// SPDX-License-Identifier: GPL-2.0-or-later
|
/*
|
* Linux Socket Filter - Kernel level socket filtering
|
*
|
* Based on the design of the Berkeley Packet Filter. The new
|
* internal format has been designed by PLUMgrid:
|
*
|
* Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
|
*
|
* Authors:
|
*
|
* Jay Schulist <jschlst@samba.org>
|
* Alexei Starovoitov <ast@plumgrid.com>
|
* Daniel Borkmann <dborkman@redhat.com>
|
*
|
* Andi Kleen - Fix a few bad bugs and races.
|
* Kris Katterjohn - Added many additional checks in bpf_check_classic()
|
*/
|
|
#include <linux/module.h>
|
#include <linux/types.h>
|
#include <linux/mm.h>
|
#include <linux/fcntl.h>
|
#include <linux/socket.h>
|
#include <linux/sock_diag.h>
|
#include <linux/in.h>
|
#include <linux/inet.h>
|
#include <linux/netdevice.h>
|
#include <linux/if_packet.h>
|
#include <linux/if_arp.h>
|
#include <linux/gfp.h>
|
#include <net/inet_common.h>
|
#include <net/ip.h>
|
#include <net/protocol.h>
|
#include <net/netlink.h>
|
#include <linux/skbuff.h>
|
#include <linux/skmsg.h>
|
#include <net/sock.h>
|
#include <net/flow_dissector.h>
|
#include <linux/errno.h>
|
#include <linux/timer.h>
|
#include <linux/uaccess.h>
|
#include <asm/unaligned.h>
|
#include <asm/cmpxchg.h>
|
#include <linux/filter.h>
|
#include <linux/ratelimit.h>
|
#include <linux/seccomp.h>
|
#include <linux/if_vlan.h>
|
#include <linux/bpf.h>
|
#include <linux/btf.h>
|
#include <net/sch_generic.h>
|
#include <net/cls_cgroup.h>
|
#include <net/dst_metadata.h>
|
#include <net/dst.h>
|
#include <net/sock_reuseport.h>
|
#include <net/busy_poll.h>
|
#include <net/tcp.h>
|
#include <net/xfrm.h>
|
#include <net/udp.h>
|
#include <linux/bpf_trace.h>
|
#include <net/xdp_sock.h>
|
#include <linux/inetdevice.h>
|
#include <net/inet_hashtables.h>
|
#include <net/inet6_hashtables.h>
|
#include <net/ip_fib.h>
|
#include <net/nexthop.h>
|
#include <net/flow.h>
|
#include <net/arp.h>
|
#include <net/ipv6.h>
|
#include <net/net_namespace.h>
|
#include <linux/seg6_local.h>
|
#include <net/seg6.h>
|
#include <net/seg6_local.h>
|
#include <net/lwtunnel.h>
|
#include <net/ipv6_stubs.h>
|
#include <net/bpf_sk_storage.h>
|
#include <net/transp_v6.h>
|
#include <linux/btf_ids.h>
|
#include <net/tls.h>
|
|
static const struct bpf_func_proto *
|
bpf_sk_base_func_proto(enum bpf_func_id func_id);
|
|
int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
|
{
|
if (in_compat_syscall()) {
|
struct compat_sock_fprog f32;
|
|
if (len != sizeof(f32))
|
return -EINVAL;
|
if (copy_from_sockptr(&f32, src, sizeof(f32)))
|
return -EFAULT;
|
memset(dst, 0, sizeof(*dst));
|
dst->len = f32.len;
|
dst->filter = compat_ptr(f32.filter);
|
} else {
|
if (len != sizeof(*dst))
|
return -EINVAL;
|
if (copy_from_sockptr(dst, src, sizeof(*dst)))
|
return -EFAULT;
|
}
|
|
return 0;
|
}
|
EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
|
|
/**
|
* sk_filter_trim_cap - run a packet through a socket filter
|
* @sk: sock associated with &sk_buff
|
* @skb: buffer to filter
|
* @cap: limit on how short the eBPF program may trim the packet
|
*
|
* Run the eBPF program and then cut skb->data to correct size returned by
|
* the program. If pkt_len is 0 we toss packet. If skb->len is smaller
|
* than pkt_len we keep whole skb->data. This is the socket level
|
* wrapper to BPF_PROG_RUN. It returns 0 if the packet should
|
* be accepted or -EPERM if the packet should be tossed.
