// SPDX-License-Identifier: GPL-2.0
|
/* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com>
|
*
|
* This module is not a complete tagger implementation. It only provides
|
* primitives for taggers that rely on 802.1Q VLAN tags to use. The
|
* dsa_8021q_netdev_ops is registered for API compliance and not used
|
* directly by callers.
|
*/
|
#include <linux/if_bridge.h>
|
#include <linux/if_vlan.h>
|
#include <linux/dsa/8021q.h>
|
|
#include "dsa_priv.h"
|
|
/* Binary structure of the fake 12-bit VID field (when the TPID is
|
* ETH_P_DSA_8021Q):
|
*
|
* | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|
* +-----------+-----+-----------------+-----------+-----------------------+
|
* | DIR | SVL | SWITCH_ID | SUBVLAN | PORT |
|
* +-----------+-----+-----------------+-----------+-----------------------+
|
*
|
* DIR - VID[11:10]:
|
* Direction flags.
|
* * 1 (0b01) for RX VLAN,
|
* * 2 (0b10) for TX VLAN.
|
* These values make the special VIDs of 0, 1 and 4095 to be left
|
* unused by this coding scheme.
|
*
|
* SVL/SUBVLAN - { VID[9], VID[5:4] }:
|
* Sub-VLAN encoding. Valid only when DIR indicates an RX VLAN.
|
* * 0 (0b000): Field does not encode a sub-VLAN, either because
|
* received traffic is untagged, PVID-tagged or because a second
|
* VLAN tag is present after this tag and not inside of it.
|
* * 1 (0b001): Received traffic is tagged with a VID value private
|
* to the host. This field encodes the index in the host's lookup
|
* table through which the value of the ingress VLAN ID can be
|
* recovered.
|
* * 2 (0b010): Field encodes a sub-VLAN.
|
* ...
|
* * 7 (0b111): Field encodes a sub-VLAN.
|
* When DIR indicates a TX VLAN, SUBVLAN must be transmitted as zero
|
* (by the host) and ignored on receive (by the switch).
|
*
|
* SWITCH_ID - VID[8:6]:
|
* Index of switch within DSA tree. Must be between 0 and 7.
|
*
|
* PORT - VID[3:0]:
|
* Index of switch port. Must be between 0 and 15.
|
*/
|
|
#define DSA_8021Q_DIR_SHIFT 10
|
#define DSA_8021Q_DIR_MASK GENMASK(11, 10)
|
#define DSA_8021Q_DIR(x) (((x) << DSA_8021Q_DIR_SHIFT) & \
|
DSA_8021Q_DIR_MASK)
|
#define DSA_8021Q_DIR_RX DSA_8021Q_DIR(1)
|
#define DSA_8021Q_DIR_TX DSA_8021Q_DIR(2)
|
|
#define DSA_8021Q_SWITCH_ID_SHIFT 6
|
#define DSA_8021Q_SWITCH_ID_MASK GENMASK(8, 6)
|
#define DSA_8021Q_SWITCH_ID(x) (((x) << DSA_8021Q_SWITCH_ID_SHIFT) & \
|
DSA_8021Q_SWITCH_ID_MASK)
|
|
#define DSA_8021Q_SUBVLAN_HI_SHIFT 9
|
#define DSA_8021Q_SUBVLAN_HI_MASK GENMASK(9, 9)
|
#define DSA_8021Q_SUBVLAN_LO_SHIFT 4
|
#define DSA_8021Q_SUBVLAN_LO_MASK GENMASK(5, 4)
|
#define DSA_8021Q_SUBVLAN_HI(x) (((x) & GENMASK(2, 2)) >> 2)
|
#define DSA_8021Q_SUBVLAN_LO(x) ((x) & GENMASK(1, 0))
|
#define DSA_8021Q_SUBVLAN(x) \
|
(((DSA_8021Q_SUBVLAN_LO(x) << DSA_8021Q_SUBVLAN_LO_SHIFT) & \
|
DSA_8021Q_SUBVLAN_LO_MASK) | \
|
((DSA_8021Q_SUBVLAN_HI(x) << DSA_8021Q_SUBVLAN_HI_SHIFT) & \
|
DSA_8021Q_SUBVLAN_HI_MASK))
|
|
#define DSA_8021Q_PORT_SHIFT 0
|
#define DSA_8021Q_PORT_MASK GENMASK(3, 0)
|
#define DSA_8021Q_PORT(x) (((x) << DSA_8021Q_PORT_SHIFT) & \
|
DSA_8021Q_PORT_MASK)
|
|
/* Returns the VID to be inserted into the frame from xmit for switch steering
|
* instructions on egress. Encodes switch ID and port ID.
