lin
2025-07-31 065ea569db06206874bbfa18eb25ff6121aec09b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
/*
 * Copyright (C) 2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
 
#include "reg_type_cache-inl.h"
 
#include <type_traits>
 
#include "base/aborting.h"
#include "base/arena_bit_vector.h"
#include "base/bit_vector-inl.h"
#include "base/casts.h"
#include "base/scoped_arena_allocator.h"
#include "base/stl_util.h"
#include "class_linker-inl.h"
#include "dex/descriptors_names.h"
#include "dex/dex_file-inl.h"
#include "mirror/class-inl.h"
#include "mirror/object-inl.h"
#include "reg_type-inl.h"
 
namespace art {
namespace verifier {
 
bool RegTypeCache::primitive_initialized_ = false;
uint16_t RegTypeCache::primitive_count_ = 0;
const PreciseConstType* RegTypeCache::small_precise_constants_[kMaxSmallConstant -
                                                               kMinSmallConstant + 1];
 
ALWAYS_INLINE static inline bool MatchingPrecisionForClass(const RegType* entry, bool precise)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  if (entry->IsPreciseReference() == precise) {
    // We were or weren't looking for a precise reference and we found what we need.
    return true;
  } else {
    if (!precise && entry->GetClass()->CannotBeAssignedFromOtherTypes()) {
      // We weren't looking for a precise reference, as we're looking up based on a descriptor, but
      // we found a matching entry based on the descriptor. Return the precise entry in that case.
      return true;
    }
    return false;
  }
}
 
void RegTypeCache::FillPrimitiveAndSmallConstantTypes() {
  // Note: this must have the same order as CreatePrimitiveAndSmallConstantTypes.
  entries_.push_back(UndefinedType::GetInstance());
  entries_.push_back(ConflictType::GetInstance());
  entries_.push_back(NullType::GetInstance());
  entries_.push_back(BooleanType::GetInstance());
  entries_.push_back(ByteType::GetInstance());
  entries_.push_back(ShortType::GetInstance());
  entries_.push_back(CharType::GetInstance());
  entries_.push_back(IntegerType::GetInstance());
  entries_.push_back(LongLoType::GetInstance());
  entries_.push_back(LongHiType::GetInstance());
  entries_.push_back(FloatType::GetInstance());
  entries_.push_back(DoubleLoType::GetInstance());
  entries_.push_back(DoubleHiType::GetInstance());
  for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
    int32_t i = value - kMinSmallConstant;
    DCHECK_EQ(entries_.size(), small_precise_constants_[i]->GetId());
    entries_.push_back(small_precise_constants_[i]);
  }
  DCHECK_EQ(entries_.size(), primitive_count_);
}
 
const RegType& RegTypeCache::FromDescriptor(ObjPtr<mirror::ClassLoader> loader,
                                            const char* descriptor,
                                            bool precise) {
  DCHECK(RegTypeCache::primitive_initialized_);
  if (descriptor[1] == '\0') {
    switch (descriptor[0]) {
      case 'Z':
        return Boolean();
      case 'B':
        return Byte();
      case 'S':
        return Short();
      case 'C':
        return Char();
      case 'I':
        return Integer();
      case 'J':
        return LongLo();
      case 'F':
        return Float();
      case 'D':
        return DoubleLo();
      case 'V':  // For void types, conflict types.
      default:
        return Conflict();
    }
  } else if (descriptor[0] == 'L' || descriptor[0] == '[') {
    return From(loader, descriptor, precise);
  } else {
    return Conflict();
  }
}
 
const RegType& RegTypeCache::RegTypeFromPrimitiveType(Primitive::Type prim_type) const {
  DCHECK(RegTypeCache::primitive_initialized_);
  switch (prim_type) {
    case Primitive::kPrimBoolean:
      return *BooleanType::GetInstance();
    case Primitive::kPrimByte:
      return *ByteType::GetInstance();
    case Primitive::kPrimShort:
      return *ShortType::GetInstance();
    case Primitive::kPrimChar:
      return *CharType::GetInstance();
    case Primitive::kPrimInt:
      return *IntegerType::GetInstance();
    case Primitive::kPrimLong:
      return *LongLoType::GetInstance();
    case Primitive::kPrimFloat:
      return *FloatType::GetInstance();
    case Primitive::kPrimDouble:
      return *DoubleLoType::GetInstance();
    case Primitive::kPrimVoid:
    default:
      return *ConflictType::GetInstance();
  }
}
 