|
*
|
*/
|
int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
|
{
|
int err;
|
struct sk_filter *filter;
|
|
/*
|
* If the skb was allocated from pfmemalloc reserves, only
|
* allow SOCK_MEMALLOC sockets to use it as this socket is
|
* helping free memory
|
*/
|
if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
|
NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
|
return -ENOMEM;
|
}
|
err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
|
if (err)
|
return err;
|
|
err = security_sock_rcv_skb(sk, skb);
|
if (err)
|
return err;
|
|
rcu_read_lock();
|
filter = rcu_dereference(sk->sk_filter);
|
if (filter) {
|
struct sock *save_sk = skb->sk;
|
unsigned int pkt_len;
|
|
skb->sk = sk;
|
pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
|
skb->sk = save_sk;
|
err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
|
}
|
rcu_read_unlock();
|
|
return err;
|
}
|
EXPORT_SYMBOL(sk_filter_trim_cap);
|
|
BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
|
{
|
return skb_get_poff(skb);
|
}
|
|
BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
|
{
|
struct nlattr *nla;
|
|
if (skb_is_nonlinear(skb))
|
return 0;
|
|
if (skb->len < sizeof(struct nlattr))
|
return 0;
|
|
if (a > skb->len - sizeof(struct nlattr))
|
return 0;
|
|
nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
|
if (nla)
|
return (void *) nla - (void *) skb->data;
|
|
return 0;
|
}
|
|
BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
|
{
|
struct nlattr *nla;
|
|
if (skb_is_nonlinear(skb))
|
return 0;
|
|
if (skb->len < sizeof(struct nlattr))
|
return 0;
|
|
if (a > skb->len - sizeof(struct nlattr))
|
return 0;
|
|
nla = (struct nlattr *) &skb->data[a];
|
if (nla->nla_len > skb->len - a)
|
return 0;
|
|
nla = nla_find_nested(nla, x);
|
if (nla)
|
return (void *) nla - (void *) skb->data;
|
|
return 0;
|
}
|
|
BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
|
data, int, headlen, int, offset)
|
{
|
u8 tmp, *ptr;
|
const int len = sizeof(tmp);
|
|
if (offset >= 0) {
|
if (headlen - offset >= len)
|
return *(u8 *)(data + offset);
|
if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
|
return tmp;
|
} else {
|
ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
|
if (likely(ptr))
|
return *(u8 *)ptr;
|
}
|
|
return -EFAULT;
|
}
|
|
BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
|
int, offset)
|
{
|
return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
|
offset);
|
}
|
|
BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
|
data, int, headlen, int, offset)
|
{
|
u16 tmp, *ptr;
|
const int len = sizeof(tmp);
|
|
if (offset >= 0) {
|
if (headlen - offset >= len)
|
return get_unaligned_be16(data + offset);
|
if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
|
return be16_to_cpu(tmp);
|
} else {
|
ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
|
if (likely(ptr))
|
return get_unaligned_be16(ptr);
|
}
|
|
return -EFAULT;
|
}
|
|
BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
|
int, offset)
|
{
|
return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
|
offset);
|
}
|
|
BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
|
data, int, headlen, int, offset)
|
{
|
u32 tmp, *ptr;
|
const int len = sizeof(tmp);
|
|
if (likely(offset >= 0)) {
|
if (headlen - offset >= len)
|
return get_unaligned_be32(data + offset);
|
if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
|
return be32_to_cpu(tmp);
|
} else {
|
ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
|
if (likely(ptr))
|
return get_unaligned_be32(ptr);
|
}
|
|
return -EFAULT;
|
}
|
|
BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
|
int, offset)
|
{
|
return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
|
offset);
|
}
|
|
static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
|
struct bpf_insn *insn_buf)
|
{
|
struct bpf_insn *insn = insn_buf;
|
|
switch (skb_field) {
|
case SKF_AD_MARK:
|
BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
|
|
*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
|
offsetof(struct sk_buff, mark));
|
break;
|
|
case SKF_AD_PKTTYPE:
|
*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
|
*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
|
#ifdef __BIG_ENDIAN_BITFIELD
|
*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
|
#endif
|
break;
|
|
case SKF_AD_QUEUE:
|
BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
|
|
*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
