstance());
|
entries_.push_back(IntegerType::GetInstance());
|
entries_.push_back(LongLoType::GetInstance());
|
entries_.push_back(LongHiType::GetInstance());
|
entries_.push_back(FloatType::GetInstance());
|
entries_.push_back(DoubleLoType::GetInstance());
|
entries_.push_back(DoubleHiType::GetInstance());
|
for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
|
int32_t i = value - kMinSmallConstant;
|
DCHECK_EQ(entries_.size(), small_precise_constants_[i]->GetId());
|
entries_.push_back(small_precise_constants_[i]);
|
}
|
DCHECK_EQ(entries_.size(), primitive_count_);
|
}
|
|
const RegType& RegTypeCache::FromDescriptor(ObjPtr<mirror::ClassLoader> loader,
|
const char* descriptor,
|
bool precise) {
|
DCHECK(RegTypeCache::primitive_initialized_);
|
if (descriptor[1] == '\0') {
|
switch (descriptor[0]) {
|
case 'Z':
|
return Boolean();
|
case 'B':
|
return Byte();
|
case 'S':
|
return Short();
|
case 'C':
|
return Char();
|
case 'I':
|
return Integer();
|
case 'J':
|
return LongLo();
|
case 'F':
|
return Float();
|
case 'D':
|
return DoubleLo();
|
case 'V': // For void types, conflict types.
|
default:
|
return Conflict();
|
}
|
} else if (descriptor[0] == 'L' || descriptor[0] == '[') {
|
return From(loader, descriptor, precise);
|
} else {
|
return Conflict();
|
}
|
}
|
|
const RegType& RegTypeCache::RegTypeFromPrimitiveType(Primitive::Type prim_type) const {
|
DCHECK(RegTypeCache::primitive_initialized_);
|
switch (prim_type) {
|
case Primitive::kPrimBoolean:
|
return *BooleanType::GetInstance();
|
case Primitive::kPrimByte:
|
return *ByteType::GetInstance();
|
case Primitive::kPrimShort:
|
return *ShortType::GetInstance();
|
case Primitive::kPrimChar:
|
return *CharType::GetInstance();
|
case Primitive::kPrimInt:
|
return *IntegerType::GetInstance();
|
case Primitive::kPrimLong:
|
return *LongLoType::GetInstance();
|
case Primitive::kPrimFloat:
|
return *FloatType::GetInstance();
|
case Primitive::kPrimDouble:
|
return *DoubleLoType::GetInstance();
|
case Primitive::kPrimVoid:
|
default:
|
return *ConflictType::GetInstance();
|
}
|
}
|
|
bool RegTypeCache::MatchDescriptor(size_t idx, const std::string_view& descriptor, bool precise) {
|
const RegType* entry = entries_[idx];
|
if (descriptor != entry->descriptor_) {
|
return false;
|
}
|
if (entry->HasClass()) {
|
return MatchingPrecisionForClass(entry, precise);
|
}
|
// There is no notion of precise unresolved references, the precise information is just dropped
|
// on the floor.
|
DCHECK(entry->IsUnresolvedReference());
|
return true;
|
}
|
|
ObjPtr<mirror::Class> RegTypeCache::ResolveClass(const char* descriptor,
|
ObjPtr<mirror::ClassLoader> loader) {
|
// Class was not found, must create new type.
|
// Try resolving class
|
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
|
Thread* self = Thread::Current();
|
StackHandleScope<1> hs(self);
|
Handle<mirror::ClassLoader> class_loader(hs.NewHandle(loader));
|
ObjPtr<mirror::Class> klass = nullptr;
|
if (can_load_classes_) {
|
klass = class_linker->FindClass(self, descriptor, class_loader);
|
} else {
|
klass = class_linker->LookupClass(self, descriptor, loader);
|
if (klass != nullptr && !klass->IsResolved()) {
|
// We found the class but without it being loaded its not safe for use.