bool RegTypeCache::MatchDescriptor(size_t idx, const std::string_view& descriptor, bool precise) {
  const RegType* entry = entries_[idx];
  if (descriptor != entry->descriptor_) {
    return false;
  }
  if (entry->HasClass()) {
    return MatchingPrecisionForClass(entry, precise);
  }
  // There is no notion of precise unresolved references, the precise information is just dropped
  // on the floor.
  DCHECK(entry->IsUnresolvedReference());
  return true;
}
 
ObjPtr<mirror::Class> RegTypeCache::ResolveClass(const char* descriptor,
                                                 ObjPtr<mirror::ClassLoader> loader) {
  // Class was not found, must create new type.
  // Try resolving class
  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
  Thread* self = Thread::Current();
  StackHandleScope<1> hs(self);
  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(loader));
  ObjPtr<mirror::Class> klass = nullptr;
  if (can_load_classes_) {
    klass = class_linker->FindClass(self, descriptor, class_loader);
  } else {
    klass = class_linker->LookupClass(self, descriptor, loader);
    if (klass != nullptr && !klass->IsResolved()) {
      // We found the class but without it being loaded its not safe for use.
      klass = nullptr;
    }
  }
  return klass;
}
 
std::string_view RegTypeCache::AddString(const std::string_view& str) {
  char* ptr = allocator_.AllocArray<char>(str.length());
  memcpy(ptr, str.data(), str.length());
  return std::string_view(ptr, str.length());
}
 
const RegType& RegTypeCache::From(ObjPtr<mirror::ClassLoader> loader,
                                  const char* descriptor,
                                  bool precise) {
  std::string_view sv_descriptor(descriptor);
  // Try looking up the class in the cache first. We use a std::string_view to avoid
  // repeated strlen operations on the descriptor.
  for (size_t i = primitive_count_; i < entries_.size(); i++) {
    if (MatchDescriptor(i, sv_descriptor, precise)) {
      return *(entries_[i]);
    }
  }
  // Class not found in the cache, will create a new type for that.
  // Try resolving class.
  ObjPtr<mirror::Class> klass = ResolveClass(descriptor, loader);
  if (klass != nullptr) {
    // Class resolved, first look for the class in the list of entries
    // Class was not found, must create new type.
    // To pass the verification, the type should be imprecise,
    // instantiable or an interface with the precise type set to false.
    DCHECK(!precise || klass->IsInstantiable());
    // Create a precise type if:
    // 1- Class is final and NOT an interface. a precise interface is meaningless !!
    // 2- Precise Flag passed as true.
    RegType* entry;
    // Create an imprecise type if we can't tell for a fact that it is precise.
    if (klass->CannotBeAssignedFromOtherTypes() || precise) {
      DCHECK(!(klass->IsAbstract()) || klass->IsArrayClass());
      DCHECK(!klass->IsInterface());
      entry =
          new (&allocator_) PreciseReferenceType(klass, AddString(sv_descriptor), entries_.size());
    } else {
      entry = new (&allocator_) ReferenceType(klass, AddString(sv_descriptor), entries_.size());
    }
    return AddEntry(entry);
  } else {  // Class not resolved.
    // We tried loading the class and failed, this might get an exception raised
    // so we want to clear it before we go on.
    if (can_load_classes_) {
      DCHECK(Thread::Current()->IsExceptionPending());
      Thread::Current()->ClearException();
    } else {
      DCHECK(!Thread::Current()->IsExceptionPending());
    }
    if (IsValidDescriptor(descriptor)) {
      return AddEntry(
          new (&allocator_) UnresolvedReferenceType(AddString(sv_descriptor), entries_.size()));
    } else {
      // The descriptor is broken return the unknown type as there's nothing sensible that
      // could be done at runtime
      return Conflict();
    }
  }
}
 
const RegType& RegTypeCache::MakeUnresolvedReference() {
  // The descriptor is intentionally invalid so nothing else will match this type.
  return AddEntry(new (&allocator_) UnresolvedReferenceType(AddString("a"), entries_.size()));
}
 