|
*/
|
u16 dsa_8021q_tx_vid(struct dsa_switch *ds, int port)
|
{
|
return DSA_8021Q_DIR_TX | DSA_8021Q_SWITCH_ID(ds->index) |
|
DSA_8021Q_PORT(port);
|
}
|
EXPORT_SYMBOL_GPL(dsa_8021q_tx_vid);
|
|
/* Returns the VID that will be installed as pvid for this switch port, sent as
|
* tagged egress towards the CPU port and decoded by the rcv function.
|
*/
|
u16 dsa_8021q_rx_vid(struct dsa_switch *ds, int port)
|
{
|
return DSA_8021Q_DIR_RX | DSA_8021Q_SWITCH_ID(ds->index) |
|
DSA_8021Q_PORT(port);
|
}
|
EXPORT_SYMBOL_GPL(dsa_8021q_rx_vid);
|
|
u16 dsa_8021q_rx_vid_subvlan(struct dsa_switch *ds, int port, u16 subvlan)
|
{
|
return DSA_8021Q_DIR_RX | DSA_8021Q_SWITCH_ID(ds->index) |
|
DSA_8021Q_PORT(port) | DSA_8021Q_SUBVLAN(subvlan);
|
}
|
EXPORT_SYMBOL_GPL(dsa_8021q_rx_vid_subvlan);
|
|
/* Returns the decoded switch ID from the RX VID. */
|
int dsa_8021q_rx_switch_id(u16 vid)
|
{
|
return (vid & DSA_8021Q_SWITCH_ID_MASK) >> DSA_8021Q_SWITCH_ID_SHIFT;
|
}
|
EXPORT_SYMBOL_GPL(dsa_8021q_rx_switch_id);
|
|
/* Returns the decoded port ID from the RX VID. */
|
int dsa_8021q_rx_source_port(u16 vid)
|
{
|
return (vid & DSA_8021Q_PORT_MASK) >> DSA_8021Q_PORT_SHIFT;
|
}
|
EXPORT_SYMBOL_GPL(dsa_8021q_rx_source_port);
|
|
/* Returns the decoded subvlan from the RX VID. */
|
u16 dsa_8021q_rx_subvlan(u16 vid)
|
{
|
u16 svl_hi, svl_lo;
|
|
svl_hi = (vid & DSA_8021Q_SUBVLAN_HI_MASK) >>
|
DSA_8021Q_SUBVLAN_HI_SHIFT;
|
svl_lo = (vid & DSA_8021Q_SUBVLAN_LO_MASK) >>
|
DSA_8021Q_SUBVLAN_LO_SHIFT;
|
|
return (svl_hi << 2) | svl_lo;
|
}
|
EXPORT_SYMBOL_GPL(dsa_8021q_rx_subvlan);
|
|
bool vid_is_dsa_8021q(u16 vid)
|
{
|
return ((vid & DSA_8021Q_DIR_MASK) == DSA_8021Q_DIR_RX ||
|
(vid & DSA_8021Q_DIR_MASK) == DSA_8021Q_DIR_TX);
|
}
|
EXPORT_SYMBOL_GPL(vid_is_dsa_8021q);
|
|
/* If @enabled is true, installs @vid with @flags into the switch port's HW
|
* filter.
|
* If @enabled is false, deletes @vid (ignores @flags) from the port. Had the
|
* user explicitly configured this @vid through the bridge core, then the @vid
|
* is installed again, but this time with the flags from the bridge layer.
|
*/
|
static int dsa_8021q_vid_apply(struct dsa_8021q_context *ctx, int port, u16 vid,
|
u16 flags, bool enabled)
|
{
|
struct dsa_port *dp = dsa_to_port(ctx->ds, port);
|
|
if (enabled)
|
return ctx->ops->vlan_add(ctx->ds, dp->index, vid, flags);
|
|
return ctx->ops->vlan_del(ctx->ds, dp->index, vid);
|
}
|
|
/* RX VLAN tagging (left) and TX VLAN tagging (right) setup shown for a single
|
* front-panel switch port (here swp0).
