// SPDX-License-Identifier: GPL-2.0
|
/*
|
* Support for Intel Camera Imaging ISP subsystem.
|
* Copyright (c) 2010 - 2016, Intel Corporation.
|
*
|
* This program is free software; you can redistribute it and/or modify it
|
* under the terms and conditions of the GNU General Public License,
|
* version 2, as published by the Free Software Foundation.
|
*
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
* more details.
|
*/
|
|
#include "isp.h"
|
#include "vmem.h"
|
#include "vmem_local.h"
|
|
#if !defined(HRT_MEMORY_ACCESS)
|
#include "ia_css_device_access.h"
|
#endif
|
#include "assert_support.h"
|
|
typedef unsigned long long hive_uedge;
|
typedef hive_uedge *hive_wide;
|
|
/* Copied from SDK: sim_semantics.c */
|
|
/* subword bits move like this: MSB[____xxxx____]LSB -> MSB[00000000xxxx]LSB */
|
#define SUBWORD(w, start, end) (((w) & (((1ULL << ((end) - 1)) - 1) << 1 | 1)) >> (start))
|
|
/* inverse subword bits move like this: MSB[xxxx____xxxx]LSB -> MSB[xxxx0000xxxx]LSB */
|
#define INV_SUBWORD(w, start, end) ((w) & (~(((1ULL << ((end) - 1)) - 1) << 1 | 1) | ((1ULL << (start)) - 1)))
|
|
#define uedge_bits (8 * sizeof(hive_uedge))
|
#define move_lower_bits(target, target_bit, src, src_bit) move_subword(target, target_bit, src, 0, src_bit)
|
#define move_upper_bits(target, target_bit, src, src_bit) move_subword(target, target_bit, src, src_bit, uedge_bits)
|
#define move_word(target, target_bit, src) move_subword(target, target_bit, src, 0, uedge_bits)
|
|
static void
|
move_subword(
|
hive_uedge *target,
|
unsigned int target_bit,
|
hive_uedge src,
|
unsigned int src_start,
|
unsigned int src_end)
|
{
|
unsigned int start_elem = target_bit / uedge_bits;
|
unsigned int start_bit = target_bit % uedge_bits;
|
unsigned int subword_width = src_end - src_start;
|
|
hive_uedge src_subword = SUBWORD(src, src_start, src_end);
|
|
if (subword_width + start_bit > uedge_bits) { /* overlap */
|
hive_uedge old_val1;
|
hive_uedge old_val0 = INV_SUBWORD(target[start_elem], start_bit, uedge_bits);
|
|
target[start_elem] = old_val0 | (src_subword << start_bit);
|
old_val1 = INV_SUBWORD(target[start_elem + 1], 0,
|
subword_width + start_bit - uedge_bits);
|
target[start_elem + 1] = old_val1 | (src_subword >> (uedge_bits - start_bit));
|
} else {
|
hive_uedge old_val = INV_SUBWORD(target[start_elem], start_bit,
|
start_bit + subword_width);
|
|
target[start_elem] = old_val | (src_subword << start_bit);
|
}
|
}
|
|
static void
|
hive_sim_wide_unpack(
|
hive_wide vector,
|
hive_wide elem,
|
hive_uint elem_bits,
|
hive_uint index)
|
{
|
/* pointers into wide_type: */
|
unsigned int start_elem = (elem_bits * index) / uedge_bits;
|
unsigned int start_bit = (elem_bits * index) % uedge_bits;
|
unsigned int end_elem = (elem_bits * (index + 1) - 1) / uedge_bits;
