/** @file
|
ACPI DSDT table
|
|
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
**/
|
|
#define TRAP_TYPE_DTS 0x02
|
#define TRAP_TYPE_IGD 0x03
|
#define TRAP_TYPE_BGD 0x04 // BIOS Guard
|
|
// Define the following External variables to prevent a WARNING when
|
// using ASL.EXE and an ERROR when using IASL.EXE.
|
|
External(\PC00, IntObj) // PR00 _PDC Flags
|
External(\PC01)
|
External(\PC02)
|
External(\PC03)
|
External(\PC04)
|
External(\PC05)
|
External(\PC06)
|
External(\PC07)
|
External(\PC08)
|
External(\PC09)
|
External(\PC10)
|
External(\PC11)
|
External(\PC12)
|
External(\PC13)
|
External(\PC14)
|
External(\PC15)
|
External(\_PR.CFGD)
|
External(\SGMD)
|
|
//
|
// DTS externals
|
//
|
External(\_PR.DTSF)
|
External(\_PR.DTSE)
|
External(\_PR.TRPD)
|
External(\_PR.TRPF)
|
External(\_PR.DSAE)
|
//
|
// SGX
|
//
|
External(\_PR.EPCS)
|
External(\_PR.EMNA)
|
External(\_PR.ELNG)
|
|
External(\_SB.PCI0.GFX0.TCHE) // Technology enabled indicator
|
External(\_SB.PCI0.GFX0.STAT) // State Indicator
|
|
External(\_SB.TPM.PTS, MethodObj)
|
External(\_SB.PCI0.PAUD.PUAM, MethodObj) //PUAM - PowerResource User Absent Mode
|
External(\_SB.PCI0.XHC.DUAM, MethodObj) //DUAM - Device User Absent Mode for XHCI controller
|
External(\_SB.PCI0.I2C4.GEXP.INVC, MethodObj)
|
|
External(\_SB.PCI0.GFX0.IUEH, MethodObj)
|
|
#define CONVERTIBLE_BUTTON 6
|
#define DOCK_INDICATOR 7
|
|
Name(ECUP, 1) // EC State indicator: 1- Normal Mode 0- Low Power Mode
|
Mutex(EHLD, 0) // EC Hold indicator: 0- No one accessing the EC Power State 1- Someone else is accessing the EC Power State
|
|
|
|
External(TBTD, MethodObj)
|
External(TBTF, MethodObj)
|
External(MMRP, MethodObj)
|
External(MMTB, MethodObj)
|
External(TBFF, MethodObj)
|
External(FFTB, MethodObj)
|
External(SXTB, MethodObj)
|
|
|
// Interrupt specific registers
|
include("Itss.asl")
|
|
// Create a Global MUTEX.
|
|
Mutex(MUTX,0)
|
|
// OS Up mutex
|
Mutex(OSUM, 0)
|
// _WAK Finished Event
|
Event(WFEV)
|
|
// Define Port 80 as an ACPI Operating Region to use for debugging. Please
|
// note that the Intel CRBs have the ability to ouput an entire DWord to
|
// Port 80h for debugging purposes, so the model implemented here may not be
|
// able to be used on OEM Designs.
|
|
OperationRegion(PRT0,SystemIO,0x80,4)
|
Field(PRT0,DwordAcc,Lock,Preserve)
|
{
|
P80H, 32
|
}
|
|
// Port 80h Update:
|
// Update 8 bits of the 32-bit Port 80h.
|
//
|
// Arguments:
|
// Arg0: 0 = Write Port 80h, Bits 7:0 Only.
|
// 1 = Write Port 80h, Bits 15:8 Only.
|
// 2 = Write Port 80h, Bits 23:16 Only.
|
// 3 = Write Port 80h, Bits 31:24 Only.
|
// Arg1: 8-bit Value to write
|
//
|
// Return Value:
|
// None
|
|
Method(D8XH,2,Serialized)
|
{
|
If(LEqual(Arg0,0)) // Write Port 80h, Bits 7:0.
|
{
|
Store(Or(And(P80D,0xFFFFFF00),Arg1),P80D)
|
}
|
|
If(LEqual(Arg0,1)) // Write Port 80h, Bits 15:8.
|
{
|
Store(Or(And(P80D,0xFFFF00FF),ShiftLeft(Arg1,8)),P80D)
|
}
|
|
If(LEqual(Arg0,2)) // Write Port 80h, Bits 23:16.
|
{
|
Store(Or(And(P80D,0xFF00FFFF),ShiftLeft(Arg1,16)),P80D)
|
}
|
|
If(LEqual(Arg0,3)) // Write Port 80h, Bits 31:24.
|
{
|
Store(Or(And(P80D,0x00FFFFFF),ShiftLeft(Arg1,24)),P80D)
|
}
|
|
Store(P80D,P80H)
|
}
|
|
// Debug Port 80h Update:
|
// If Acpidebug is enabled only then call D8XH to update 8 bits of the 32-bit Port 80h.
|
//
|
// Arguments:
|
// Arg0: 0 = Write Port 80h, Bits 7:0 Only.
|
// 1 = Write Port 80h, Bits 15:8 Only.
|
// 2 = Write Port 80h, Bits 23:16 Only.
|
// 3 = Write Port 80h, Bits 31:24 Only.