|
klass = nullptr;
|
}
|
}
|
return klass;
|
}
|
|
std::string_view RegTypeCache::AddString(const std::string_view& str) {
|
char* ptr = allocator_.AllocArray<char>(str.length());
|
memcpy(ptr, str.data(), str.length());
|
return std::string_view(ptr, str.length());
|
}
|
|
const RegType& RegTypeCache::From(ObjPtr<mirror::ClassLoader> loader,
|
const char* descriptor,
|
bool precise) {
|
std::string_view sv_descriptor(descriptor);
|
// Try looking up the class in the cache first. We use a std::string_view to avoid
|
// repeated strlen operations on the descriptor.
|
for (size_t i = primitive_count_; i < entries_.size(); i++) {
|
if (MatchDescriptor(i, sv_descriptor, precise)) {
|
return *(entries_[i]);
|
}
|
}
|
// Class not found in the cache, will create a new type for that.
|
// Try resolving class.
|
ObjPtr<mirror::Class> klass = ResolveClass(descriptor, loader);
|
if (klass != nullptr) {
|
// Class resolved, first look for the class in the list of entries
|
// Class was not found, must create new type.
|
// To pass the verification, the type should be imprecise,
|
// instantiable or an interface with the precise type set to false.
|
DCHECK(!precise || klass->IsInstantiable());
|
// Create a precise type if:
|
// 1- Class is final and NOT an interface. a precise interface is meaningless !!
|
// 2- Precise Flag passed as true.
|
RegType* entry;
|
// Create an imprecise type if we can't tell for a fact that it is precise.
|
if (klass->CannotBeAssignedFromOtherTypes() || precise) {
|
DCHECK(!(klass->IsAbstract()) || klass->IsArrayClass());
|
DCHECK(!klass->IsInterface());
|
entry =
|
new (&allocator_) PreciseReferenceType(klass, AddString(sv_descriptor), entries_.size());
|
} else {
|
entry = new (&allocator_) ReferenceType(klass, AddString(sv_descriptor), entries_.size());
|
}
|
return AddEntry(entry);
|
} else { // Class not resolved.
|
// We tried loading the class and failed, this might get an exception raised
|
// so we want to clear it before we go on.
|
if (can_load_classes_) {
|
DCHECK(Thread::Current()->IsExceptionPending());
|
Thread::Current()->ClearException();
|
} else {
|
DCHECK(!Thread::Current()->IsExceptionPending());
|
}
|
if (IsValidDescriptor(descriptor)) {
|
return AddEntry(
|
new (&allocator_) UnresolvedReferenceType(AddString(sv_descriptor), entries_.size()));
|
} else {
|
// The descriptor is broken return the unknown type as there's nothing sensible that
|
// could be done at runtime
|
return Conflict();
|
}
|
}
|
}
|
|
const RegType& RegTypeCache::MakeUnresolvedReference() {
|
// The descriptor is intentionally invalid so nothing else will match this type.
|
return AddEntry(new (&allocator_) UnresolvedReferenceType(AddString("a"), entries_.size()));
|
}
|
|
const RegType* RegTypeCache::FindClass(ObjPtr<mirror::Class> klass, bool precise) const {
|
DCHECK(klass != nullptr);
|
if (klass->IsPrimitive()) {
|
// Note: precise isn't used for primitive classes. A char is assignable to an int. All
|
// primitive classes are final.
|
return &RegTypeFromPrimitiveType(klass->GetPrimitiveType());
|
}
|
for (auto& pair : klass_entries_) {
|
const ObjPtr<mirror::Class> reg_klass = pair.first.Read();
|
if (reg_klass == klass) {
|
const RegType* reg_type = pair.second;
|
if (MatchingPrecisionForClass(reg_type, precise)) {
|
return reg_type;
|
}
|
}
|
}
|
return nullptr;
|
}
|
|
const RegType* RegTypeCache::InsertClass(const std::string_view& descriptor,
|
ObjPtr<mirror::Class> klass,
|
bool precise) {
|
// No reference to the class was found, create new reference.