const RegType* RegTypeCache::FindClass(ObjPtr<mirror::Class> klass, bool precise) const {
  DCHECK(klass != nullptr);
  if (klass->IsPrimitive()) {
    // Note: precise isn't used for primitive classes. A char is assignable to an int. All
    // primitive classes are final.
    return &RegTypeFromPrimitiveType(klass->GetPrimitiveType());
  }
  for (auto& pair : klass_entries_) {
    const ObjPtr<mirror::Class> reg_klass = pair.first.Read();
    if (reg_klass == klass) {
      const RegType* reg_type = pair.second;
      if (MatchingPrecisionForClass(reg_type, precise)) {
        return reg_type;
      }
    }
  }
  return nullptr;
}
 
const RegType* RegTypeCache::InsertClass(const std::string_view& descriptor,
                                         ObjPtr<mirror::Class> klass,
                                         bool precise) {
  // No reference to the class was found, create new reference.
  DCHECK(FindClass(klass, precise) == nullptr);
  RegType* const reg_type = precise
      ? static_cast<RegType*>(
          new (&allocator_) PreciseReferenceType(klass, descriptor, entries_.size()))
      : new (&allocator_) ReferenceType(klass, descriptor, entries_.size());
  return &AddEntry(reg_type);
}
 
const RegType& RegTypeCache::FromClass(const char* descriptor,
                                       ObjPtr<mirror::Class> klass,
                                       bool precise) {
  DCHECK(klass != nullptr);
  const RegType* reg_type = FindClass(klass, precise);
  if (reg_type == nullptr) {
    reg_type = InsertClass(AddString(std::string_view(descriptor)), klass, precise);
  }
  return *reg_type;
}
 
RegTypeCache::RegTypeCache(bool can_load_classes, ScopedArenaAllocator& allocator, bool can_suspend)
    : entries_(allocator.Adapter(kArenaAllocVerifier)),
      klass_entries_(allocator.Adapter(kArenaAllocVerifier)),
      can_load_classes_(can_load_classes),
      allocator_(allocator) {
  DCHECK(can_suspend || !can_load_classes) << "Cannot load classes if suspension is disabled!";
  if (kIsDebugBuild && can_suspend) {
    Thread::Current()->AssertThreadSuspensionIsAllowable(gAborting == 0);
  }
  // The klass_entries_ array does not have primitives or small constants.
  static constexpr size_t kNumReserveEntries = 32;
  klass_entries_.reserve(kNumReserveEntries);
  // We want to have room for additional entries after inserting primitives and small
  // constants.
  entries_.reserve(kNumReserveEntries + kNumPrimitivesAndSmallConstants);
  FillPrimitiveAndSmallConstantTypes();
}
 
RegTypeCache::~RegTypeCache() {
  DCHECK_LE(primitive_count_, entries_.size());
}
 
void RegTypeCache::ShutDown() {
  if (RegTypeCache::primitive_initialized_) {
    UndefinedType::Destroy();
    ConflictType::Destroy();
    BooleanType::Destroy();
    ByteType::Destroy();
    ShortType::Destroy();
    CharType::Destroy();
    IntegerType::Destroy();
    LongLoType::Destroy();
    LongHiType::Destroy();
    FloatType::Destroy();
    DoubleLoType::Destroy();
    DoubleHiType::Destroy();
    NullType::Destroy();
    for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
      const PreciseConstType* type = small_precise_constants_[value - kMinSmallConstant];
      delete type;
      small_precise_constants_[value - kMinSmallConstant] = nullptr;
    }
    RegTypeCache::primitive_initialized_ = false;
    RegTypeCache::primitive_count_ = 0;
  }
}
 
// Helper for create_primitive_type_instance lambda.
namespace {
template <typename T>
struct TypeHelper {
  using type = T;
  static_assert(std::is_convertible<T*, RegType*>::value, "T must be a RegType");
 
  const char* descriptor;
 
  explicit TypeHelper(const char* d) : descriptor(d) {}
};
}  // namespace
 
void RegTypeCache::CreatePrimitiveAndSmallConstantTypes() {
  // Note: this must have the same order as FillPrimitiveAndSmallConstantTypes.
 