|
// Arg1: 8-bit Value to write
|
//
|
// Return Value:
|
// None
|
Method(P8XH,2,Serialized)
|
{
|
// If ACPI debug is enabled, then display post codes on Port 80h
|
If(CondRefOf(MDBG)) {// Check if ACPI Debug SSDT is loaded
|
D8XH(Arg0,Arg1)
|
}
|
}
|
|
Method(ADBG,1,Serialized)
|
{
|
Return(0)
|
}
|
|
//
|
// Define SW SMI port as an ACPI Operating Region to use for generate SW SMI.
|
//
|
OperationRegion(SPRT,SystemIO, 0xB2,2)
|
Field (SPRT, ByteAcc, Lock, Preserve) {
|
SSMP, 8
|
}
|
|
// The _PIC Control Method is optional for ACPI design. It allows the
|
// OS to inform the ASL code which interrupt controller is being used,
|
// the 8259 or APIC. The reference code in this document will address
|
// PCI IRQ Routing and resource allocation for both cases.
|
//
|
// The values passed into _PIC are:
|
// 0 = 8259
|
// 1 = IOAPIC
|
|
Method(\_PIC,1)
|
{
|
Store(Arg0,GPIC)
|
Store(Arg0,PICM)
|
}
|
|
// Prepare to Sleep. The hook is called when the OS is about to
|
// enter a sleep state. The argument passed is the numeric value of
|
// the Sx state.
|
|
Method(_PTS,1)
|
{
|
Store(0,P80D) // Zero out the entire Port 80h DWord.
|
D8XH(0,Arg0) // Output Sleep State to Port 80h, Byte 0.
|
|
ADBG(Concatenate("_PTS=",ToHexString(Arg0)))
|
|
|
// If code is executed, Wake from RI# via Serial Modem will be
|
// enabled. If code is not executed, COM Port Debugging throughout
|
// all Sx states will be enabled.
|
|
If(LEqual(Arg0,3))
|
{
|
//
|
// Disable update DTS temperature and threshold value in every SMI
|
//
|
If(CondRefOf(\_PR.DTSE)){
|
If(LAnd(\_PR.DTSE, LGreater(TCNT, 1)))
|
{
|
TRAP(TRAP_TYPE_DTS,30)
|
}
|
}
|
}
|
|
|
// Generate a SW SMI trap to save some NVRAM data back to CMOS.
|
|
// Don't enable IGD OpRegion support yet.
|
// TRAP(1, 81)
|
//
|
// Call TPM.PTS
|
//
|
If(CondRefOf(\_SB.TPM.PTS))
|
{
|
//
|
// Call TPM PTS method
|
//
|
\_SB.TPM.PTS (Arg0)
|
}
|
|
}
|
|
// Wake. This hook is called when the OS is about to wake from a
|
// sleep state. The argument passed is the numeric value of the
|
// sleep state the system is waking from.
|
|
Method(_WAK,1,Serialized)
|
{
|
D8XH(1,0xAB) // Beginning of _WAK.
|
|
ADBG("_WAK")
|
|
//
|
// Only set 8254 CG if Low Power S0 Idle Capability is enabled
|
//
|
If (LEqual(S0ID, One)) {
|
//
|
// Set ITSSPRC.8254CGE: Offset 3300h ITSSPRC[2]
|
//
|
Store(0x01, \_SB.SCGE)
|
}
|
|
If(NEXP)
|
{
|
// Reinitialize the Native PCI Express after resume
|
|
If(And(OSCC,0x02))
|
{
|
\_SB.PCI0.NHPG()
|
}
|
If(And(OSCC,0x04)) // PME control granted?
|
{
|
\_SB.PCI0.NPME()
|
}
|
}
|
|
|
If(LOr(LEqual(Arg0,3), LEqual(Arg0,4))) // If S3 or S4 Resume
|
{
|
|
// Check to send Convertible/Dock state changes upon resume from Sx.
|
If(And(GBSX,0x40))
|
{
|
\_SB.PCI0.GFX0.IUEH(6)
|
|
//
|
// Do the same thing for Virtul Button device.
|
// Toggle Bit3 of PB1E(Slate/Notebook status)
|
//
|
Xor(PB1E, 0x08, PB1E)
|
|
}
|
|
If(And(GBSX,0x80))
|
{
|
\_SB.PCI0.GFX0.IUEH(7)
|
|
//
|
// Do the same thing for Virtul Button device.
|
// Toggle Bit4 of PB1E (Dock/Undock status)
|
//
|
Xor(PB1E, 0x10, PB1E)
|
|
}
|
|
|
If(CondRefOf(\_PR.DTSE)){
|
If(LAnd(\_PR.DTSE, LGreater(TCNT, 1)))
|
{
|
TRAP(TRAP_TYPE_DTS, 20)
|
}
|
}
|
|
|
// For PCI Express Express Cards, it is possible a device was
|
// either inserted or removed during an Sx State. The problem
|
// is that no wake event will occur for a given warm insertion
|
// or removal, so the OS will not become aware of any change.
|
// To get around this, re-enumerate all Express Card slots.
|
//
|
// If the Root Port is enabled, it may be assumed to be hot-pluggable.