|
DCHECK(FindClass(klass, precise) == nullptr);
|
RegType* const reg_type = precise
|
? static_cast<RegType*>(
|
new (&allocator_) PreciseReferenceType(klass, descriptor, entries_.size()))
|
: new (&allocator_) ReferenceType(klass, descriptor, entries_.size());
|
return &AddEntry(reg_type);
|
}
|
|
const RegType& RegTypeCache::FromClass(const char* descriptor,
|
ObjPtr<mirror::Class> klass,
|
bool precise) {
|
DCHECK(klass != nullptr);
|
const RegType* reg_type = FindClass(klass, precise);
|
if (reg_type == nullptr) {
|
reg_type = InsertClass(AddString(std::string_view(descriptor)), klass, precise);
|
}
|
return *reg_type;
|
}
|
|
RegTypeCache::RegTypeCache(bool can_load_classes, ScopedArenaAllocator& allocator, bool can_suspend)
|
: entries_(allocator.Adapter(kArenaAllocVerifier)),
|
klass_entries_(allocator.Adapter(kArenaAllocVerifier)),
|
can_load_classes_(can_load_classes),
|
allocator_(allocator) {
|
DCHECK(can_suspend || !can_load_classes) << "Cannot load classes if suspension is disabled!";
|
if (kIsDebugBuild && can_suspend) {
|
Thread::Current()->AssertThreadSuspensionIsAllowable(gAborting == 0);
|
}
|
// The klass_entries_ array does not have primitives or small constants.
|
static constexpr size_t kNumReserveEntries = 32;
|
klass_entries_.reserve(kNumReserveEntries);
|
// We want to have room for additional entries after inserting primitives and small
|
// constants.
|
entries_.reserve(kNumReserveEntries + kNumPrimitivesAndSmallConstants);
|
FillPrimitiveAndSmallConstantTypes();
|
}
|
|
RegTypeCache::~RegTypeCache() {
|
DCHECK_LE(primitive_count_, entries_.size());
|
}
|
|
void RegTypeCache::ShutDown() {
|
if (RegTypeCache::primitive_initialized_) {
|
UndefinedType::Destroy();
|
ConflictType::Destroy();
|
BooleanType::Destroy();
|
ByteType::Destroy();
|
ShortType::Destroy();
|
CharType::Destroy();
|
IntegerType::Destroy();
|
LongLoType::Destroy();
|
LongHiType::Destroy();
|
FloatType::Destroy();
|
DoubleLoType::Destroy();
|
DoubleHiType::Destroy();
|
NullType::Destroy();
|
for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
|
const PreciseConstType* type = small_precise_constants_[value - kMinSmallConstant];
|
delete type;
|
small_precise_constants_[value - kMinSmallConstant] = nullptr;
|
}
|
RegTypeCache::primitive_initialized_ = false;
|
RegTypeCache::primitive_count_ = 0;
|
}
|
}
|
|
// Helper for create_primitive_type_instance lambda.
|
namespace {
|
template <typename T>
|
struct TypeHelper {
|
using type = T;
|
static_assert(std::is_convertible<T*, RegType*>::value, "T must be a RegType");
|
|
const char* descriptor;
|
|
explicit TypeHelper(const char* d) : descriptor(d) {}
|
};
|
} // namespace
|
|
void RegTypeCache::CreatePrimitiveAndSmallConstantTypes() {
|
// Note: this must have the same order as FillPrimitiveAndSmallConstantTypes.
|
|
// It is acceptable to pass on the const char* in type to CreateInstance, as all calls below are
|
// with compile-time constants that will have global lifetime. Use of the lambda ensures this
|
// code cannot leak to other users.
|
auto create_primitive_type_instance = [&](auto type) REQUIRES_SHARED(Locks::mutator_lock_) {
|
using Type = typename decltype(type)::type;
|
ObjPtr<mirror::Class> klass = nullptr;
|
// Try loading the class from linker.
