hc
2024-03-22 a0752693d998599af469473b8dc239ef973a012f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/** @file
The interface layer for memory controller access.
It is supporting both real hardware platform and simulation environment.
 
Copyright (c) 2013-2015 Intel Corporation.
 
SPDX-License-Identifier: BSD-2-Clause-Patent
 
**/
#include "mrc.h"
#include "memory_options.h"
#include "meminit_utils.h"
#include "io.h"
 
#ifdef SIM
 
void SimMmio32Write (
    uint32_t be,
    uint32_t address,
    uint32_t data );
 
void SimMmio32Read (
    uint32_t be,
    uint32_t address,
    uint32_t *data );
 
void SimDelayClk (
    uint32_t x2clk );
 
// This is a simple delay function.
// It takes "nanoseconds" as a parameter.
void delay_n(uint32_t nanoseconds)
{
  SimDelayClk( 800*nanoseconds/1000);
}
#endif
 
/****
 *
 ***/
uint32_t Rd32(
    uint32_t unit,
    uint32_t addr)
{
  uint32_t data;
 
  switch (unit)
  {
  case MEM:
    case MMIO:
#ifdef SIM
    SimMmio32Read( 1, addr, &data);
#else
    data = *PTR32(addr);
#endif
    break;
 
  case MCU:
    case HOST_BRIDGE:
    case MEMORY_MANAGER:
    case HTE:
    // Handle case addr bigger than 8bit
    pciwrite32(0, 0, 0, SB_HADR_REG, addr & 0xFFF00);
    addr &= 0x00FF;
 
    pciwrite32(0, 0, 0, SB_PACKET_REG,
        SB_COMMAND(SB_REG_READ_OPCODE, unit, addr));
    data = pciread32(0, 0, 0, SB_DATA_REG);
    break;
 
  case DDRPHY:
    // Handle case addr bigger than 8bit
    pciwrite32(0, 0, 0, SB_HADR_REG, addr & 0xFFF00);
    addr &= 0x00FF;
 
    pciwrite32(0, 0, 0, SB_PACKET_REG,
        SB_COMMAND(SB_DDRIO_REG_READ_OPCODE, unit, addr));
    data = pciread32(0, 0, 0, SB_DATA_REG);
    break;
 
  default:
    DEAD_LOOP()
    ;
  }
 
  if (unit < MEM)
    DPF(D_REGRD, "RD32 %03X %08X %08X\n", unit, addr, data);
 
  return data;
}
 
/****
 *
 ***/
void Wr32(
    uint32_t unit,
    uint32_t addr,
    uint32_t data)
{
  if (unit < MEM)
    DPF(D_REGWR, "WR32 %03X %08X %08X\n", unit, addr, data);
 
  switch (unit)
  {
  case MEM:
    case MMIO:
#ifdef SIM
    SimMmio32Write( 1, addr, data);
#else
    *PTR32(addr) = data;
#endif
    break;
 
  case MCU:
    case HOST_BRIDGE:
    case MEMORY_MANAGER:
    case HTE:
    // Handle case addr bigger than 8bit
    pciwrite32(0, 0, 0, SB_HADR_REG, addr & 0xFFF00);
    addr &= 0x00FF;
 
    pciwrite32(0, 0, 0, SB_DATA_REG, data);
    pciwrite32(0, 0, 0, SB_PACKET_REG,
        SB_COMMAND(SB_REG_WRITE_OPCODE, unit, addr));
    break;
 
  case DDRPHY:
    // Handle case addr bigger than 8bit
    pciwrite32(0, 0, 0, SB_HADR_REG, addr & 0xFFF00);
    addr &= 0x00FF;
 
    pciwrite32(0, 0, 0, SB_DATA_REG, data);
    pciwrite32(0, 0, 0, SB_PACKET_REG,
        SB_COMMAND(SB_DDRIO_REG_WRITE_OPCODE, unit, addr));
    break;
 
  case DCMD:
    pciwrite32(0, 0, 0, SB_HADR_REG, 0);
    pciwrite32(0, 0, 0, SB_DATA_REG, data);
    pciwrite32(0, 0, 0, SB_PACKET_REG,
        SB_COMMAND(SB_DRAM_CMND_OPCODE, MCU, 0));
    break;
 
  default:
    DEAD_LOOP()
    ;
  }
}
 
/****
 *
 ***/
void WrMask32(
    uint32_t unit,
    uint32_t addr,
    uint32_t data,
    uint32_t mask)
{
  Wr32(unit, addr, ((Rd32(unit, addr) & ~mask) | (data & mask)));
}
 
/****
 *
 ***/
void pciwrite32(
    uint32_t bus,
    uint32_t dev,
    uint32_t fn,
    uint32_t reg,
    uint32_t data)
{
  Wr32(MMIO, PCIADDR(bus,dev,fn,reg), data);
}
 
/****
 *
 ***/
uint32_t pciread32(
    uint32_t bus,
    uint32_t dev,
    uint32_t fn,
    uint32_t reg)
{
  return Rd32(MMIO, PCIADDR(bus,dev,fn,reg));
}