|
|
If(LNotEqual(\_SB.PCI0.RP01.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP01,0)
|
}
|
|
If(LNotEqual(\_SB.PCI0.RP02.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP02,0)
|
}
|
|
If(LNotEqual(\_SB.PCI0.RP03.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP03,0)
|
}
|
|
If(LNotEqual(\_SB.PCI0.RP04.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP04,0)
|
}
|
|
If(LNotEqual(\_SB.PCI0.RP05.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP05,0)
|
}
|
|
If(LNotEqual(\_SB.PCI0.RP06.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP06,0)
|
}
|
|
If(LNotEqual(\_SB.PCI0.RP07.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP07,0)
|
}
|
|
If(LNotEqual(\_SB.PCI0.RP08.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP08,0)
|
}
|
|
If(LNotEqual(\_SB.PCI0.RP09.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP09,0)
|
}
|
|
If(LNotEqual(\_SB.PCI0.RP10.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP10,0)
|
}
|
|
If(LNotEqual(\_SB.PCI0.RP11.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP11,0)
|
}
|
|
If(LNotEqual(\_SB.PCI0.RP12.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP12,0)
|
}
|
|
If(LNotEqual(\_SB.PCI0.RP13.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP13,0)
|
}
|
|
If(LNotEqual(\_SB.PCI0.RP14.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP14,0)
|
}
|
|
If(LNotEqual(\_SB.PCI0.RP15.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP15,0)
|
}
|
|
If(LNotEqual(\_SB.PCI0.RP16.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP16,0)
|
}
|
|
If(LNotEqual(\_SB.PCI0.RP17.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP17,0)
|
}
|
|
If(LNotEqual(\_SB.PCI0.RP18.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP18,0)
|
}
|
|
If(LNotEqual(\_SB.PCI0.RP19.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP19,0)
|
}
|
|
If(LNotEqual(\_SB.PCI0.RP20.VDID,0xFFFFFFFF))
|
{
|
Notify (\_SB.PCI0.RP20,0)
|
}
|
}
|
|
|
Return(Package(){0,0})
|
}
|
|
// Get Buffer:
|
// This method will take a buffer passed into the method and
|
// create then return a smaller buffer based on the pointer
|
// and size parameters passed in.
|
//
|
// Arguments:
|
// Arg0: Pointer to start of new Buffer in passed in Buffer.
|
// Arg1: Size of Buffer to create.
|
// Arg2: Original Buffer
|
//
|
// Return Value:
|
// Newly created buffer.
|
|
Method(GETB,3,Serialized)
|
{
|
Multiply(Arg0,8,Local0) // Convert Index.
|
Multiply(Arg1,8,Local1) // Convert Size.
|
CreateField(Arg2,Local0,Local1,TBF3) // Create Buffer.
|
|
Return(TBF3) // Return Buffer.
|
}
|
|
// Power Notification:
|
// Perform all needed OS notifications during a
|
// Power Switch.
|
//
|
// Arguments:
|
// None
|
//
|
// Return Value:
|
// None
|
|
Method(PNOT,0,Serialized)
|
{
|
//
|
// If MP enabled and driver support is present, notify all
|
// processors.
|
//
|
If(LGreater(TCNT, 1))
|
{
|
If(And(\PC00,0x0008)){
|
Notify(\_PR.PR00,0x80) // Eval PR00 _PPC.
|
}
|
If(And(\PC01,0x0008)){
|
Notify(\_PR.PR01,0x80) // Eval PR01 _PPC.
|
}
|
If(And(\PC02,0x0008)){
|
Notify(\_PR.PR02,0x80) // Eval PR02 _PPC.
|
}
|
If(And(\PC03,0x0008)){
|
Notify(\_PR.PR03,0x80) // Eval PR03 _PPC.
|
}
|
If(And(\PC04,0x0008)){
|
Notify(\_PR.PR04,0x80) // Eval PR04 _PPC.
|
}
|
If(And(\PC05,0x0008)){
|
Notify(\_PR.PR05,0x80) // Eval PR05 _PPC.
|
}
|
If(And(\PC06,0x0008)){
|
Notify(\_PR.PR06,0x80) // Eval PR06 _PPC.
|
}
|
If(And(\PC07,0x0008)){
|
Notify(\_PR.PR07,0x80) // Eval PR07 _PPC.
|
}
|
If(And(\PC08,0x0008)){
|
Notify(\_PR.PR08,0x80) // Eval PR08 _PPC.
|
}
|
If(And(\PC09,0x0008)){
|
Notify(\_PR.PR09,0x80) // Eval PR09 _PPC.
|
}
|
If(And(\PC10,0x0008)){
|
Notify(\_PR.PR10,0x80) // Eval PR10 _PPC.
|
}
|
If(And(\PC11,0x0008)){
|
Notify(\_PR.PR11,0x80) // Eval PR11 _PPC.
|
}
|
If(And(\PC12,0x0008)){
|
Notify(\_PR.PR12,0x80) // Eval PR12 _PPC.
|
}
|
If(And(\PC13,0x0008)){
|
Notify(\_PR.PR13,0x80) // Eval PR13 _PPC.
|
}
|
If(And(\PC14,0x0008)){
|
Notify(\_PR.PR14,0x80) // Eval PR14 _PPC.
|
}
|
If(And(\PC15,0x0008)){
|
Notify(\_PR.PR15,0x80) // Eval PR15 _PPC.
|
}
|
}Else{
|
Notify(\_PR.PR00,0x80) // Eval _PPC.
|
}
|
|
If(LGreater(TCNT, 1)){
|
If(LAnd(And(\PC00,0x0008),And(\PC00,0x0010))){
|
Notify(\_PR.PR00,0x81) // Eval PR00 _CST.
