import numpy as np
|
import cv2
|
from rknn.api import RKNN
|
|
|
def show_outputs(outputs):
|
output = outputs[0][0]
|
output_sorted = sorted(output, reverse=True)
|
top5_str = 'mobilenet_v1\n-----TOP 5-----\n'
|
for i in range(5):
|
value = output_sorted[i]
|
index = np.where(output == value)
|
for j in range(len(index)):
|
if (i + j) >= 5:
|
break
|
if value > 0:
|
topi = '{}: {}\n'.format(index[j], value)
|
else:
|
topi = '-1: 0.0\n'
|
top5_str += topi
|
print(top5_str)
|
|
|
if __name__ == '__main__':
|
|
# Create RKNN object
|
rknn = RKNN(verbose=True)
|
|
# Pre-process config
|
print('--> Config model')
|
rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128],
|
quantized_method='layer', quantized_algorithm='mmse')
|
print('done')
|
|
# Load model
|
print('--> Loading model')
|
ret = rknn.load_tensorflow(tf_pb='mobilenet_v1.pb',
|
inputs=['input'],
|
input_size_list=[[1, 224, 224, 3]],
|
outputs=['MobilenetV1/Logits/SpatialSqueeze'])
|
if ret != 0:
|
print('Load model failed!')
|
exit(ret)
|
print('done')
|
|
# Build model
|
print('--> Building model')
|
ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
|
if ret != 0:
|
print('Build model failed!')
|
exit(ret)
|
print('done')
|
|
# Accuracy analysis
|
print('--> Accuracy analysis')
|
ret = rknn.accuracy_analysis(inputs=['dog_224x224.jpg'], output_dir=None)
|
if ret != 0:
|
print('Accuracy analysis failed!')
|
exit(ret)
|
print('done')
|
|
f = open('./snapshot/error_analysis.txt')
|
lines = f.readlines()
|
cos = lines[-1].split()[1]
|
if float(cos) >= 0.965:
|
print('cos = {}, mmse work!'.format(cos))
|
else:
|
print('cos = {} < 0.965, mmse abnormal!'.format(cos))
|
f.close()
|
|
# Set inputs
|
img = cv2.imread('./dog_224x224.jpg')
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
img = np.expand_dims(img, 0)
|
|
# Init runtime environment
|
print('--> Init runtime environment')
|
ret = rknn.init_runtime()
|
if ret != 0:
|
print('Init runtime environment failed!')
|
exit(ret)
|
print('done')
|
|
# Inference
|
print('--> Running model')
|
outputs = rknn.inference(inputs=[img])
|
np.save('./functions_mmse_0.npy', outputs[0])
|
show_outputs(outputs)
|
print('done')
|
|
rknn.release()
|