|
unsigned int end_bit = ((elem_bits * (index + 1) - 1) % uedge_bits) + 1;
|
|
if (elem_bits == uedge_bits) {
|
/* easy case for speedup: */
|
elem[0] = vector[index];
|
} else if (start_elem == end_elem) {
|
/* only one (<=64 bits) element needs to be (partly) copied: */
|
move_subword(elem, 0, vector[start_elem], start_bit, end_bit);
|
} else {
|
/* general case: handles edge spanning cases (includes >64bit elements) */
|
unsigned int bits_written = 0;
|
unsigned int i;
|
|
move_upper_bits(elem, bits_written, vector[start_elem], start_bit);
|
bits_written += (64 - start_bit);
|
for (i = start_elem + 1; i < end_elem; i++) {
|
move_word(elem, bits_written, vector[i]);
|
bits_written += uedge_bits;
|
}
|
move_lower_bits(elem, bits_written, vector[end_elem], end_bit);
|
}
|
}
|
|
static void
|
hive_sim_wide_pack(
|
hive_wide vector,
|
hive_wide elem,
|
hive_uint elem_bits,
|
hive_uint index)
|
{
|
/* pointers into wide_type: */
|
unsigned int start_elem = (elem_bits * index) / uedge_bits;
|
|
/* easy case for speedup: */
|
if (elem_bits == uedge_bits) {
|
vector[start_elem] = elem[0];
|
} else if (elem_bits > uedge_bits) {
|
unsigned int bits_to_write = elem_bits;
|
unsigned int start_bit = elem_bits * index;
|
unsigned int i = 0;
|
|
for (; bits_to_write > uedge_bits;
|
bits_to_write -= uedge_bits, i++, start_bit += uedge_bits) {
|
move_word(vector, start_bit, elem[i]);
|
}
|
move_lower_bits(vector, start_bit, elem[i], bits_to_write);
|
} else {
|
/* only one element needs to be (partly) copied: */
|
move_lower_bits(vector, elem_bits * index, elem[0], elem_bits);
|
}
|
}
|
|
static void load_vector(
|
const isp_ID_t ID,
|
t_vmem_elem *to,
|
const t_vmem_elem *from)
|
{
|
unsigned int i;
|
hive_uedge *data;
|
unsigned int size = sizeof(short) * ISP_NWAY;
|
|
VMEM_ARRAY(v, 2 * ISP_NWAY); /* Need 2 vectors to work around vmem hss bug */
|
assert(ISP_BAMEM_BASE[ID] != (hrt_address) - 1);
|
#if !defined(HRT_MEMORY_ACCESS)
|
ia_css_device_load(ISP_BAMEM_BASE[ID] + (unsigned long)from, &v[0][0], size);
|
#else
|
hrt_master_port_load(ISP_BAMEM_BASE[ID] + (unsigned long)from, &v[0][0], size);
|
#endif
|
data = (hive_uedge *)v;
|
for (i = 0; i < ISP_NWAY; i++) {
|
hive_uedge elem = 0;
|
|
hive_sim_wide_unpack(data, &elem, ISP_VEC_ELEMBITS, i);
|
to[i] = elem;
|
}
|
udelay(1); /* Spend at least 1 cycles per vector */
|
}
|
|
static void store_vector(
|
const isp_ID_t ID,
|
t_vmem_elem *to,
|
const t_vmem_elem *from)
|
{
|
unsigned int i;
|
unsigned int size = sizeof(short) * ISP_NWAY;
|
|
VMEM_ARRAY(v, 2 * ISP_NWAY); /* Need 2 vectors to work around vmem hss bug */
|
//load_vector (&v[1][0], &to[ISP_NWAY]); /* Fetch the next vector, since it will be overwritten. */
|
hive_uedge *data = (hive_uedge *)v;
|
|
for (i = 0; i < ISP_NWAY; i++) {
|