|
offsetof(struct sk_buff, queue_mapping));
|
break;
|
|
case SKF_AD_VLAN_TAG:
|
BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
|
|
/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
|
*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
|
offsetof(struct sk_buff, vlan_tci));
|
break;
|
case SKF_AD_VLAN_TAG_PRESENT:
|
*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
|
if (PKT_VLAN_PRESENT_BIT)
|
*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
|
if (PKT_VLAN_PRESENT_BIT < 7)
|
*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
|
break;
|
}
|
|
return insn - insn_buf;
|
}
|
|
static bool convert_bpf_extensions(struct sock_filter *fp,
|
struct bpf_insn **insnp)
|
{
|
struct bpf_insn *insn = *insnp;
|
u32 cnt;
|
|
switch (fp->k) {
|
case SKF_AD_OFF + SKF_AD_PROTOCOL:
|
BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
|
|
/* A = *(u16 *) (CTX + offsetof(protocol)) */
|
*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
|
offsetof(struct sk_buff, protocol));
|
/* A = ntohs(A) [emitting a nop or swap16] */
|
*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
|
break;
|
|
case SKF_AD_OFF + SKF_AD_PKTTYPE:
|
cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
|
insn += cnt - 1;
|
break;
|
|
case SKF_AD_OFF + SKF_AD_IFINDEX:
|
case SKF_AD_OFF + SKF_AD_HATYPE:
|
BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
|
BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
|
BPF_REG_TMP, BPF_REG_CTX,
|
offsetof(struct sk_buff, dev));
|
/* if (tmp != 0) goto pc + 1 */
|
*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
|
*insn++ = BPF_EXIT_INSN();
|
if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
|
*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
|
offsetof(struct net_device, ifindex));
|
else
|
*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
|
offsetof(struct net_device, type));
|
break;
|
|
case SKF_AD_OFF + SKF_AD_MARK:
|
cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
|
insn += cnt - 1;
|
break;
|
|
case SKF_AD_OFF + SKF_AD_RXHASH:
|
BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
|
|
*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
|
offsetof(struct sk_buff, hash));
|
break;
|
|
case SKF_AD_OFF + SKF_AD_QUEUE:
|
cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
|
insn += cnt - 1;
|
break;
|
|
case SKF_AD_OFF + SKF_AD_VLAN_TAG:
|
cnt = convert_skb_access(SKF_AD_VLAN_TAG,
|
BPF_REG_A, BPF_REG_CTX, insn);
|
insn += cnt - 1;
|
break;
|
|
case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
|
cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
|
BPF_REG_A, BPF_REG_CTX, insn);
|
insn += cnt - 1;
|
break;
|
|
case SKF_AD_OFF + SKF_AD_VLAN_TPID:
|
BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
|
|
/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
|
*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
|
offsetof(struct sk_buff, vlan_proto));
|
/* A = ntohs(A) [emitting a nop or swap16] */
|
*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
|
break;
|
|
case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
|
case SKF_AD_OFF + SKF_AD_NLATTR:
|
case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
|
case SKF_AD_OFF + SKF_AD_CPU:
|
case SKF_AD_OFF + SKF_AD_RANDOM:
|
/* arg1 = CTX */
|
*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
|
/* arg2 = A */
|
*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
|
/* arg3 = X */
|
*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
|
/* Emit call(arg1=CTX, arg2=A, arg3=X) */
|
switch (fp->k) {
|
case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
|
*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
|
break;
|
case SKF_AD_OFF + SKF_AD_NLATTR:
|
*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
|
break;
|
case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
|
*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
|
break;
|
case SKF_AD_OFF + SKF_AD_CPU:
|
*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
|
break;
|
case SKF_AD_OFF + SKF_AD_RANDOM:
|
*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
|
bpf_user_rnd_init_once();
|
break;
|
}
|
break;
|
|
case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
|
/* A ^= X */
|
*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
|
break;
|
|
default:
|
/* This is just a dummy call to avoid letting the compiler
|
* evict __bpf_call_base() as an optimization. Placed here
|
* where no-one bothers.