|
}
|
If(LAnd(And(\PC01,0x0008),And(\PC01,0x0010))){
|
Notify(\_PR.PR01,0x81) // Eval PR01 _CST.
|
}
|
If(LAnd(And(\PC02,0x0008),And(\PC02,0x0010))){
|
Notify(\_PR.PR02,0x81) // Eval PR02 _CST.
|
}
|
If(LAnd(And(\PC03,0x0008),And(\PC03,0x0010))){
|
Notify(\_PR.PR03,0x81) // Eval PR03 _CST.
|
}
|
If(LAnd(And(\PC04,0x0008),And(\PC04,0x0010))){
|
Notify(\_PR.PR04,0x81) // Eval PR04 _CST.
|
}
|
If(LAnd(And(\PC05,0x0008),And(\PC05,0x0010))){
|
Notify(\_PR.PR05,0x81) // Eval PR05 _CST.
|
}
|
If(LAnd(And(\PC06,0x0008),And(\PC06,0x0010))){
|
Notify(\_PR.PR06,0x81) // Eval PR06 _CST.
|
}
|
If(LAnd(And(\PC07,0x0008),And(\PC07,0x0010))){
|
Notify(\_PR.PR07,0x81) // Eval PR07 _CST.
|
}
|
If(LAnd(And(\PC08,0x0008),And(\PC08,0x0010))){
|
Notify(\_PR.PR08,0x81) // Eval PR08 _CST.
|
}
|
If(LAnd(And(\PC09,0x0008),And(\PC09,0x0010))){
|
Notify(\_PR.PR09,0x81) // Eval PR09 _CST.
|
}
|
If(LAnd(And(\PC10,0x0008),And(\PC10,0x0010))){
|
Notify(\_PR.PR10,0x81) // Eval PR10 _CST.
|
}
|
If(LAnd(And(\PC11,0x0008),And(\PC11,0x0010))){
|
Notify(\_PR.PR11,0x81) // Eval PR11 _CST.
|
}
|
If(LAnd(And(\PC12,0x0008),And(\PC12,0x0010))){
|
Notify(\_PR.PR12,0x81) // Eval PR12 _CST.
|
}
|
If(LAnd(And(\PC13,0x0008),And(\PC13,0x0010))){
|
Notify(\_PR.PR13,0x81) // Eval PR13 _CST.
|
}
|
If(LAnd(And(\PC14,0x0008),And(\PC14,0x0010))){
|
Notify(\_PR.PR14,0x81) // Eval PR14 _CST.
|
}
|
If(LAnd(And(\PC15,0x0008),And(\PC15,0x0010))){
|
Notify(\_PR.PR15,0x81) // Eval PR15 _CST.
|
}
|
} Else {
|
Notify(\_PR.PR00,0x81) // Eval _CST.
|
}
|
|
|
} // end of Method(PNOT)
|
|
//
|
// Memory window to the CTDP registers starting at MCHBAR+5000h.
|
//
|
OperationRegion (MBAR, SystemMemory, Add(\_SB.PCI0.GMHB(),0x5000), 0x1000)
|
Field (MBAR, ByteAcc, NoLock, Preserve)
|
{
|
Offset (0x938), // PACKAGE_POWER_SKU_UNIT (MCHBAR+0x5938)
|
PWRU, 4, // Power Units [3:0] unit value is calculated by 1 W / Power(2,PWR_UNIT). The default value of 0011b corresponds to 1/8 W.
|
Offset (0x9A0), // TURBO_POWER_LIMIT1 (MCHBAR+0x59A0)
|
PPL1, 15, // PKG_PWR_LIM_1 [14:0]
|
PL1E,1, // PKG_PWR_LIM1_EN [15]
|
CLP1,1, // Package Clamping Limitation 1
|
}
|
Name(CLMP, 0) // save the clamp bit
|
Name(PLEN,0) // save the power limit enable bit
|
Name(PLSV,0x8000) // save value of PL1 upon entering CS
|
Name(CSEM, 0) //semaphore to avoid multiple calls to SPL1. SPL1/RPL1 must always be called in pairs, like push/pop off a stack
|
//
|
// SPL1 (Set PL1 to 4.5 watts with clamp bit set)
|
// Per Legacy Thermal management CS requirements, we would like to set the PL1 limit when entering CS to 4.5W with clamp bit set via MMIO.
|
// This can be done in the ACPI object which gets called by graphics driver during CS Entry.
|
// Likewise, during CS exit, the BIOS must reset the PL1 value to the previous value prior to CS entry and reset the clamp bit.
