huangcm
2025-08-30 0269911b91ed7e03c24005924cc6423abf245fb8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
#!/usr/bin/python3
#
# Copyright 2018, The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
 
"""MLTS benchmark result generator.
 
Reads a CSV produced by MLTS benchmark and generates
an HTML page with results summary.
 
Usage:
  generate_result [csv input file] [html output file]
"""
 
import argparse
import collections
import csv
import os
import re
 
 
class ScoreException(Exception):
  """Generator base exception type. """
  pass
 
 
BenchmarkResult = collections.namedtuple(
    'BenchmarkResult',
    ['name', 'backend_type', 'iterations', 'total_time_sec', 'max_single_error',
     'testset_size', 'evaluator_keys', 'evaluator_values',
     'time_freq_start_sec', 'time_freq_step_sec', 'time_freq_sec',
     'validation_errors'])
 
 
ResultsWithBaseline = collections.namedtuple(
    'ResultsWithBaseline',
    ['baseline', 'other'])
 
 
BASELINE_BACKEND = 'TFLite_CPU'
KNOWN_GROUPS = [
    (re.compile('mobilenet_v1.*quant.*'), 'MobileNet v1 Quantized'),
    (re.compile('mobilenet_v1.*'), 'MobileNet v1 Float'),
    (re.compile('mobilenet_v2.*quant.*'), 'MobileNet v2 Quantized'),
    (re.compile('mobilenet_v2.*'), 'MobileNet v2 Float'),
    (re.compile('tts.*'), 'LSTM Text-to-speech'),
    (re.compile('asr.*'), 'LSTM Automatic Speech Recognition'),
]
 
 
def parse_csv_input(input_filename):
  """Parse input CSV file, returns: (benchmarkInfo, list of BenchmarkResult)."""
  with open(input_filename, 'r') as csvfile:
    csv_reader = csv.reader(filter(lambda row: row[0] != '#', csvfile))
 
    # First line contain device info
    benchmark_info = next(csv_reader)
 
    results = []
    for row in csv_reader:
      evaluator_keys_count = int(row[8])
      time_freq_sec_count = int(row[9])
      validation_error_count = int(row[10])
 
      tf_start = 11 + evaluator_keys_count*2
      time_freq_sec = [float(x) for x in
                       row[tf_start:tf_start + time_freq_sec_count]]
      ve_start = 11 + evaluator_keys_count*2 + time_freq_sec_count
      validation_errors = row[ve_start: ve_start + validation_error_count]
 
      results.append(BenchmarkResult(
          name=row[0],
          backend_type=row[1],
          iterations=int(row[2]),
          total_time_sec=float(row[3]),
          max_single_error=float(row[4]),
          testset_size=int(row[5]),
          time_freq_start_sec=float(row[6]),
          time_freq_step_sec=float(row[7]),
          evaluator_keys=row[11:11 + evaluator_keys_count],
          evaluator_values=row[
              11 + evaluator_keys_count: 11 + evaluator_keys_count*2],
          time_freq_sec=time_freq_sec,
          validation_errors=validation_errors,
      ))
    return (benchmark_info, results)
 
 
def group_results(results):
  """Group list of results by their name/backend, returns list of lists."""
  # Group by name
  groupings = collections.defaultdict(list)
  for result in results:
    groupings[result.name].append(result)
 
  # Find baseline for each group, make ResultsWithBaseline for each name
  groupings_baseline = {}
  for name, results in groupings.items():
    baseline = next(filter(lambda x: x.backend_type == BASELINE_BACKEND,
                           results))
    other = sorted(filter(lambda x: x is not baseline, results),
                   key=lambda x: x.backend_type)
    groupings_baseline[name] = ResultsWithBaseline(
        baseline=baseline,
        other=other)
 
  # Merge ResultsWithBaseline for known groups
  known_groupings_baseline = collections.defaultdict(list)
  for name, results_with_bl in sorted(groupings_baseline.items()):
    group_name = name
    for known_group in KNOWN_GROUPS:
      if known_group[0].match(results_with_bl.baseline.name):
        group_name = known_group[1]
        break
    known_groupings_baseline[group_name].append(results_with_bl)
 
