hc
2024-03-26 e9199a72d842cbda78ac614eee5db7cdaa6f2530
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import numpy as np
import cv2
from rknn.api import RKNN
 
 
def show_outputs(outputs):
    output = outputs[0][0]
    output_sorted = sorted(output, reverse=True)
    top5_str = 'mobilenet_v1\n-----TOP 5-----\n'
    for i in range(5):
        value = output_sorted[i]
        index = np.where(output == value)
        for j in range(len(index)):
            if (i + j) >= 5:
                break
            if value > 0:
                topi = '{}: {}\n'.format(index[j], value)
            else:
                topi = '-1: 0.0\n'
            top5_str += topi
    print(top5_str)
 
 
if __name__ == '__main__':
 
    # Create RKNN object
    rknn = RKNN(verbose=True)
 
    # Pre-process config
    print('--> Config model')
    rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128],
                quantized_method='layer', quantized_algorithm='mmse')
    print('done')
 
    # Load model
    print('--> Loading model')
    ret = rknn.load_tensorflow(tf_pb='mobilenet_v1.pb',
                               inputs=['input'],
                               input_size_list=[[1, 224, 224, 3]],
                               outputs=['MobilenetV1/Logits/SpatialSqueeze'])
    if ret != 0:
        print('Load model failed!')
        exit(ret)
    print('done')
 
    # Build model
    print('--> Building model')
    ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
    if ret != 0:
        print('Build model failed!')
        exit(ret)
    print('done')
 
    # Accuracy analysis
    print('--> Accuracy analysis')
    ret = rknn.accuracy_analysis(inputs=['dog_224x224.jpg'], output_dir=None)
    if ret != 0:
        print('Accuracy analysis failed!')
        exit(ret)
    print('done')
 
    f = open('./snapshot/error_analysis.txt')
    lines = f.readlines()
    cos = lines[-1].split()[1]
    if float(cos) >= 0.965:
        print('cos = {}, mmse work!'.format(cos))
    else:
        print('cos = {} < 0.965, mmse abnormal!'.format(cos))
    f.close()
 
    # Set inputs
    img = cv2.imread('./dog_224x224.jpg')
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    img = np.expand_dims(img, 0)
 
    # Init runtime environment
    print('--> Init runtime environment')
    ret = rknn.init_runtime()
    if ret != 0:
        print('Init runtime environment failed!')
        exit(ret)
    print('done')
 
    # Inference
    print('--> Running model')
    outputs = rknn.inference(inputs=[img])
    np.save('./functions_mmse_0.npy', outputs[0])
    show_outputs(outputs)
    print('done')
 
    rknn.release()