|
//
|
// Arguments:
|
// None
|
//
|
// Return Value:
|
// None
|
Method(SPL1,0,Serialized)
|
{
|
Name(PPUU,0) // units
|
If (LEqual(CSEM, 1))
|
{
|
Return() // we have already been called, must have CS exit before calling again
|
}
|
Store(1, CSEM) // record first call
|
|
Store (PPL1, PLSV) // save PL1 value upon entering CS
|
Store (PL1E, PLEN) // save PL1 Enable bit upon entering CS
|
Store (CLP1, CLMP) // save PL1 Clamp bit upon entering CS
|
|
If (LEqual(PWRU,0)) { // use PACKAGE_POWER_SKU_UNIT - Power Units[3:0]
|
Store(1,PPUU)
|
} Else {
|
ShiftLeft(Decrement(PWRU),2,PPUU) // get units
|
}
|
|
Multiply(PLVL,PPUU,Local0) // convert SETUP value to power units in milli-watts
|
Divide(Local0,1000,,Local1) // convert SETUP value to power units in watts
|
Store(Local1, PPL1) // copy value to PL1
|
Store(1, PL1E) // set Enable bit
|
Store(1, CLP1) // set Clamp bit
|
}
|
//
|
// RPL1 (Restore the PL1 register to the values prior to CS entry)
|
//
|
// Arguments:
|
// None
|
//
|
// Return Value:
|
// None
|
Method(RPL1,0,Serialized)
|
{
|
Store (PLSV, PPL1) // restore value of PL1 upon exiting CS
|
Store(PLEN, PL1E) // restore the PL1 enable bit
|
Store(CLMP, CLP1) // restore the PL1 Clamp bit
|
Store(0, CSEM) // restore semaphore
|
}
|
|
Name(UAMS, 0) // User Absent Mode state, Zero - User Present; non-Zero - User not present
|
Name(GLCK, 0) // a spin lock to avoid multi execution of GUAM
|
// GUAM - Global User Absent Mode
|
// Run when a change to User Absent mode is made, e.g. screen/display on/off events.
|
// Any device that needs notifications of these events includes its own UAMN Control Method.
|
//
|
// Arguments:
|
// Power State:
|
// 00h = On
|
// 01h = Standby
|
// other value = do nothing & return
|
//
|
// Return Value:
|
// None
|
//
|
Method(GUAM,1,Serialized)
|
{
|
Switch(ToInteger(Arg0))
|
{
|
Case(0) // exit CS
|
{
|
If(LEqual(GLCK, 1)){
|
store(0, GLCK)
|
|
P8XH(0, 0xE1)
|
P8XH(1, 0xAB)
|
ADBG("Exit Resiliency")
|
|
// @Todo: Exit EC Low Power Mode here
|
|
|
If(PSCP){
|
// if P-state Capping s enabled
|
If (CondRefOf(\_PR.PR00._PPC))
|
{
|
Store(Zero, \_PR.CPPC)
|
PNOT()
|
}
|
}
|
If(PLCS){
|
RPL1() // restore PL1 to pre-CS value upon exiting CS
|
}
|
} // end GLCK=1
|
} // end case(0)
|
|
Case(1) // enter CS
|
{
|
If(LEqual(GLCK, 0)){
|
store(1, GLCK)
|
|
P8XH(0, 0xE0)
|
P8XH(1, 00)
|
ADBG("Enter Resiliency")
|
|
//@Todo: Enter EC Low Power Mode here
|
|
|
If(PSCP){
|
// if P-state Capping is enabled
|
If (LAnd(CondRefOf(\_PR.PR00._PSS), CondRefOf(\_PR.PR00._PPC)))
|
{
|
If(And(\PC00,0x0400))
|
{
|
Subtract(SizeOf(\_PR.PR00.TPSS), One, \_PR.CPPC)
|
} Else {
|
Subtract(SizeOf(\_PR.PR00.LPSS), One, \_PR.CPPC)
|
}
|
PNOT()
|
}
|
}
|
If(PLCS){
|
SPL1() // set PL1 to low value upon CS entry
|
}
|
} // end GLCK=0
|
} // end case(1)
|
Default{
|
Return() // do nothing
|
}
|
} // end switch(arg0)
|
|
Store(LAnd(Arg0, LNot(PWRS)), UAMS) // UAMS: User Absent Mode state, Zero - User Present; non-Zero - User not present
|
P_CS() // Powergating during CS
|
|
} // end method GUAM()
|
|
// Power CS Powergated Devices:
|
// Method to enable/disable power during CS
|
Method(P_CS,0,Serialized)
|
{
|
// NOTE: Do not turn ON Touch devices from here. Touch does not have PUAM
|
If(CondRefOf(\_SB.PCI0.PAUD.PUAM)){ // Notify Codec(HD-A/ADSP)
|
\_SB.PCI0.PAUD.PUAM()
|
}
|
// Adding back USB powergating (ONLY for Win8) until RTD3 walkup port setup implementation is complete */
|
If(LEqual(OSYS,2012)){ // ONLY for Win8 OS
|
If(CondRefOf(\_SB.PCI0.XHC.DUAM)){ // Notify USB port- RVP
|
\_SB.PCI0.XHC.DUAM()
|
}
|
}
|
// TODO: Add calls to UAMN methods for
|
// * USB controller(s)
|
// * Embedded Controller
|
// * Sensor devices
|
// * Audio DSP?
|
// * Any other devices dependent on User Absent mode for power controls
|
}
|
|
// SMI I/O Trap:
|
// Generate a Mutex protected SMI I/O Trap.
|
//
|
// Arguments:
|
// Arg0: I/O Trap type.
|
// 2 - For DTS
|
// 3 - For IGD
|
// 4 - For BIOS Guard Tools
|
// Arg1: SMI I/O Trap Function to call.
|
//
|
// Return Value:
|
// SMI I/O Trap Return value.
|
// 0 = Success. Non-zero = Failure.
|
|
Scope(\)
|
{
|
//
|
// The IO address in this ACPI Operating Region will be updated during POST.
|
// This address range is used as a HotKey I/O Trap SMI so that ASL and SMI can
|
// communicate when needed.