  # Turn into a list sorted by name
  groupings_list = []
  for name, results_wbl in sorted(known_groupings_baseline.items()):
    groupings_list.append((name, results_wbl))
  return groupings_list
 
 
def get_frequency_graph_min_max(results_with_bl):
  """Get min and max times of latencies frequency."""
  mins = []
  maxs = []
  for result in [results_with_bl.baseline] + results_with_bl.other:
    mins.append(result.time_freq_start_sec)
    to_add = len(result.time_freq_sec) * result.time_freq_step_sec
    maxs.append(result.time_freq_start_sec + to_add)
  return min(mins), max(maxs)
 
 
def get_frequency_graph(time_freq_start_sec, time_freq_step_sec, time_freq_sec,
                        start_sec, end_sec):
  """Generate input x/y data for latency frequency graph."""
  left_to_pad = int((time_freq_start_sec - start_sec) / time_freq_step_sec)
  end_time = time_freq_start_sec + len(time_freq_sec) * time_freq_step_sec
  right_to_pad = int((end_sec - end_time) / time_freq_step_sec)
 
  # After pading more that 64 values, graphs start to look messy,
  # bail out in that case.
  if (left_to_pad + right_to_pad) < 64:
    left_pad = (['{:.2f}ms'.format(
        (start_sec + x * time_freq_step_sec) * 1000.0)
                 for x in range(left_to_pad)], [0] * left_to_pad)
 
    right_pad = (['{:.2f}ms'.format(
        (end_time + x * time_freq_step_sec) * 1000.0)
                  for x in range(right_to_pad)], [0] * right_to_pad)
  else:
    left_pad = [[], []]
    right_pad = [[], []]
 
  data = (['{:.2f}ms'.format(
      (time_freq_start_sec + x * time_freq_step_sec) * 1000.0)
           for x in range(len(time_freq_sec))], time_freq_sec)
 
  return (left_pad[0] + data[0] + right_pad[0],
          left_pad[1] + data[1] + right_pad[1])
 
 
def is_topk_evaluator(evaluator_keys):
  """Are these evaluator keys from TopK evaluator?"""
  return (len(evaluator_keys) == 5 and
          evaluator_keys[0] == 'top_1' and
          evaluator_keys[1] == 'top_2' and
          evaluator_keys[2] == 'top_3' and
          evaluator_keys[3] == 'top_4' and
          evaluator_keys[4] == 'top_5')
 
 
def is_melceplogf0_evaluator(evaluator_keys):
  """Are these evaluator keys from MelCepLogF0 evaluator?"""
  return (len(evaluator_keys) == 2 and
          evaluator_keys[0] == 'max_mel_cep_distortion' and
          evaluator_keys[1] == 'max_log_f0_error')
 
 
def is_phone_error_rate_evaluator(evaluator_keys):
  """Are these evaluator keys from PhoneErrorRate evaluator?"""
  return (len(evaluator_keys) == 1 and
          evaluator_keys[0] == 'max_phone_error_rate')
 
 
def generate_accuracy_headers(result):
  """Accuracy-related headers for result table."""
  if is_topk_evaluator(result.evaluator_keys):
    return ACCURACY_HEADERS_TOPK_TEMPLATE
  elif is_melceplogf0_evaluator(result.evaluator_keys):
    return ACCURACY_HEADERS_MELCEPLOGF0_TEMPLATE
  elif is_phone_error_rate_evaluator(result.evaluator_keys):
    return ACCURACY_HEADERS_PHONE_ERROR_RATE_TEMPLATE
  else:
    return ACCURACY_HEADERS_BASIC_TEMPLATE
  raise ScoreException('Unknown accuracy headers for: ' + str(result))
 
 
def get_diff_span(value, same_delta, positive_is_better):
  if abs(value) < same_delta:
    return 'same'
  if positive_is_better and value > 0 or not positive_is_better and value < 0:
    return 'better'
  return 'worse'
 