|
DCHECK(type.descriptor != nullptr);
|
if (strlen(type.descriptor) > 0) {
|
klass = art::Runtime::Current()->GetClassLinker()->FindSystemClass(Thread::Current(),
|
type.descriptor);
|
DCHECK(klass != nullptr);
|
}
|
const Type* entry = Type::CreateInstance(klass,
|
type.descriptor,
|
RegTypeCache::primitive_count_);
|
RegTypeCache::primitive_count_++;
|
return entry;
|
};
|
create_primitive_type_instance(TypeHelper<UndefinedType>(""));
|
create_primitive_type_instance(TypeHelper<ConflictType>(""));
|
create_primitive_type_instance(TypeHelper<NullType>(""));
|
create_primitive_type_instance(TypeHelper<BooleanType>("Z"));
|
create_primitive_type_instance(TypeHelper<ByteType>("B"));
|
create_primitive_type_instance(TypeHelper<ShortType>("S"));
|
create_primitive_type_instance(TypeHelper<CharType>("C"));
|
create_primitive_type_instance(TypeHelper<IntegerType>("I"));
|
create_primitive_type_instance(TypeHelper<LongLoType>("J"));
|
create_primitive_type_instance(TypeHelper<LongHiType>("J"));
|
create_primitive_type_instance(TypeHelper<FloatType>("F"));
|
create_primitive_type_instance(TypeHelper<DoubleLoType>("D"));
|
create_primitive_type_instance(TypeHelper<DoubleHiType>("D"));
|
|
for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
|
PreciseConstType* type = new PreciseConstType(value, primitive_count_);
|
small_precise_constants_[value - kMinSmallConstant] = type;
|
primitive_count_++;
|
}
|
}
|
|
const RegType& RegTypeCache::FromUnresolvedMerge(const RegType& left,
|
const RegType& right,
|
MethodVerifier* verifier) {
|
ArenaBitVector types(&allocator_,
|
kDefaultArenaBitVectorBytes * kBitsPerByte, // Allocate at least 8 bytes.
|
true); // Is expandable.
|
const RegType* left_resolved;
|
bool left_unresolved_is_array;
|
if (left.IsUnresolvedMergedReference()) {
|
const UnresolvedMergedType& left_merge = *down_cast<const UnresolvedMergedType*>(&left);
|
|
types.Copy(&left_merge.GetUnresolvedTypes());
|
left_resolved = &left_merge.GetResolvedPart();
|
left_unresolved_is_array = left.IsArrayTypes();
|
} else if (left.IsUnresolvedTypes()) {
|
types.ClearAllBits();
|
types.SetBit(left.GetId());
|
left_resolved = &Zero();
|
left_unresolved_is_array = left.IsArrayTypes();
|
} else {
|
types.ClearAllBits();
|
left_resolved = &left;
|
left_unresolved_is_array = false;
|
}
|
|
const RegType* right_resolved;
|
bool right_unresolved_is_array;
|
if (right.IsUnresolvedMergedReference()) {
|
const UnresolvedMergedType& right_merge = *down_cast<const UnresolvedMergedType*>(&right);
|
|
types.Union(&right_merge.GetUnresolvedTypes());
|
right_resolved = &right_merge.GetResolvedPart();
|
right_unresolved_is_array = right.IsArrayTypes();
|
} else if (right.IsUnresolvedTypes()) {
|
types.SetBit(right.GetId());
|
right_resolved = &Zero();
|
right_unresolved_is_array = right.IsArrayTypes();
|
} else {
|
right_resolved = &right;
|
right_unresolved_is_array = false;
|
}
|
|
// Merge the resolved parts. Left and right might be equal, so use SafeMerge.
|
const RegType& resolved_parts_merged = left_resolved->SafeMerge(*right_resolved, this, verifier);
|
// If we get a conflict here, the merge result is a conflict, not an unresolved merge type.
|
if (resolved_parts_merged.IsConflict()) {
|
return Conflict();
|
}
|
if (resolved_parts_merged.IsJavaLangObject()) {
|
return resolved_parts_merged;
|
}
|
|
bool resolved_merged_is_array = resolved_parts_merged.IsArrayTypes();
|
if (left_unresolved_is_array || right_unresolved_is_array || resolved_merged_is_array) {
|
// Arrays involved, see if we need to merge to Object.
|
|
// Is the resolved part a primitive array?
|
if (resolved_merged_is_array && !resolved_parts_merged.IsObjectArrayTypes()) {
|
return JavaLangObject(/* precise= */ false);
|
}
|
|
// Is any part not an array (but exists)?
|
if ((!left_unresolved_is_array && left_resolved != &left) ||
|
(!right_unresolved_is_array && right_resolved != &right) ||
|
!resolved_merged_is_array) {
|
return JavaLangObject(/* precise= */ false);
|
}
|
}
|
|
// Check if entry already exists.