|
*/
|
BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
|
return false;
|
}
|
|
*insnp = insn;
|
return true;
|
}
|
|
static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
|
{
|
const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
|
int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
|
bool endian = BPF_SIZE(fp->code) == BPF_H ||
|
BPF_SIZE(fp->code) == BPF_W;
|
bool indirect = BPF_MODE(fp->code) == BPF_IND;
|
const int ip_align = NET_IP_ALIGN;
|
struct bpf_insn *insn = *insnp;
|
int offset = fp->k;
|
|
if (!indirect &&
|
((unaligned_ok && offset >= 0) ||
|
(!unaligned_ok && offset >= 0 &&
|
offset + ip_align >= 0 &&
|
offset + ip_align % size == 0))) {
|
bool ldx_off_ok = offset <= S16_MAX;
|
|
*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
|
if (offset)
|
*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
|
*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
|
size, 2 + endian + (!ldx_off_ok * 2));
|
if (ldx_off_ok) {
|
*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
|
BPF_REG_D, offset);
|
} else {
|
*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
|
*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
|
*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
|
BPF_REG_TMP, 0);
|
}
|
if (endian)
|
*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
|
*insn++ = BPF_JMP_A(8);
|
}
|
|
*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
|
*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
|
*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
|
if (!indirect) {
|
*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
|
} else {
|
*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
|
if (fp->k)
|
*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
|
}
|
|
switch (BPF_SIZE(fp->code)) {
|
case BPF_B:
|
*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
|
break;
|
case BPF_H:
|
*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
|
break;
|
case BPF_W:
|
*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
|
break;
|
default:
|
return false;
|
}
|
|
*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
|
*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
|
*insn = BPF_EXIT_INSN();
|
|
*insnp = insn;
|
return true;
|
}
|
|
/**
|
* bpf_convert_filter - convert filter program
|
* @prog: the user passed filter program
|
* @len: the length of the user passed filter program
|
* @new_prog: allocated 'struct bpf_prog' or NULL
|
* @new_len: pointer to store length of converted program
|
* @seen_ld_abs: bool whether we've seen ld_abs/ind
|
*
|
* Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
|
* style extended BPF (eBPF).
|
* Conversion workflow:
|
*
|
* 1) First pass for calculating the new program length:
|
* bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
|
*
|
* 2) 2nd pass to remap in two passes: 1st pass finds new
|
* jump offsets, 2nd pass remapping:
|
* bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
|
*/
|
static int bpf_convert_filter(struct sock_filter *prog, int len,
|
struct bpf_prog *new_prog, int *new_len,
|
bool *seen_ld_abs)
|
{
|
int new_flen = 0, pass = 0, target, i, stack_off;
|
struct bpf_insn *new_insn, *first_insn = NULL;
|
struct sock_filter *fp;
|
int *addrs = NULL;
|
u8 bpf_src;
|
|
BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
|
BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
|
|
if (len <= 0 || len > BPF_MAXINSNS)
|
return -EINVAL;
|
|
if (new_prog) {
|
first_insn = new_prog->insnsi;
|
addrs = kcalloc(len, sizeof(*addrs),
|
GFP_KERNEL | __GFP_NOWARN);
|
if (!addrs)
|
return -ENOMEM;
|
}
|
|
do_pass:
|
new_insn = first_insn;
|
fp = prog;
|
|
/* Classic BPF related prologue emission. */
|
if (new_prog) {
|
/* Classic BPF expects A and X to be reset first. These need
|
* to be guaranteed to be the first two instructions.
|
*/
|
*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
|
*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
|
|
/* All programs must keep CTX in callee saved BPF_REG_CTX.
|
* In eBPF case it's done by the compiler, here we need to
|
* do this ourself. Initial CTX is present in BPF_REG_ARG1.
|
*/
|
*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
|
if (*seen_ld_abs) {
|
/* For packet access in classic BPF, cache skb->data
|
* in callee-saved BPF R8 and skb->len - skb->data_len
|
* (headlen) in BPF R9. Since classic BPF is read-only
|
* on CTX, we only need to cache it once.