  // It is acceptable to pass on the const char* in type to CreateInstance, as all calls below are
  // with compile-time constants that will have global lifetime. Use of the lambda ensures this
  // code cannot leak to other users.
  auto create_primitive_type_instance = [&](auto type) REQUIRES_SHARED(Locks::mutator_lock_) {
    using Type = typename decltype(type)::type;
    ObjPtr<mirror::Class> klass = nullptr;
    // Try loading the class from linker.
    DCHECK(type.descriptor != nullptr);
    if (strlen(type.descriptor) > 0) {
      klass = art::Runtime::Current()->GetClassLinker()->FindSystemClass(Thread::Current(),
                                                                         type.descriptor);
      DCHECK(klass != nullptr);
    }
    const Type* entry = Type::CreateInstance(klass,
                                             type.descriptor,
                                             RegTypeCache::primitive_count_);
    RegTypeCache::primitive_count_++;
    return entry;
  };
  create_primitive_type_instance(TypeHelper<UndefinedType>(""));
  create_primitive_type_instance(TypeHelper<ConflictType>(""));
  create_primitive_type_instance(TypeHelper<NullType>(""));
  create_primitive_type_instance(TypeHelper<BooleanType>("Z"));
  create_primitive_type_instance(TypeHelper<ByteType>("B"));
  create_primitive_type_instance(TypeHelper<ShortType>("S"));
  create_primitive_type_instance(TypeHelper<CharType>("C"));
  create_primitive_type_instance(TypeHelper<IntegerType>("I"));
  create_primitive_type_instance(TypeHelper<LongLoType>("J"));
  create_primitive_type_instance(TypeHelper<LongHiType>("J"));
  create_primitive_type_instance(TypeHelper<FloatType>("F"));
  create_primitive_type_instance(TypeHelper<DoubleLoType>("D"));
  create_primitive_type_instance(TypeHelper<DoubleHiType>("D"));
 
  for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
    PreciseConstType* type = new PreciseConstType(value, primitive_count_);
    small_precise_constants_[value - kMinSmallConstant] = type;
    primitive_count_++;
  }
}
 
const RegType& RegTypeCache::FromUnresolvedMerge(const RegType& left,
                                                 const RegType& right,
                                                 MethodVerifier* verifier) {
  ArenaBitVector types(&allocator_,
                       kDefaultArenaBitVectorBytes * kBitsPerByte,  // Allocate at least 8 bytes.
                       true);                                       // Is expandable.
  const RegType* left_resolved;
  bool left_unresolved_is_array;
  if (left.IsUnresolvedMergedReference()) {
    const UnresolvedMergedType& left_merge = *down_cast<const UnresolvedMergedType*>(&left);
 
    types.Copy(&left_merge.GetUnresolvedTypes());
    left_resolved = &left_merge.GetResolvedPart();
    left_unresolved_is_array = left.IsArrayTypes();
  } else if (left.IsUnresolvedTypes()) {
    types.ClearAllBits();
    types.SetBit(left.GetId());
    left_resolved = &Zero();
    left_unresolved_is_array = left.IsArrayTypes();
  } else {
    types.ClearAllBits();
    left_resolved = &left;
    left_unresolved_is_array = false;
  }
 
  const RegType* right_resolved;
  bool right_unresolved_is_array;
  if (right.IsUnresolvedMergedReference()) {
    const UnresolvedMergedType& right_merge = *down_cast<const UnresolvedMergedType*>(&right);
 
    types.Union(&right_merge.GetUnresolvedTypes());
    right_resolved = &right_merge.GetResolvedPart();
    right_unresolved_is_array = right.IsArrayTypes();
  } else if (right.IsUnresolvedTypes()) {
    types.SetBit(right.GetId());
    right_resolved = &Zero();
    right_unresolved_is_array = right.IsArrayTypes();
  } else {
    right_resolved = &right;
    right_unresolved_is_array = false;
  }
 
  // Merge the resolved parts. Left and right might be equal, so use SafeMerge.
  const RegType& resolved_parts_merged = left_resolved->SafeMerge(*right_resolved, this, verifier);
  // If we get a conflict here, the merge result is a conflict, not an unresolved merge type.
  if (resolved_parts_merged.IsConflict()) {
    return Conflict();
  }
  if (resolved_parts_merged.IsJavaLangObject()) {
    return resolved_parts_merged;
  }
 
  bool resolved_merged_is_array = resolved_parts_merged.IsArrayTypes();
  if (left_unresolved_is_array || right_unresolved_is_array || resolved_merged_is_array) {
    // Arrays involved, see if we need to merge to Object.
 