|
*
|
* Port identification through VLAN (802.1Q) tags has different requirements
|
* for it to work effectively:
|
* - On RX (ingress from network): each front-panel port must have a pvid
|
* that uniquely identifies it, and the egress of this pvid must be tagged
|
* towards the CPU port, so that software can recover the source port based
|
* on the VID in the frame. But this would only work for standalone ports;
|
* if bridged, this VLAN setup would break autonomous forwarding and would
|
* force all switched traffic to pass through the CPU. So we must also make
|
* the other front-panel ports members of this VID we're adding, albeit
|
* we're not making it their PVID (they'll still have their own).
|
* By the way - just because we're installing the same VID in multiple
|
* switch ports doesn't mean that they'll start to talk to one another, even
|
* while not bridged: the final forwarding decision is still an AND between
|
* the L2 forwarding information (which is limiting forwarding in this case)
|
* and the VLAN-based restrictions (of which there are none in this case,
|
* since all ports are members).
|
* - On TX (ingress from CPU and towards network) we are faced with a problem.
|
* If we were to tag traffic (from within DSA) with the port's pvid, all
|
* would be well, assuming the switch ports were standalone. Frames would
|
* have no choice but to be directed towards the correct front-panel port.
|
* But because we also want the RX VLAN to not break bridging, then
|
* inevitably that means that we have to give them a choice (of what
|
* front-panel port to go out on), and therefore we cannot steer traffic
|
* based on the RX VID. So what we do is simply install one more VID on the
|
* front-panel and CPU ports, and profit off of the fact that steering will
|
* work just by virtue of the fact that there is only one other port that's
|
* a member of the VID we're tagging the traffic with - the desired one.
|
*
|
* So at the end, each front-panel port will have one RX VID (also the PVID),
|
* the RX VID of all other front-panel ports, and one TX VID. Whereas the CPU
|
* port will have the RX and TX VIDs of all front-panel ports, and on top of
|
* that, is also tagged-input and tagged-output (VLAN trunk).
|
*
|
* CPU port CPU port
|
* +-------------+-----+-------------+ +-------------+-----+-------------+
|
* | RX VID | | | | TX VID | | |
|
* | of swp0 | | | | of swp0 | | |
|
* | +-----+ | | +-----+ |
|
* | ^ T | | | Tagged |
|
* | | | | | ingress |
|
* | +-------+---+---+-------+ | | +-----------+ |
|
* | | | | | | | | Untagged |
|
* | | U v U v U v | | v egress |
|
* | +-----+ +-----+ +-----+ +-----+ | | +-----+ +-----+ +-----+ +-----+ |
|
* | | | | | | | | | | | | | | | | | | | |
|
* | |PVID | | | | | | | | | | | | | | | | | |
|
* +-+-----+-+-----+-+-----+-+-----+-+ +-+-----+-+-----+-+-----+-+-----+-+
|
* swp0 swp1 swp2 swp3 swp0 swp1 swp2 swp3
|
*/
|
static int dsa_8021q_setup_port(struct dsa_8021q_context *ctx, int port,
|
bool enabled)
|
{
|
int upstream = dsa_upstream_port(ctx->ds, port);
|
u16 rx_vid = dsa_8021q_rx_vid(ctx->ds, port);
|
u16 tx_vid = dsa_8021q_tx_vid(ctx->ds, port);
|
struct net_device *master;
|
int i, err, subvlan;
|
|
/* The CPU port is implicitly configured by
|
* configuring the front-panel ports
|
*/
|
if (!dsa_is_user_port(ctx->ds, port))
|
return 0;
|
|
master = dsa_to_port(ctx->ds, port)->cpu_dp->master;
|
|
/* Add this user port's RX VID to the membership list of all others
|
* (including itself). This is so that bridging will not be hindered.
|
* L2 forwarding rules still take precedence when there are no VLAN
|
* restrictions, so there are no concerns about leaking traffic.