|
for (size_t i = primitive_count_; i < entries_.size(); i++) {
|
const RegType* cur_entry = entries_[i];
|
if (cur_entry->IsUnresolvedMergedReference()) {
|
const UnresolvedMergedType* cmp_type = down_cast<const UnresolvedMergedType*>(cur_entry);
|
const RegType& resolved_part = cmp_type->GetResolvedPart();
|
const BitVector& unresolved_part = cmp_type->GetUnresolvedTypes();
|
// Use SameBitsSet. "types" is expandable to allow merging in the components, but the
|
// BitVector in the final RegType will be made non-expandable.
|
if (&resolved_part == &resolved_parts_merged && types.SameBitsSet(&unresolved_part)) {
|
return *cur_entry;
|
}
|
}
|
}
|
return AddEntry(new (&allocator_) UnresolvedMergedType(resolved_parts_merged,
|
types,
|
this,
|
entries_.size()));
|
}
|
|
const RegType& RegTypeCache::FromUnresolvedSuperClass(const RegType& child) {
|
// Check if entry already exists.
|
for (size_t i = primitive_count_; i < entries_.size(); i++) {
|
const RegType* cur_entry = entries_[i];
|
if (cur_entry->IsUnresolvedSuperClass()) {
|
const UnresolvedSuperClass* tmp_entry =
|
down_cast<const UnresolvedSuperClass*>(cur_entry);
|
uint16_t unresolved_super_child_id =
|
tmp_entry->GetUnresolvedSuperClassChildId();
|
if (unresolved_super_child_id == child.GetId()) {
|
return *cur_entry;
|
}
|
}
|
}
|
return AddEntry(new (&allocator_) UnresolvedSuperClass(child.GetId(), this, entries_.size()));
|
}
|
|
const UninitializedType& RegTypeCache::Uninitialized(const RegType& type, uint32_t allocation_pc) {
|
UninitializedType* entry = nullptr;
|
const std::string_view& descriptor(type.GetDescriptor());
|
if (type.IsUnresolvedTypes()) {
|
for (size_t i = primitive_count_; i < entries_.size(); i++) {
|
const RegType* cur_entry = entries_[i];
|
if (cur_entry->IsUnresolvedAndUninitializedReference() &&
|
down_cast<const UnresolvedUninitializedRefType*>(cur_entry)->GetAllocationPc()
|
== allocation_pc &&
|
(cur_entry->GetDescriptor() == descriptor)) {
|
return *down_cast<const UnresolvedUninitializedRefType*>(cur_entry);
|
}
|
}
|
entry = new (&allocator_) UnresolvedUninitializedRefType(descriptor,
|
allocation_pc,
|
entries_.size());
|
} else {
|
ObjPtr<mirror::Class> klass = type.GetClass();
|
for (size_t i = primitive_count_; i < entries_.size(); i++) {
|
const RegType* cur_entry = entries_[i];
|
if (cur_entry->IsUninitializedReference() &&
|
down_cast<const UninitializedReferenceType*>(cur_entry)
|
->GetAllocationPc() == allocation_pc &&
|
cur_entry->GetClass() == klass) {
|
return *down_cast<const UninitializedReferenceType*>(cur_entry);
|
}
|
}
|
entry = new (&allocator_) UninitializedReferenceType(klass,
|
descriptor,
|
allocation_pc,
|
entries_.size());
|
}
|
return AddEntry(entry);
|
}
|
|
const RegType& RegTypeCache::FromUninitialized(const RegType& uninit_type) {
|
RegType* entry;
|
|
if (uninit_type.IsUnresolvedTypes()) {
|
const std::string_view& descriptor(uninit_type.GetDescriptor());
|
for (size_t i = primitive_count_; i < entries_.size(); i++) {
|
const RegType* cur_entry = entries_[i];
|
if (cur_entry->IsUnresolvedReference() &&
|
cur_entry->GetDescriptor() == descriptor) {
|
return *cur_entry;
|
}
|
}
|
entry = new (&allocator_) UnresolvedReferenceType(descriptor, entries_.size());
|
} else {
|
ObjPtr<mirror::Class> klass = uninit_type.GetClass();
|
if (uninit_type.IsUninitializedThisReference() && !klass->IsFinal()) {
|
// For uninitialized "this reference" look for reference types that are not precise.