hive_sim_wide_pack(data, (hive_wide)&from[i], ISP_VEC_ELEMBITS, i);
|
}
|
assert(ISP_BAMEM_BASE[ID] != (hrt_address) - 1);
|
#if !defined(HRT_MEMORY_ACCESS)
|
ia_css_device_store(ISP_BAMEM_BASE[ID] + (unsigned long)to, &v, size);
|
#else
|
//hrt_mem_store (ISP, VMEM, (unsigned)to, &v, siz); /* This will overwrite the next vector as well */
|
hrt_master_port_store(ISP_BAMEM_BASE[ID] + (unsigned long)to, &v, size);
|
#endif
|
udelay(1); /* Spend at least 1 cycles per vector */
|
}
|
|
void isp_vmem_load(
|
const isp_ID_t ID,
|
const t_vmem_elem *from,
|
t_vmem_elem *to,
|
unsigned int elems) /* In t_vmem_elem */
|
{
|
unsigned int c;
|
const t_vmem_elem *vp = from;
|
|
assert(ID < N_ISP_ID);
|
assert((unsigned long)from % ISP_VEC_ALIGN == 0);
|
assert(elems % ISP_NWAY == 0);
|
for (c = 0; c < elems; c += ISP_NWAY) {
|
load_vector(ID, &to[c], vp);
|
vp = (t_vmem_elem *)((char *)vp + ISP_VEC_ALIGN);
|
}
|
}
|
|
void isp_vmem_store(
|
const isp_ID_t ID,
|
t_vmem_elem *to,
|
const t_vmem_elem *from,
|
unsigned int elems) /* In t_vmem_elem */
|
{
|
unsigned int c;
|
t_vmem_elem *vp = to;
|
|
assert(ID < N_ISP_ID);
|
assert((unsigned long)to % ISP_VEC_ALIGN == 0);
|
assert(elems % ISP_NWAY == 0);
|
for (c = 0; c < elems; c += ISP_NWAY) {
|
store_vector(ID, vp, &from[c]);
|
vp = (t_vmem_elem *)((char *)vp + ISP_VEC_ALIGN);
|
}
|
}
|
|
void isp_vmem_2d_load(
|
const isp_ID_t ID,
|
const t_vmem_elem *from,
|
t_vmem_elem *to,
|
unsigned int height,
|
unsigned int width,
|
unsigned int stride_to, /* In t_vmem_elem */
|
|
unsigned stride_from /* In t_vmem_elem */)
|
{
|
unsigned int h;
|
|
assert(ID < N_ISP_ID);
|
assert((unsigned long)from % ISP_VEC_ALIGN == 0);
|
assert(width % ISP_NWAY == 0);
|
assert(stride_from % ISP_NWAY == 0);
|
for (h = 0; h < height; h++) {
|
unsigned int c;
|
const t_vmem_elem *vp = from;
|
|
for (c = 0; c < width; c += ISP_NWAY) {
|
load_vector(ID, &to[stride_to * h + c], vp);
|
vp = (t_vmem_elem *)((char *)vp + ISP_VEC_ALIGN);
|
}
|
from = (const t_vmem_elem *)((const char *)from + stride_from / ISP_NWAY *
|
ISP_VEC_ALIGN);
|
}
|
}
|
|
void isp_vmem_2d_store(
|
const isp_ID_t ID,
|
t_vmem_elem *to,
|
const t_vmem_elem *from,
|
unsigned int height,
|
unsigned int width,
|
unsigned int stride_to, /* In t_vmem_elem */
|
|
unsigned stride_from /* In t_vmem_elem */)
|
{
|
unsigned int h;
|
|
assert(ID < N_ISP_ID);
|
assert((unsigned long)to % ISP_VEC_ALIGN == 0);
|
assert(width % ISP_NWAY == 0);
|
assert(stride_to % ISP_NWAY == 0);
|
for (h = 0; h < height; h++) {
|
unsigned int c;
|
t_vmem_elem *vp = to;
|
|
for (c = 0; c < width; c += ISP_NWAY) {
|
store_vector(ID, vp, &from[stride_from * h + c]);
|
vp = (t_vmem_elem *)((char *)vp + ISP_VEC_ALIGN);
|
}
|
to = (t_vmem_elem *)((char *)to + stride_to / ISP_NWAY * ISP_VEC_ALIGN);
|
}
|
}
|