 
def generate_accuracy_values(baseline, result):
  """Accuracy-related data for result table."""
  if is_topk_evaluator(result.evaluator_keys):
    val = [float(x) * 100.0 for x in result.evaluator_values]
    if result is baseline:
      topk = [TOPK_BASELINE_TEMPLATE.format(val=x) for x in val]
      return ACCURACY_VALUES_TOPK_TEMPLATE.format(
          top1=topk[0], top2=topk[1], top3=topk[2], top4=topk[3],
          top5=topk[4]
      )
    else:
      base = [float(x) * 100.0 for x in baseline.evaluator_values]
      diff = [a - b for a, b in zip(val, base)]
      topk = [TOPK_DIFF_TEMPLATE.format(
          val=v, diff=d, span=get_diff_span(d, 1.0, positive_is_better=True))
              for v, d in zip(val, diff)]
      return ACCURACY_VALUES_TOPK_TEMPLATE.format(
          top1=topk[0], top2=topk[1], top3=topk[2], top4=topk[3],
          top5=topk[4]
      )
  elif is_melceplogf0_evaluator(result.evaluator_keys):
    val = [float(x) for x in
           result.evaluator_values + [result.max_single_error]]
    if result is baseline:
      return ACCURACY_VALUES_MELCEPLOGF0_TEMPLATE.format(
          max_log_f0=MELCEPLOGF0_BASELINE_TEMPLATE.format(
              val=val[0]),
          max_mel_cep_distortion=MELCEPLOGF0_BASELINE_TEMPLATE.format(
              val=val[1]),
          max_single_error=MELCEPLOGF0_BASELINE_TEMPLATE.format(
              val=val[2]),
      )
    else:
      base = [float(x) for x in
              baseline.evaluator_values + [baseline.max_single_error]]
      diff = [a - b for a, b in zip(val, base)]
      v = [MELCEPLOGF0_DIFF_TEMPLATE.format(
          val=v, diff=d, span=get_diff_span(d, 1.0, positive_is_better=False))
           for v, d in zip(val, diff)]
      return ACCURACY_VALUES_MELCEPLOGF0_TEMPLATE.format(
          max_log_f0=v[0],
          max_mel_cep_distortion=v[1],
          max_single_error=v[2],
      )
  elif is_phone_error_rate_evaluator(result.evaluator_keys):
    val = [float(x) for x in
           result.evaluator_values + [result.max_single_error]]
    if result is baseline:
      return ACCURACY_VALUES_PHONE_ERROR_RATE_TEMPLATE.format(
          max_phone_error_rate=PHONE_ERROR_RATE_BASELINE_TEMPLATE.format(
              val=val[0]),
          max_single_error=PHONE_ERROR_RATE_BASELINE_TEMPLATE.format(
              val=val[1]),
      )
    else:
      base = [float(x) for x in
              baseline.evaluator_values + [baseline.max_single_error]]
      diff = [a - b for a, b in zip(val, base)]
      v = [PHONE_ERROR_RATE_DIFF_TEMPLATE.format(
          val=v, diff=d, span=get_diff_span(d, 1.0, positive_is_better=False))
           for v, d in zip(val, diff)]
      return ACCURACY_VALUES_PHONE_ERROR_RATE_TEMPLATE.format(
          max_phone_error_rate=v[0],
          max_single_error=v[1],
      )
  else:
    return ACCURACY_VALUES_BASIC_TEMPLATE.format(
        max_single_error=result.max_single_error,
    )
  raise ScoreException('Unknown accuracy values for: ' + str(result))
 
 
def getchartjs_source():
  return open(os.path.dirname(os.path.abspath(__file__)) + '/' +
              CHART_JS_FILE).read()
 
 
def generate_avg_ms(baseline, result):
  """Generate average latency value."""
  if result is None:
    result = baseline
 
  result_avg_ms = (result.total_time_sec / result.iterations)*1000.0
  if result is baseline:
    return LATENCY_BASELINE_TEMPLATE.format(val=result_avg_ms)
  baseline_avg_ms = (baseline.total_time_sec / baseline.iterations)*1000.0
  diff = (result_avg_ms/baseline_avg_ms - 1.0) * 100.0
  diff_val = result_avg_ms - baseline_avg_ms
  return LATENCY_DIFF_TEMPLATE.format(
      val=result_avg_ms,
      diff=diff,
      diff_val=diff_val,
      span=get_diff_span(diff, same_delta=1.0, positive_is_better=False))
 
 
def generate_result_entry(baseline, result):
  if result is None:
    result = baseline
 
  return RESULT_ENTRY_TEMPLATE.format(
      row_class='failed' if result.validation_errors else 'normal',
      name=result.name,
      backend=result.backend_type,
      iterations=result.iterations,
      testset_size=result.testset_size,
      accuracy_values=generate_accuracy_values(baseline, result),
      avg_ms=generate_avg_ms(baseline, result))
 
 
def generate_latency_graph_entry(result, results_with_bl):
  tmin, tmax = get_frequency_graph_min_max(results_with_bl)
  return LATENCY_GRAPH_ENTRY_TEMPLATE.format(
      backend=result.backend_type,
      i=id(result),
      freq_data=get_frequency_graph(result.time_freq_start_sec,
                                    result.time_freq_step_sec,
                                    result.time_freq_sec,
                                    tmin, tmax))
 
 
def generate_validation_errors(entries_group):
  """Generate validation errors table."""
  errors = []
  for result_and_bl in entries_group:
    for result in [result_and_bl.baseline] + result_and_bl.other:
      for error in result.validation_errors:
        errors.append((result.name, result.backend_type, error))
 