|
for (size_t i = primitive_count_; i < entries_.size(); i++) {
|
const RegType* cur_entry = entries_[i];
|
if (cur_entry->IsReference() && cur_entry->GetClass() == klass) {
|
return *cur_entry;
|
}
|
}
|
entry = new (&allocator_) ReferenceType(klass, "", entries_.size());
|
} else if (!klass->IsPrimitive()) {
|
// We're uninitialized because of allocation, look or create a precise type as allocations
|
// may only create objects of that type.
|
// Note: we do not check whether the given klass is actually instantiable (besides being
|
// primitive), that is, we allow interfaces and abstract classes here. The reasoning is
|
// twofold:
|
// 1) The "new-instance" instruction to generate the uninitialized type will already
|
// queue an instantiation error. This is a soft error that must be thrown at runtime,
|
// and could potentially change if the class is resolved differently at runtime.
|
// 2) Checking whether the klass is instantiable and using conflict may produce a hard
|
// error when the value is used, which leads to a VerifyError, which is not the
|
// correct semantics.
|
for (size_t i = primitive_count_; i < entries_.size(); i++) {
|
const RegType* cur_entry = entries_[i];
|
if (cur_entry->IsPreciseReference() && cur_entry->GetClass() == klass) {
|
return *cur_entry;
|
}
|
}
|
entry = new (&allocator_) PreciseReferenceType(klass,
|
uninit_type.GetDescriptor(),
|
entries_.size());
|
} else {
|
return Conflict();
|
}
|
}
|
return AddEntry(entry);
|
}
|
|
const UninitializedType& RegTypeCache::UninitializedThisArgument(const RegType& type) {
|
UninitializedType* entry;
|
const std::string_view& descriptor(type.GetDescriptor());
|
if (type.IsUnresolvedTypes()) {
|
for (size_t i = primitive_count_; i < entries_.size(); i++) {
|
const RegType* cur_entry = entries_[i];
|
if (cur_entry->IsUnresolvedAndUninitializedThisReference() &&
|
cur_entry->GetDescriptor() == descriptor) {
|
return *down_cast<const UninitializedType*>(cur_entry);
|
}
|
}
|
entry = new (&allocator_) UnresolvedUninitializedThisRefType(descriptor, entries_.size());
|
} else {
|
ObjPtr<mirror::Class> klass = type.GetClass();
|
for (size_t i = primitive_count_; i < entries_.size(); i++) {
|
const RegType* cur_entry = entries_[i];
|
if (cur_entry->IsUninitializedThisReference() && cur_entry->GetClass() == klass) {
|
return *down_cast<const UninitializedType*>(cur_entry);
|
}
|
}
|
entry = new (&allocator_) UninitializedThisReferenceType(klass, descriptor, entries_.size());
|
}
|
return AddEntry(entry);
|
}
|
|
const ConstantType& RegTypeCache::FromCat1NonSmallConstant(int32_t value, bool precise) {
|
for (size_t i = primitive_count_; i < entries_.size(); i++) {
|
const RegType* cur_entry = entries_[i];
|
if (cur_entry->klass_.IsNull() && cur_entry->IsConstant() &&
|
cur_entry->IsPreciseConstant() == precise &&
|
(down_cast<const ConstantType*>(cur_entry))->ConstantValue() == value) {
|
return *down_cast<const ConstantType*>(cur_entry);
|
}
|
}
|
ConstantType* entry;
|
if (precise) {
|
entry = new (&allocator_) PreciseConstType(value, entries_.size());
|
} else {
|
entry = new (&allocator_) ImpreciseConstType(value, entries_.size());
|
}
|
return AddEntry(entry);
|
}
|
|
const ConstantType& RegTypeCache::FromCat2ConstLo(int32_t value, bool precise) {
|
for (size_t i = primitive_count_; i < entries_.size(); i++) {
|
const RegType* cur_entry = entries_[i];
|
if (cur_entry->IsConstantLo() && (cur_entry->IsPrecise() == precise) &&
|
(down_cast<const ConstantType*>(cur_entry))->ConstantValueLo() == value) {
|
return *down_cast<const ConstantType*>(cur_entry);