    // Is the resolved part a primitive array?
    if (resolved_merged_is_array && !resolved_parts_merged.IsObjectArrayTypes()) {
      return JavaLangObject(/* precise= */ false);
    }
 
    // Is any part not an array (but exists)?
    if ((!left_unresolved_is_array && left_resolved != &left) ||
        (!right_unresolved_is_array && right_resolved != &right) ||
        !resolved_merged_is_array) {
      return JavaLangObject(/* precise= */ false);
    }
  }
 
  // Check if entry already exists.
  for (size_t i = primitive_count_; i < entries_.size(); i++) {
    const RegType* cur_entry = entries_[i];
    if (cur_entry->IsUnresolvedMergedReference()) {
      const UnresolvedMergedType* cmp_type = down_cast<const UnresolvedMergedType*>(cur_entry);
      const RegType& resolved_part = cmp_type->GetResolvedPart();
      const BitVector& unresolved_part = cmp_type->GetUnresolvedTypes();
      // Use SameBitsSet. "types" is expandable to allow merging in the components, but the
      // BitVector in the final RegType will be made non-expandable.
      if (&resolved_part == &resolved_parts_merged && types.SameBitsSet(&unresolved_part)) {
        return *cur_entry;
      }
    }
  }
  return AddEntry(new (&allocator_) UnresolvedMergedType(resolved_parts_merged,
                                                         types,
                                                         this,
                                                         entries_.size()));
}
 
const RegType& RegTypeCache::FromUnresolvedSuperClass(const RegType& child) {
  // Check if entry already exists.
  for (size_t i = primitive_count_; i < entries_.size(); i++) {
    const RegType* cur_entry = entries_[i];
    if (cur_entry->IsUnresolvedSuperClass()) {
      const UnresolvedSuperClass* tmp_entry =
          down_cast<const UnresolvedSuperClass*>(cur_entry);
      uint16_t unresolved_super_child_id =
          tmp_entry->GetUnresolvedSuperClassChildId();
      if (unresolved_super_child_id == child.GetId()) {
        return *cur_entry;
      }
    }
  }
  return AddEntry(new (&allocator_) UnresolvedSuperClass(child.GetId(), this, entries_.size()));
}
 
const UninitializedType& RegTypeCache::Uninitialized(const RegType& type, uint32_t allocation_pc) {
  UninitializedType* entry = nullptr;
  const std::string_view& descriptor(type.GetDescriptor());
  if (type.IsUnresolvedTypes()) {
    for (size_t i = primitive_count_; i < entries_.size(); i++) {
      const RegType* cur_entry = entries_[i];
      if (cur_entry->IsUnresolvedAndUninitializedReference() &&
          down_cast<const UnresolvedUninitializedRefType*>(cur_entry)->GetAllocationPc()
              == allocation_pc &&
          (cur_entry->GetDescriptor() == descriptor)) {
        return *down_cast<const UnresolvedUninitializedRefType*>(cur_entry);
      }
    }
    entry = new (&allocator_) UnresolvedUninitializedRefType(descriptor,
                                                             allocation_pc,
                                                             entries_.size());
  } else {
    ObjPtr<mirror::Class> klass = type.GetClass();
    for (size_t i = primitive_count_; i < entries_.size(); i++) {
      const RegType* cur_entry = entries_[i];
      if (cur_entry->IsUninitializedReference() &&
          down_cast<const UninitializedReferenceType*>(cur_entry)
              ->GetAllocationPc() == allocation_pc &&
          cur_entry->GetClass() == klass) {
        return *down_cast<const UninitializedReferenceType*>(cur_entry);
      }
    }
    entry = new (&allocator_) UninitializedReferenceType(klass,
                                                         descriptor,
                                                         allocation_pc,
                                                         entries_.size());
  }
  return AddEntry(entry);
}
 
const RegType& RegTypeCache::FromUninitialized(const RegType& uninit_type) {
  RegType* entry;
 