|
//
|
OperationRegion(IO_H,SystemIO,0x1000,0x4)
|
Field(IO_H,ByteAcc,NoLock,Preserve) {
|
TRPH, 8
|
}
|
}
|
|
Method(TRAP,2,Serialized)
|
{
|
Store(Arg1,SMIF) // Store SMI Function.
|
|
If(LEqual(Arg0,TRAP_TYPE_DTS)) // Is DTS IO Trap?
|
{
|
Store(Arg1,\_PR.DTSF) // Store the function number global NVS
|
Store(0,\_PR.TRPD) // Generate IO Trap.
|
Return(\_PR.DTSF) // Return status from SMI handler
|
}
|
|
If(LEqual(Arg0,TRAP_TYPE_IGD)) // Is IGD IO Trap?
|
{
|
Store(0,TRPH) // Generate IO Trap.
|
}
|
|
If(LEqual(Arg0,TRAP_TYPE_BGD)) // Is BIOS Guard TOOLS IO Trap?
|
{
|
Store(0,\_PR.TRPF) // Generate IO Trap
|
}
|
|
Return(SMIF) // Return SMIF. 0 = Success.
|
}
|
|
// Note: Only add the indicator device needed by the platform.
|
|
//
|
// System Bus
|
//
|
Scope(\_SB.PCI0)
|
{
|
|
Method(_INI,0, Serialized)
|
{
|
|
// Determine the OS and store the value, where:
|
//
|
// OSYS = 1000 = Linux.
|
// OSYS = 2000 = WIN2000.
|
// OSYS = 2001 = WINXP, RTM or SP1.
|
// OSYS = 2002 = WINXP SP2.
|
// OSYS = 2006 = Vista.
|
// OSYS = 2009 = Windows 7 and Windows Server 2008 R2.
|
// OSYS = 2012 = Windows 8 and Windows Server 2012.
|
// OSYS = 2013 = Windows Blue.
|
//
|
// Assume Windows 2000 at a minimum.
|
|
Store(2000,OSYS)
|
|
// Check for a specific OS which supports _OSI.
|
|
If(CondRefOf(\_OSI))
|
{
|
If(\_OSI("Linux"))
|
{
|
Store(1000,OSYS)
|
}
|
|
If(\_OSI("Windows 2001")) // Windows XP
|
{
|
Store(2001,OSYS)
|
}
|
|
If(\_OSI("Windows 2001 SP1")) //Windows XP SP1
|
{
|
Store(2001,OSYS)
|
}
|
|
If(\_OSI("Windows 2001 SP2")) //Windows XP SP2
|
{
|
Store(2002,OSYS)
|
}
|
|
If (\_OSI( "Windows 2001.1")) //Windows Server 2003
|
{
|
Store(2003,OSYS)
|
}
|
|
If(\_OSI("Windows 2006")) //Windows Vista
|
{
|
Store(2006,OSYS)
|
}
|
|
If(\_OSI("Windows 2009")) //Windows 7 and Windows Server 2008 R2
|
{
|
Store(2009,OSYS)
|
}
|
|
If(\_OSI("Windows 2012")) //Windows 8 and Windows Server 2012
|
{
|
Store(2012,OSYS)
|
}
|
|
If(\_OSI("Windows 2013")) //Windows 8.1 and Windows Server 2012 R2
|
{
|
Store(2013,OSYS)
|
}
|
|
If(\_OSI("Windows 2015")) //Windows 10
|
{
|
Store(2015,OSYS)
|
}
|
}
|
|
//
|
// Set DTS NVS data means in OS ACPI mode enabled insteads of GlobalNvs OperatingSystem (OSYS)
|
//
|
If(CondRefOf(\_PR.DTSE)){
|
If(LGreaterEqual(\_PR.DTSE, 0x01)){
|
Store(0x01, \_PR.DSAE)
|
}
|
}
|
|
}
|
|
Method(NHPG,0,Serialized)
|
{
|
Store(0,^RP01.HPEX) // clear the hot plug SCI enable bit
|
Store(0,^RP02.HPEX) // clear the hot plug SCI enable bit
|
Store(0,^RP03.HPEX) // clear the hot plug SCI enable bit
|
Store(0,^RP04.HPEX) // clear the hot plug SCI enable bit
|
Store(0,^RP05.HPEX) // clear the hot plug SCI enable bit
|
Store(0,^RP06.HPEX) // clear the hot plug SCI enable bit
|
Store(0,^RP07.HPEX) // clear the hot plug SCI enable bit
|
Store(0,^RP08.HPEX) // clear the hot plug SCI enable bit
|
Store(0,^RP09.HPEX) // clear the hot plug SCI enable bit
|
Store(0,^RP10.HPEX) // clear the hot plug SCI enable bit
|
Store(0,^RP11.HPEX) // clear the hot plug SCI enable bit
|
Store(0,^RP12.HPEX) // clear the hot plug SCI enable bit
|
Store(0,^RP13.HPEX) // clear the hot plug SCI enable bit
|
Store(0,^RP14.HPEX) // clear the hot plug SCI enable bit
|
Store(0,^RP15.HPEX) // clear the hot plug SCI enable bit
|
Store(0,^RP16.HPEX) // clear the hot plug SCI enable bit
|
Store(0,^RP17.HPEX) // clear the hot plug SCI enable bit
|
Store(0,^RP18.HPEX) // clear the hot plug SCI enable bit
|
Store(0,^RP19.HPEX) // clear the hot plug SCI enable bit
|
Store(0,^RP20.HPEX) // clear the hot plug SCI enable bit
|
|
Store(1,^RP01.HPSX) // clear the hot plug SCI status bit
|
Store(1,^RP02.HPSX) // clear the hot plug SCI status bit
|
Store(1,^RP03.HPSX) // clear the hot plug SCI status bit
|
Store(1,^RP04.HPSX) // clear the hot plug SCI status bit