|
*/
|
for (i = 0; i < ctx->ds->num_ports; i++) {
|
u16 flags;
|
|
if (i == upstream)
|
continue;
|
else if (i == port)
|
/* The RX VID is pvid on this port */
|
flags = BRIDGE_VLAN_INFO_UNTAGGED |
|
BRIDGE_VLAN_INFO_PVID;
|
else
|
/* The RX VID is a regular VLAN on all others */
|
flags = BRIDGE_VLAN_INFO_UNTAGGED;
|
|
err = dsa_8021q_vid_apply(ctx, i, rx_vid, flags, enabled);
|
if (err) {
|
dev_err(ctx->ds->dev,
|
"Failed to apply RX VID %d to port %d: %d\n",
|
rx_vid, port, err);
|
return err;
|
}
|
}
|
|
/* CPU port needs to see this port's RX VID
|
* as tagged egress.
|
*/
|
err = dsa_8021q_vid_apply(ctx, upstream, rx_vid, 0, enabled);
|
if (err) {
|
dev_err(ctx->ds->dev,
|
"Failed to apply RX VID %d to port %d: %d\n",
|
rx_vid, port, err);
|
return err;
|
}
|
|
/* Add to the master's RX filter not only @rx_vid, but in fact
|
* the entire subvlan range, just in case this DSA switch might
|
* want to use sub-VLANs.
|
*/
|
for (subvlan = 0; subvlan < DSA_8021Q_N_SUBVLAN; subvlan++) {
|
u16 vid = dsa_8021q_rx_vid_subvlan(ctx->ds, port, subvlan);
|
|
if (enabled)
|
vlan_vid_add(master, ctx->proto, vid);
|
else
|
vlan_vid_del(master, ctx->proto, vid);
|
}
|
|
/* Finally apply the TX VID on this port and on the CPU port */
|
err = dsa_8021q_vid_apply(ctx, port, tx_vid, BRIDGE_VLAN_INFO_UNTAGGED,
|
enabled);
|
if (err) {
|
dev_err(ctx->ds->dev,
|
"Failed to apply TX VID %d on port %d: %d\n",
|
tx_vid, port, err);
|
return err;
|
}
|
err = dsa_8021q_vid_apply(ctx, upstream, tx_vid, 0, enabled);
|
if (err) {
|
dev_err(ctx->ds->dev,
|
"Failed to apply TX VID %d on port %d: %d\n",
|
tx_vid, upstream, err);
|
return err;
|
}
|
|
return err;
|
}
|
|
int dsa_8021q_setup(struct dsa_8021q_context *ctx, bool enabled)
|
{
|
int rc, port;
|
|
ASSERT_RTNL();
|
|
for (port = 0; port < ctx->ds->num_ports; port++) {
|
rc = dsa_8021q_setup_port(ctx, port, enabled);
|
if (rc < 0) {
|
dev_err(ctx->ds->dev,
|
"Failed to setup VLAN tagging for port %d: %d\n",
|
port, rc);
|
return rc;
|
}
|
}
|
|
return 0;
|
}
|
EXPORT_SYMBOL_GPL(dsa_8021q_setup);
|
|
static int dsa_8021q_crosschip_link_apply(struct dsa_8021q_context *ctx,
|
int port,
|
struct dsa_8021q_context *other_ctx,
|
int other_port, bool enabled)
|
{
|
u16 rx_vid = dsa_8021q_rx_vid(ctx->ds, port);
|
|
/* @rx_vid of local @ds port @port goes to @other_port of
|
* @other_ds
|
*/
|
return dsa_8021q_vid_apply(other_ctx, other_port, rx_vid,
|
BRIDGE_VLAN_INFO_UNTAGGED, enabled);
|
}
|
|
static int dsa_8021q_crosschip_link_add(struct dsa_8021q_context *ctx, int port,
|
struct dsa_8021q_context *other_ctx,
|
int other_port)
|
{
|
struct dsa_8021q_crosschip_link *c;
|
|
list_for_each_entry(c, &ctx->crosschip_links, list) {
|
if (c->port == port && c->other_ctx == other_ctx &&
|
c->other_port == other_port) {
|
refcount_inc(&c->refcount);
|
return 0;
|
}
|
}
|
|
dev_dbg(ctx->ds->dev,
|
"adding crosschip link from port %d to %s port %d\n",
|
port, dev_name(other_ctx->ds->dev), other_port);
|
|
c = kzalloc(sizeof(*c), GFP_KERNEL);
|
if (!c)
|
return -ENOMEM;
|
|
c->port = port;
|
c->other_ctx = other_ctx;
|
c->other_port = other_port;
|
refcount_set(&c->refcount, 1);
|
|
list_add(&c->list, &ctx->crosschip_links);
|
|
return 0;
|
}
|
|
static void dsa_8021q_crosschip_link_del(struct dsa_8021q_context *ctx,
|
struct dsa_8021q_crosschip_link *c,
|
bool *keep)
|
{
|
*keep = !refcount_dec_and_test(&c->refcount);
|
|
if (*keep)
|
return;
|
|
dev_dbg(ctx->ds->dev,
|
"deleting crosschip link from port %d to %s port %d\n",
|
c->port, dev_name(c->other_ctx->ds->dev), c->other_port);
|
|
list_del(&c->list);
|
kfree(c);
|
}
|
|
/* Make traffic from local port @port be received by remote port @other_port.