  if errors:
    return VALIDATION_ERRORS_TEMPLATE.format(
        results=''.join(
            VALIDATION_ERRORS_ENTRY_TEMPLATE.format(
                name=name,
                backend=backend,
                error=error) for name, backend, error in errors))
  return ''
 
 
def generate_result(benchmark_info, data):
  """Turn list of results into HTML."""
  return MAIN_TEMPLATE.format(
      jsdeps=getchartjs_source(),
      device_info=DEVICE_INFO_TEMPLATE.format(
          benchmark_time=benchmark_info[0],
          device_info=benchmark_info[1],
          ),
      results_list=''.join((
          RESULT_GROUP_TEMPLATE.format(
              group_name=entries_name,
              accuracy_headers=generate_accuracy_headers(
                  entries_group[0].baseline),
              results=''.join(
                  RESULT_ENTRY_WITH_BASELINE_TEMPLATE.format(
                      baseline=generate_result_entry(
                          result_and_bl.baseline, None),
                      other=''.join(
                          generate_result_entry(
                              result_and_bl.baseline, x)
                          for x in result_and_bl.other)
                  ) for result_and_bl in entries_group),
              validation_errors=generate_validation_errors(entries_group),
              latency_graphs=LATENCY_GRAPHS_TEMPLATE.format(
                  results=''.join(
                      LATENCY_GRAPH_ENTRY_WITH_BL_TEMPLATE.format(
                          name=result_and_bl.baseline.name,
                          baseline=generate_latency_graph_entry(
                              result_and_bl.baseline, result_and_bl),
                          result=''.join(
                              generate_latency_graph_entry(x, result_and_bl)
                              for x in result_and_bl.other)
                      ) for result_and_bl in entries_group)
              )
          ) for entries_name, entries_group in group_results(data))
                          ))
 
 
def main():
  parser = argparse.ArgumentParser()
  parser.add_argument('input', help='input csv filename')
  parser.add_argument('output', help='output html filename')
  args = parser.parse_args()
 
  benchmark_info, data = parse_csv_input(args.input)
 
  with open(args.output, 'w') as htmlfile:
    htmlfile.write(generate_result(benchmark_info, data))
 
 
# -----------------
# Templates below
 
MAIN_TEMPLATE = """<!doctype html>
<html lang='en-US'>
<head>
  <meta http-equiv='Content-Type' content='text/html; charset=utf-8'>
  <script src='https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js'></script>
  <script>{jsdeps}</script>
  <title>MLTS results</title>
  <style>
    .results {{
      border-collapse: collapse;
      width: 100%;
    }}
    .results td, .results th {{
      border: 1px solid #ddd;
      padding: 6px;
    }}
    .results tbody.values {{
      border-bottom: 8px solid #333;
    }}
    span.better {{
      color: #070;
    }}
    span.worse {{
      color: #700;
    }}
    span.same {{
      color: #000;
    }}
    .results tr:nth-child(even) {{background-color: #eee;}}
    .results tr:hover {{background-color: #ddd;}}
    .results th {{
      padding: 10px;
      font-weight: bold;
      text-align: left;
      background-color: #333;
      color: white;
    }}
    .results tr.failed {{
      background-color: #ffc4ca;
    }}
    .group {{
      padding-top: 25px;
    }}
    .group_name {{
      padding-left: 10px;
      font-size: 140%;
      font-weight: bold;
    }}
    .latency_results {{
       padding: 10px;
       border: 1px solid #ddd;
       overflow: hidden;
    }}
    .latency_with_baseline {{
       padding: 10px;
       border: 1px solid #ddd;
       overflow: hidden;
    }}
  </style>
</head>
<body>
{device_info}
{results_list}
</body>
</html>"""
 
DEVICE_INFO_TEMPLATE = """<div id='device_info'>
Benchmark for {device_info}, started at {benchmark_time}
</div>"""
 
 
RESULT_GROUP_TEMPLATE = """<div class="group">
<div class="group_name">{group_name}</div>
<table class="results">
 <tr>
   <th>Name</th>
   <th>Backend</th>
   <th>Iterations</th>
   <th>Test set size</th>
   <th>Average latency ms</th>
   {accuracy_headers}
 </tr>
 {results}
</table>
{validation_errors}
{latency_graphs}
</div>"""
 
 
VALIDATION_ERRORS_TEMPLATE = """
<table class="results">
 <tr>
   <th>Name</th>
   <th>Backend</th>
   <th>Error</th>
 </tr>
 {results}
</table>"""
VALIDATION_ERRORS_ENTRY_TEMPLATE = """
  <tr class="failed">
    <td>{name}</td>
    <td>{backend}</td>
    <td>{error}</td>
  </tr>
"""
 