|
}
|
}
|
ConstantType* entry;
|
if (precise) {
|
entry = new (&allocator_) PreciseConstLoType(value, entries_.size());
|
} else {
|
entry = new (&allocator_) ImpreciseConstLoType(value, entries_.size());
|
}
|
return AddEntry(entry);
|
}
|
|
const ConstantType& RegTypeCache::FromCat2ConstHi(int32_t value, bool precise) {
|
for (size_t i = primitive_count_; i < entries_.size(); i++) {
|
const RegType* cur_entry = entries_[i];
|
if (cur_entry->IsConstantHi() && (cur_entry->IsPrecise() == precise) &&
|
(down_cast<const ConstantType*>(cur_entry))->ConstantValueHi() == value) {
|
return *down_cast<const ConstantType*>(cur_entry);
|
}
|
}
|
ConstantType* entry;
|
if (precise) {
|
entry = new (&allocator_) PreciseConstHiType(value, entries_.size());
|
} else {
|
entry = new (&allocator_) ImpreciseConstHiType(value, entries_.size());
|
}
|
return AddEntry(entry);
|
}
|
|
const RegType& RegTypeCache::GetComponentType(const RegType& array,
|
ObjPtr<mirror::ClassLoader> loader) {
|
if (!array.IsArrayTypes()) {
|
return Conflict();
|
} else if (array.IsUnresolvedTypes()) {
|
DCHECK(!array.IsUnresolvedMergedReference()); // Caller must make sure not to ask for this.
|
const std::string descriptor(array.GetDescriptor());
|
return FromDescriptor(loader, descriptor.c_str() + 1, false);
|
} else {
|
ObjPtr<mirror::Class> klass = array.GetClass()->GetComponentType();
|
std::string temp;
|
const char* descriptor = klass->GetDescriptor(&temp);
|
if (klass->IsErroneous()) {
|
// Arrays may have erroneous component types, use unresolved in that case.
|
// We assume that the primitive classes are not erroneous, so we know it is a
|
// reference type.
|
return FromDescriptor(loader, descriptor, false);
|
} else {
|
return FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes());
|
}
|
}
|
}
|
|
void RegTypeCache::Dump(std::ostream& os) {
|
for (size_t i = 0; i < entries_.size(); i++) {
|
const RegType* cur_entry = entries_[i];
|
if (cur_entry != nullptr) {
|
os << i << ": " << cur_entry->Dump() << "\n";
|
}
|
}
|
}
|
|
void RegTypeCache::VisitStaticRoots(RootVisitor* visitor) {
|
// Visit the primitive types, this is required since if there are no active verifiers they wont
|
// be in the entries array, and therefore not visited as roots.
|
if (primitive_initialized_) {
|
RootInfo ri(kRootUnknown);
|
UndefinedType::GetInstance()->VisitRoots(visitor, ri);
|
ConflictType::GetInstance()->VisitRoots(visitor, ri);
|
BooleanType::GetInstance()->VisitRoots(visitor, ri);
|
ByteType::GetInstance()->VisitRoots(visitor, ri);
|
ShortType::GetInstance()->VisitRoots(visitor, ri);
|
CharType::GetInstance()->VisitRoots(visitor, ri);
|
IntegerType::GetInstance()->VisitRoots(visitor, ri);
|
LongLoType::GetInstance()->VisitRoots(visitor, ri);
|
LongHiType::GetInstance()->VisitRoots(visitor, ri);
|
FloatType::GetInstance()->VisitRoots(visitor, ri);
|
DoubleLoType::GetInstance()->VisitRoots(visitor, ri);
|
DoubleHiType::GetInstance()->VisitRoots(visitor, ri);
|
for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
|
small_precise_constants_[value - kMinSmallConstant]->VisitRoots(visitor, ri);
|
}
|
}
|
}
|
|
void RegTypeCache::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
|
// Exclude the static roots that are visited by VisitStaticRoots().
|
for (size_t i = primitive_count_; i < entries_.size(); ++i) {
|
entries_[i]->VisitRoots(visitor, root_info);
|
}
|
for (auto& pair : klass_entries_) {
|
GcRoot<mirror::Class>& root = pair.first;
|
root.VisitRoot(visitor, root_info);
|
}
|
}
|
|
} // namespace verifier
|
} // namespace art
|