|
Store(1,^RP05.HPSX) // clear the hot plug SCI status bit
|
Store(1,^RP06.HPSX) // clear the hot plug SCI status bit
|
Store(1,^RP07.HPSX) // clear the hot plug SCI status bit
|
Store(1,^RP08.HPSX) // clear the hot plug SCI status bit
|
Store(1,^RP09.HPSX) // clear the hot plug SCI status bit
|
Store(1,^RP10.HPSX) // clear the hot plug SCI status bit
|
Store(1,^RP11.HPSX) // clear the hot plug SCI status bit
|
Store(1,^RP12.HPSX) // clear the hot plug SCI status bit
|
Store(1,^RP13.HPSX) // clear the hot plug SCI status bit
|
Store(1,^RP14.HPSX) // clear the hot plug SCI status bit
|
Store(1,^RP15.HPSX) // clear the hot plug SCI status bit
|
Store(1,^RP16.HPSX) // clear the hot plug SCI status bit
|
Store(1,^RP17.HPSX) // clear the hot plug SCI status bit
|
Store(1,^RP18.HPSX) // clear the hot plug SCI status bit
|
Store(1,^RP19.HPSX) // clear the hot plug SCI status bit
|
Store(1,^RP20.HPSX) // clear the hot plug SCI status bit
|
}
|
|
Method(NPME,0,Serialized)
|
{
|
Store(0,^RP01.PMEX) // clear the PME SCI enable bit
|
Store(0,^RP02.PMEX) // clear the PME SCI enable bit
|
Store(0,^RP03.PMEX) // clear the PME SCI enable bit
|
Store(0,^RP04.PMEX) // clear the PME SCI enable bit
|
Store(0,^RP05.PMEX) // clear the PME SCI enable bit
|
Store(0,^RP06.PMEX) // clear the PME SCI enable bit
|
Store(0,^RP07.PMEX) // clear the PME SCI enable bit
|
Store(0,^RP08.PMEX) // clear the PME SCI enable bit
|
Store(0,^RP09.PMEX) // clear the PME SCI enable bit
|
Store(0,^RP10.PMEX) // clear the PME SCI enable bit
|
Store(0,^RP11.PMEX) // clear the PME SCI enable bit
|
Store(0,^RP12.PMEX) // clear the PME SCI enable bit
|
Store(0,^RP13.PMEX) // clear the PME SCI enable bit
|
Store(0,^RP14.PMEX) // clear the PME SCI enable bit
|
Store(0,^RP15.PMEX) // clear the PME SCI enable bit
|
Store(0,^RP16.PMEX) // clear the PME SCI enable bit
|
Store(0,^RP17.PMEX) // clear the PME SCI enable bit
|
Store(0,^RP18.PMEX) // clear the PME SCI enable bit
|
Store(0,^RP19.PMEX) // clear the PME SCI enable bit
|
Store(0,^RP20.PMEX) // clear the PME SCI enable bit
|
|
Store(1,^RP01.PMSX) // clear the PME SCI status bit
|
Store(1,^RP02.PMSX) // clear the PME SCI status bit
|
Store(1,^RP03.PMSX) // clear the PME SCI status bit
|
Store(1,^RP04.PMSX) // clear the PME SCI status bit
|
Store(1,^RP05.PMSX) // clear the PME SCI status bit
|
Store(1,^RP06.PMSX) // clear the PME SCI enable bit
|
Store(1,^RP07.PMSX) // clear the PME SCI status bit
|
Store(1,^RP08.PMSX) // clear the PME SCI status bit
|
Store(1,^RP09.PMSX) // clear the PME SCI status bit
|
Store(1,^RP10.PMSX) // clear the PME SCI status bit
|
Store(1,^RP11.PMSX) // clear the PME SCI status bit
|
Store(1,^RP12.PMSX) // clear the PME SCI status bit
|
Store(1,^RP13.PMSX) // clear the PME SCI status bit
|
Store(1,^RP14.PMSX) // clear the PME SCI status bit
|
Store(1,^RP15.PMSX) // clear the PME SCI status bit
|
Store(1,^RP16.PMSX) // clear the PME SCI status bit
|
Store(1,^RP17.PMSX) // clear the PME SCI status bit
|
Store(1,^RP18.PMSX) // clear the PME SCI status bit
|
Store(1,^RP19.PMSX) // clear the PME SCI status bit
|
Store(1,^RP20.PMSX) // clear the PME SCI status bit
|
}
|
}
|
|
Scope (\)
|
{
|
//
|
// Global Name, returns current Interrupt controller mode;
|
// updated from _PIC control method
|
//
|
Name(PICM, 0)
|
|
//
|
// Procedure: GPRW
|
//
|
// Description: Generic Wake up Control Method ("Big brother")
|
// to detect the Max Sleep State available in ASL Name scope
|
// and Return the Package compatible with _PRW format.
|
// Input: Arg0 = bit offset within GPE register space device event will be triggered to.
|
// Arg1 = Max Sleep state, device can resume the System from.
|
// If Arg1 = 0, Update Arg1 with Max _Sx state enabled in the System.