LATENCY_GRAPHS_TEMPLATE = """
<div class="latency_results">
{results}
</div>
<div style="clear: left;"></div>
"""
 
LATENCY_GRAPH_ENTRY_WITH_BL_TEMPLATE = """
<div class="latency_with_baseline" style="float: left;">
<b>{name}</b>
{baseline}
{result}
</div>
"""
 
LATENCY_GRAPH_ENTRY_TEMPLATE = """
<div class="latency_result" style='width: 350px;'>
{backend}
<canvas id='latency_chart{i}' class='latency_chart'></canvas>
  <script>
   $(function() {{
       var freqData = {{
         labels: {freq_data[0]},
         datasets: [{{
            data: {freq_data[1]},
            backgroundColor: 'rgba(255, 99, 132, 0.6)',
            borderColor:  'rgba(255, 0, 0, 0.6)',
            borderWidth: 1,
         }}]
       }};
       var ctx = $('#latency_chart{i}')[0].getContext('2d');
       window.latency_chart{i} = new Chart(ctx,
        {{
          type: 'bar',
          data: freqData,
          options: {{
           responsive: true,
           title: {{
             display: false,
             text: 'Latency frequency'
           }},
           legend: {{
             display: false
           }},
           scales: {{
            xAxes: [ {{
              barPercentage: 1.0,
              categoryPercentage: 0.9,
            }}],
            yAxes: [{{
              scaleLabel: {{
                display: false,
                labelString: 'Iterations Count'
              }}
            }}]
           }}
         }}
       }});
     }});
    </script>
</div>
"""
 
 
RESULT_ENTRY_WITH_BASELINE_TEMPLATE = """
 <tbody class="values">
 {baseline}
 {other}
 </tbody>
"""
RESULT_ENTRY_TEMPLATE = """
  <tr class={row_class}>
   <td>{name}</td>
   <td>{backend}</td>
   <td>{iterations:d}</td>
   <td>{testset_size:d}</td>
   <td>{avg_ms}</td>
   {accuracy_values}
  </tr>"""
 
LATENCY_BASELINE_TEMPLATE = """{val:.2f}ms"""
LATENCY_DIFF_TEMPLATE = """{val:.2f}ms <span class='{span}'>
({diff_val:.2f}ms, {diff:.1f}%)</span>"""
 
 
ACCURACY_HEADERS_TOPK_TEMPLATE = """
<th>Top 1</th>
<th>Top 2</th>
<th>Top 3</th>
<th>Top 4</th>
<th>Top 5</th>
"""
ACCURACY_VALUES_TOPK_TEMPLATE = """
<td>{top1}</td>
<td>{top2}</td>
<td>{top3}</td>
<td>{top4}</td>
<td>{top5}</td>
"""
TOPK_BASELINE_TEMPLATE = """{val:.3f}%"""
TOPK_DIFF_TEMPLATE = """{val:.3f}% <span class='{span}'>({diff:.1f}%)</span>"""
 
 
ACCURACY_HEADERS_MELCEPLOGF0_TEMPLATE = """
<th>Max log(F0) error</th>
<th>Max Mel Cep distortion</th>
<th>Max scalar error</th>
"""
 
ACCURACY_VALUES_MELCEPLOGF0_TEMPLATE = """
<td>{max_log_f0}</td>
<td>{max_mel_cep_distortion}</td>
<td>{max_single_error}</td>
"""
 
MELCEPLOGF0_BASELINE_TEMPLATE = """{val:.2E}"""
MELCEPLOGF0_DIFF_TEMPLATE = \
"""{val:.2E} <span class='{span}'>({diff:.1f}%)</span>"""
 
 
ACCURACY_HEADERS_PHONE_ERROR_RATE_TEMPLATE = """
<th>Max phone error rate</th>
<th>Max scalar error</th>
"""
 
ACCURACY_VALUES_PHONE_ERROR_RATE_TEMPLATE = """
<td>{max_phone_error_rate}</td>
<td>{max_single_error}</td>
"""
 
PHONE_ERROR_RATE_BASELINE_TEMPLATE = """{val:.3f}"""
PHONE_ERROR_RATE_DIFF_TEMPLATE = \
"""{val:.3f} <span class='{span}'>({diff:.1f}%)</span>"""
 
 
ACCURACY_HEADERS_BASIC_TEMPLATE = """
<th>Max single scalar error</th>
"""
 
 
ACCURACY_VALUES_BASIC_TEMPLATE = """
<td>{max_single_error:.2f}</td>
"""
 
CHART_JS_FILE = 'Chart.bundle.min.js'
 
if __name__ == '__main__':
  main()