  if (uninit_type.IsUnresolvedTypes()) {
    const std::string_view& descriptor(uninit_type.GetDescriptor());
    for (size_t i = primitive_count_; i < entries_.size(); i++) {
      const RegType* cur_entry = entries_[i];
      if (cur_entry->IsUnresolvedReference() &&
          cur_entry->GetDescriptor() == descriptor) {
        return *cur_entry;
      }
    }
    entry = new (&allocator_) UnresolvedReferenceType(descriptor, entries_.size());
  } else {
    ObjPtr<mirror::Class> klass = uninit_type.GetClass();
    if (uninit_type.IsUninitializedThisReference() && !klass->IsFinal()) {
      // For uninitialized "this reference" look for reference types that are not precise.
      for (size_t i = primitive_count_; i < entries_.size(); i++) {
        const RegType* cur_entry = entries_[i];
        if (cur_entry->IsReference() && cur_entry->GetClass() == klass) {
          return *cur_entry;
        }
      }
      entry = new (&allocator_) ReferenceType(klass, "", entries_.size());
    } else if (!klass->IsPrimitive()) {
      // We're uninitialized because of allocation, look or create a precise type as allocations
      // may only create objects of that type.
      // Note: we do not check whether the given klass is actually instantiable (besides being
      //       primitive), that is, we allow interfaces and abstract classes here. The reasoning is
      //       twofold:
      //       1) The "new-instance" instruction to generate the uninitialized type will already
      //          queue an instantiation error. This is a soft error that must be thrown at runtime,
      //          and could potentially change if the class is resolved differently at runtime.
      //       2) Checking whether the klass is instantiable and using conflict may produce a hard
      //          error when the value is used, which leads to a VerifyError, which is not the
      //          correct semantics.
      for (size_t i = primitive_count_; i < entries_.size(); i++) {
        const RegType* cur_entry = entries_[i];
        if (cur_entry->IsPreciseReference() && cur_entry->GetClass() == klass) {
          return *cur_entry;
        }
      }
      entry = new (&allocator_) PreciseReferenceType(klass,
                                                     uninit_type.GetDescriptor(),
                                                     entries_.size());
    } else {
      return Conflict();
    }
  }
  return AddEntry(entry);
}
 
const UninitializedType& RegTypeCache::UninitializedThisArgument(const RegType& type) {
  UninitializedType* entry;
  const std::string_view& descriptor(type.GetDescriptor());
  if (type.IsUnresolvedTypes()) {
    for (size_t i = primitive_count_; i < entries_.size(); i++) {
      const RegType* cur_entry = entries_[i];
      if (cur_entry->IsUnresolvedAndUninitializedThisReference() &&
          cur_entry->GetDescriptor() == descriptor) {
        return *down_cast<const UninitializedType*>(cur_entry);
      }
    }
    entry = new (&allocator_) UnresolvedUninitializedThisRefType(descriptor, entries_.size());
  } else {
    ObjPtr<mirror::Class> klass = type.GetClass();
    for (size_t i = primitive_count_; i < entries_.size(); i++) {
      const RegType* cur_entry = entries_[i];
      if (cur_entry->IsUninitializedThisReference() && cur_entry->GetClass() == klass) {
        return *down_cast<const UninitializedType*>(cur_entry);
      }
    }
    entry = new (&allocator_) UninitializedThisReferenceType(klass, descriptor, entries_.size());
  }
  return AddEntry(entry);
}
 
const ConstantType& RegTypeCache::FromCat1NonSmallConstant(int32_t value, bool precise) {
  for (size_t i = primitive_count_; i < entries_.size(); i++) {
    const RegType* cur_entry = entries_[i];
    if (cur_entry->klass_.IsNull() && cur_entry->IsConstant() &&
        cur_entry->IsPreciseConstant() == precise &&
        (down_cast<const ConstantType*>(cur_entry))->ConstantValue() == value) {
      return *down_cast<const ConstantType*>(cur_entry);
    }
  }
  ConstantType* entry;
  if (precise) {
    entry = new (&allocator_) PreciseConstType(value, entries_.size());
  } else {
    entry = new (&allocator_) ImpreciseConstType(value, entries_.size());
  }
  return AddEntry(entry);
}
 