|
// Output: _PRW package
|
//
|
Name(PRWP, Package(){Zero, Zero}) // _PRW Package
|
|
Method(GPRW, 2)
|
{
|
Store(Arg0, Index(PRWP, 0)) // copy GPE#
|
//
|
// SS1-SS4 - enabled in BIOS Setup Sleep states
|
//
|
Store(ShiftLeft(SS1,1),Local0) // S1 ?
|
Or(Local0,ShiftLeft(SS2,2),Local0) // S2 ?
|
Or(Local0,ShiftLeft(SS3,3),Local0) // S3 ?
|
Or(Local0,ShiftLeft(SS4,4),Local0) // S4 ?
|
//
|
// Local0 has a bit mask of enabled Sx(1 based)
|
// bit mask of enabled in BIOS Setup Sleep states(1 based)
|
//
|
If(And(ShiftLeft(1, Arg1), Local0))
|
{
|
//
|
// Requested wake up value (Arg1) is present in Sx list of available Sleep states
|
//
|
Store(Arg1, Index(PRWP, 1)) // copy Sx#
|
}
|
Else
|
{
|
//
|
// Not available -> match Wake up value to the higher Sx state
|
//
|
ShiftRight(Local0, 1, Local0)
|
// If(LOr(LEqual(OSFL, 1), LEqual(OSFL, 2))) { // ??? Win9x
|
// FindSetLeftBit(Local0, Index(PRWP,1)) // Arg1 == Max Sx
|
// } Else { // ??? Win2k / XP
|
FindSetLeftBit(Local0, Index(PRWP,1)) // Arg1 == Min Sx
|
// }
|
}
|
|
Return(PRWP)
|
}
|
}
|
|
|
Scope (\_SB)
|
{
|
Name(OSCI, 0) // \_SB._OSC DWORD2 input
|
Name(OSCO, 0) // \_SB._OSC DWORD2 output
|
Name(OSCP, 0) // \_SB._OSC CAPABILITIES
|
// _OSC (Operating System Capabilities)
|
// _OSC under \_SB scope is used to convey platform wide OSPM capabilities.
|
// For a complete description of _OSC ACPI Control Method, refer to ACPI 5.0
|
// specification, section 6.2.10.
|
// Arguments: (4)
|
// Arg0 - A Buffer containing the UUID "0811B06E-4A27-44F9-8D60-3CBBC22E7B48"
|
// Arg1 - An Integer containing the Revision ID of the buffer format
|
// Arg2 - An Integer containing a count of entries in Arg3
|
// Arg3 - A Buffer containing a list of DWORD capabilities
|
// Return Value:
|
// A Buffer containing the list of capabilities
|
//
|
Method(_OSC,4,Serialized)
|
{
|
//
|
// Point to Status DWORD in the Arg3 buffer (STATUS)
|
//
|
CreateDWordField(Arg3, 0, STS0)
|
//
|
// Point to Caps DWORDs of the Arg3 buffer (CAPABILITIES)
|
//
|
CreateDwordField(Arg3, 4, CAP0)
|
|
|
//
|
// Only set 8254 CG if Low Power S0 Idle Capability is enabled
|
//
|
If (LEqual(S0ID, One)) {
|
//
|
// Set ITSSPRC.8254CGE: Offset 3300h ITSSPRC[2]
|
//
|
Store(0x01, \_SB.SCGE)
|
}
|
|
//
|
// Check UUID
|
//
|
If(LEqual(Arg0,ToUUID("0811B06E-4A27-44F9-8D60-3CBBC22E7B48")))
|
{
|
//
|
// Check Revision
|
//
|
If(LEqual(Arg1,One))
|
{
|
Store(CAP0, OSCP)
|
If(And(CAP0,0x04)) // Check _PR3 Support(BIT2)
|
{
|
Store(0x04, OSCO)
|
If(LNotEqual(And(SGMD,0x0F),2)) // Check Switchable/Hybrid graphics is not enabled in bios setup [SgModeMuxless]?
|
{
|
If(LEqual(RTD3,0)) // Is RTD3 support disabled in Bios Setup?
|
{
|
// RTD3 is disabled via BIOS Setup.
|
And(CAP0, 0x3B, CAP0) // Clear _PR3 capability
|
Or(STS0, 0x10, STS0) // Indicate capability bit is cleared
|
}
|
}
|
}
|
} Else{
|
And(STS0,0xFFFFFF00,STS0)
|
Or(STS0,0xA, STS0) // Unrecognised Revision and report OSC failure
|
}
|
} Else {
|
And(STS0,0xFFFFFF00,STS0)
|
Or (STS0,0x6, STS0) // Unrecognised UUID and report OSC failure
|
}
|
|
Return(Arg3)
|
} // End _OSC
|
|
} // End of Scope(\_SB)
|
|
//
|
// CS Wake up event support
|
//
|
Scope (\_SB)
|
{
|
// Define Sleep button to put the system in sleep
|
Device (SLPB)
|
{
|
Name (_HID, EISAID ("PNP0C0E"))
|
Name (_STA, 0x0B)
|
// Bit0 - the device is present: Yes.
|
// Bit1 - the device is enabled and decoding its resources: Yes.
|
// Bit2 - the device should be shown in the UI: No.
|
// Bit3 - the device is functioning properly: Yes.
|
// Bit4 - the battery is present: N/A
|
}
|
} // End of Scope(\_SB)
|