|
* This means that our @rx_vid needs to be installed on @other_ds's upstream
|
* and user ports. The user ports should be egress-untagged so that they can
|
* pop the dsa_8021q VLAN. But the @other_upstream can be either egress-tagged
|
* or untagged: it doesn't matter, since it should never egress a frame having
|
* our @rx_vid.
|
*/
|
int dsa_8021q_crosschip_bridge_join(struct dsa_8021q_context *ctx, int port,
|
struct dsa_8021q_context *other_ctx,
|
int other_port)
|
{
|
/* @other_upstream is how @other_ds reaches us. If we are part
|
* of disjoint trees, then we are probably connected through
|
* our CPU ports. If we're part of the same tree though, we should
|
* probably use dsa_towards_port.
|
*/
|
int other_upstream = dsa_upstream_port(other_ctx->ds, other_port);
|
int rc;
|
|
rc = dsa_8021q_crosschip_link_add(ctx, port, other_ctx, other_port);
|
if (rc)
|
return rc;
|
|
rc = dsa_8021q_crosschip_link_apply(ctx, port, other_ctx,
|
other_port, true);
|
if (rc)
|
return rc;
|
|
rc = dsa_8021q_crosschip_link_add(ctx, port, other_ctx, other_upstream);
|
if (rc)
|
return rc;
|
|
return dsa_8021q_crosschip_link_apply(ctx, port, other_ctx,
|
other_upstream, true);
|
}
|
EXPORT_SYMBOL_GPL(dsa_8021q_crosschip_bridge_join);
|
|
int dsa_8021q_crosschip_bridge_leave(struct dsa_8021q_context *ctx, int port,
|
struct dsa_8021q_context *other_ctx,
|
int other_port)
|
{
|
int other_upstream = dsa_upstream_port(other_ctx->ds, other_port);
|
struct dsa_8021q_crosschip_link *c, *n;
|
|
list_for_each_entry_safe(c, n, &ctx->crosschip_links, list) {
|
if (c->port == port && c->other_ctx == other_ctx &&
|
(c->other_port == other_port ||
|
c->other_port == other_upstream)) {
|
struct dsa_8021q_context *other_ctx = c->other_ctx;
|
int other_port = c->other_port;
|
bool keep;
|
int rc;
|
|
dsa_8021q_crosschip_link_del(ctx, c, &keep);
|
if (keep)
|
continue;
|
|
rc = dsa_8021q_crosschip_link_apply(ctx, port,
|
other_ctx,
|
other_port,
|
false);
|
if (rc)
|
return rc;
|
}
|
}
|
|
return 0;
|
}
|
EXPORT_SYMBOL_GPL(dsa_8021q_crosschip_bridge_leave);
|
|
struct sk_buff *dsa_8021q_xmit(struct sk_buff *skb, struct net_device *netdev,
|
u16 tpid, u16 tci)
|
{
|
/* skb->data points at skb_mac_header, which
|
* is fine for vlan_insert_tag.
|
*/
|
return vlan_insert_tag(skb, htons(tpid), tci);
|
}
|
EXPORT_SYMBOL_GPL(dsa_8021q_xmit);
|
|
MODULE_LICENSE("GPL v2");
|