import numpy as np
|
import cv2
|
from rknn.api import RKNN
|
|
if __name__ == '__main__':
|
|
# Create RKNN object
|
rknn = RKNN(verbose=True)
|
|
# Pre-process config
|
print('--> Config model')
|
rknn.config(mean_values=[[127.5, 127.5, 127.5], [0, 0, 0], [0, 0, 0], [127.5]],
|
std_values=[[128, 128, 128], [1, 1, 1], [1, 1, 1], [128]])
|
print('done')
|
|
# Load model
|
print('--> Loading model')
|
ret = rknn.load_tensorflow(tf_pb='./conv_128.pb',
|
inputs=['input1', 'input2', 'input3', 'input4'],
|
outputs=['output'],
|
input_size_list=[[1, 128, 128, 3], [1, 128, 128, 3], [1, 128, 128, 3], [1, 128, 128, 1]])
|
if ret != 0:
|
print('Load model failed!')
|
exit(ret)
|
print('done')
|
|
# Build model
|
print('--> Building model')
|
ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
|
if ret != 0:
|
print('Build model failed!')
|
exit(ret)
|
print('done')
|
|
# Export rknn model
|
print('--> Export rknn model')
|
ret = rknn.export_rknn('./conv_128.rknn')
|
if ret != 0:
|
print('Export rknn model failed!')
|
exit(ret)
|
print('done')
|
|
# Init runtime environment
|
print('--> Init runtime environment')
|
ret = rknn.init_runtime()
|
if ret != 0:
|
print('Init runtime environment failed!')
|
exit(ret)
|
print('done')
|
|
# Set inputs
|
img = cv2.imread('./dog_128x128.jpg')
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
img_gray = cv2.imread('./dog_128x128_gray.png', cv2.IMREAD_GRAYSCALE)
|
img_gray = np.expand_dims(img_gray, -1)
|
|
input2 = np.load('input2.npy').astype('float32')
|
|
input3 = np.load('input3.npy').astype('float32')
|
|
# Inference
|
print('--> Running model')
|
outputs = rknn.inference(inputs=[img, input2, input3, img_gray])
|
np.save('./functions_multi_input_test_0.npy', outputs[0])
|
print('done')
|
outputs[0] = outputs[0].reshape((1, -1))
|
print('inference result: ', outputs)
|
|
rknn.release()
|