const ConstantType& RegTypeCache::FromCat2ConstLo(int32_t value, bool precise) {
  for (size_t i = primitive_count_; i < entries_.size(); i++) {
    const RegType* cur_entry = entries_[i];
    if (cur_entry->IsConstantLo() && (cur_entry->IsPrecise() == precise) &&
        (down_cast<const ConstantType*>(cur_entry))->ConstantValueLo() == value) {
      return *down_cast<const ConstantType*>(cur_entry);
    }
  }
  ConstantType* entry;
  if (precise) {
    entry = new (&allocator_) PreciseConstLoType(value, entries_.size());
  } else {
    entry = new (&allocator_) ImpreciseConstLoType(value, entries_.size());
  }
  return AddEntry(entry);
}
 
const ConstantType& RegTypeCache::FromCat2ConstHi(int32_t value, bool precise) {
  for (size_t i = primitive_count_; i < entries_.size(); i++) {
    const RegType* cur_entry = entries_[i];
    if (cur_entry->IsConstantHi() && (cur_entry->IsPrecise() == precise) &&
        (down_cast<const ConstantType*>(cur_entry))->ConstantValueHi() == value) {
      return *down_cast<const ConstantType*>(cur_entry);
    }
  }
  ConstantType* entry;
  if (precise) {
    entry = new (&allocator_) PreciseConstHiType(value, entries_.size());
  } else {
    entry = new (&allocator_) ImpreciseConstHiType(value, entries_.size());
  }
  return AddEntry(entry);
}
 
const RegType& RegTypeCache::GetComponentType(const RegType& array,
                                              ObjPtr<mirror::ClassLoader> loader) {
  if (!array.IsArrayTypes()) {
    return Conflict();
  } else if (array.IsUnresolvedTypes()) {
    DCHECK(!array.IsUnresolvedMergedReference());  // Caller must make sure not to ask for this.
    const std::string descriptor(array.GetDescriptor());
    return FromDescriptor(loader, descriptor.c_str() + 1, false);
  } else {
    ObjPtr<mirror::Class> klass = array.GetClass()->GetComponentType();
    std::string temp;
    const char* descriptor = klass->GetDescriptor(&temp);
    if (klass->IsErroneous()) {
      // Arrays may have erroneous component types, use unresolved in that case.
      // We assume that the primitive classes are not erroneous, so we know it is a
      // reference type.
      return FromDescriptor(loader, descriptor, false);
    } else {
      return FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes());
    }
  }
}
 
void RegTypeCache::Dump(std::ostream& os) {
  for (size_t i = 0; i < entries_.size(); i++) {
    const RegType* cur_entry = entries_[i];
    if (cur_entry != nullptr) {
      os << i << ": " << cur_entry->Dump() << "\n";
    }
  }
}
 
void RegTypeCache::VisitStaticRoots(RootVisitor* visitor) {
  // Visit the primitive types, this is required since if there are no active verifiers they wont
  // be in the entries array, and therefore not visited as roots.
  if (primitive_initialized_) {
    RootInfo ri(kRootUnknown);
    UndefinedType::GetInstance()->VisitRoots(visitor, ri);
    ConflictType::GetInstance()->VisitRoots(visitor, ri);
    BooleanType::GetInstance()->VisitRoots(visitor, ri);
    ByteType::GetInstance()->VisitRoots(visitor, ri);
    ShortType::GetInstance()->VisitRoots(visitor, ri);
    CharType::GetInstance()->VisitRoots(visitor, ri);
    IntegerType::GetInstance()->VisitRoots(visitor, ri);
    LongLoType::GetInstance()->VisitRoots(visitor, ri);
    LongHiType::GetInstance()->VisitRoots(visitor, ri);
    FloatType::GetInstance()->VisitRoots(visitor, ri);
    DoubleLoType::GetInstance()->VisitRoots(visitor, ri);
    DoubleHiType::GetInstance()->VisitRoots(visitor, ri);
    for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
      small_precise_constants_[value - kMinSmallConstant]->VisitRoots(visitor, ri);
    }
  }
}
 
void RegTypeCache::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
  // Exclude the static roots that are visited by VisitStaticRoots().
  for (size_t i = primitive_count_; i < entries_.size(); ++i) {
    entries_[i]->VisitRoots(visitor, root_info);
  }
  for (auto& pair : klass_entries_) {
    GcRoot<mirror::Class>& root = pair.first;
    root.VisitRoot(visitor, root_info);
  }
}
 
}  // namespace verifier
}  // namespace art