|
*/
|
*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
|
BPF_REG_D, BPF_REG_CTX,
|
offsetof(struct sk_buff, data));
|
*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
|
offsetof(struct sk_buff, len));
|
*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
|
offsetof(struct sk_buff, data_len));
|
*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
|
}
|
} else {
|
new_insn += 3;
|
}
|
|
for (i = 0; i < len; fp++, i++) {
|
struct bpf_insn tmp_insns[32] = { };
|
struct bpf_insn *insn = tmp_insns;
|
|
if (addrs)
|
addrs[i] = new_insn - first_insn;
|
|
switch (fp->code) {
|
/* All arithmetic insns and skb loads map as-is. */
|
case BPF_ALU | BPF_ADD | BPF_X:
|
case BPF_ALU | BPF_ADD | BPF_K:
|
case BPF_ALU | BPF_SUB | BPF_X:
|
case BPF_ALU | BPF_SUB | BPF_K:
|
case BPF_ALU | BPF_AND | BPF_X:
|
case BPF_ALU | BPF_AND | BPF_K:
|
case BPF_ALU | BPF_OR | BPF_X:
|
case BPF_ALU | BPF_OR | BPF_K:
|
case BPF_ALU | BPF_LSH | BPF_X:
|
case BPF_ALU | BPF_LSH | BPF_K:
|
case BPF_ALU | BPF_RSH | BPF_X:
|
case BPF_ALU | BPF_RSH | BPF_K:
|
case BPF_ALU | BPF_XOR | BPF_X:
|
case BPF_ALU | BPF_XOR | BPF_K:
|
case BPF_ALU | BPF_MUL | BPF_X:
|
case BPF_ALU | BPF_MUL | BPF_K:
|
case BPF_ALU | BPF_DIV | BPF_X:
|
case BPF_ALU | BPF_DIV | BPF_K:
|
case BPF_ALU | BPF_MOD | BPF_X:
|
case BPF_ALU | BPF_MOD | BPF_K:
|
case BPF_ALU | BPF_NEG:
|
case BPF_LD | BPF_ABS | BPF_W:
|
case BPF_LD | BPF_ABS | BPF_H:
|
case BPF_LD | BPF_ABS | BPF_B:
|
case BPF_LD | BPF_IND | BPF_W:
|
case BPF_LD | BPF_IND | BPF_H:
|
case BPF_LD | BPF_IND | BPF_B:
|
/* Check for overloaded BPF extension and
|
* directly convert it if found, otherwise
|
* just move on with mapping.
|
*/
|
if (BPF_CLASS(fp->code) == BPF_LD &&
|
BPF_MODE(fp->code) == BPF_ABS &&
|
convert_bpf_extensions(fp, &insn))
|
break;
|
if (BPF_CLASS(fp->code) == BPF_LD &&
|
convert_bpf_ld_abs(fp, &insn)) {
|
*seen_ld_abs = true;
|
break;
|
}
|
|
if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
|
fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
|
*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
|
/* Error with exception code on div/mod by 0.
|
* For cBPF programs, this was always return 0.
|
*/
|
*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
|
*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
|
*insn++ = BPF_EXIT_INSN();
|
}
|
|
*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
|
break;
|
|
/* Jump transformation cannot use BPF block macros
|
* everywhere as offset calculation and target updates
|
* require a bit more work than the rest, i.e. jump
|
* opcodes map as-is, but offsets need adjustment.
|
*/
|
|
#define BPF_EMIT_JMP \
|
do { \
|
const s32 off_min = S16_MIN, off_max = S16_MAX; \
|
s32 off; \
|
\
|
if (target >= len || target < 0) \
|
goto err; \
|
off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
|
/* Adjust pc relative offset for 2nd or 3rd insn. */ \
|
off -= insn - tmp_insns; \
|
/* Reject anything not fitting into insn->off. */ \
|
if (off < off_min || off > off_max) \
|
goto err; \
|
insn->off = off; \
|
} while (0)
|
|
case BPF_JMP | BPF_JA:
|
target = i + fp->k + 1;
|
insn->code = fp->code;
|
BPF_EMIT_JMP;
|
break;
|
|
case BPF_JMP | BPF_JEQ | BPF_K:
|
case BPF_JMP | BPF_JEQ | BPF_X:
|
case BPF_JMP | BPF_JSET | BPF_K:
|
case BPF_JMP | BPF_JSET | BPF_X:
|
case BPF_JMP | BPF_JGT | BPF_K:
|
case BPF_JMP | BPF_JGT | BPF_X:
|
case BPF_JMP | BPF_JGE | BPF_K:
|
case BPF_JMP | BPF_JGE | BPF_X:
|
if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
|
/* BPF immediates are signed, zero extend
|
* immediate into tmp register and use it
|
* in compare insn.
|
*/
|
*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
|
|
insn->dst_reg = BPF_REG_A;
|
insn->src_reg = BPF_REG_TMP;
|
bpf_src = BPF_X;
|
} else {
|
insn->dst_reg = BPF_REG_A;
|
insn->imm = fp->k;
|
bpf_src = BPF_SRC(fp->code);
|
insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
|
}
|
|
/* Common case where 'jump_false' is next insn. */
|
if (fp->jf == 0) {
|
insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
|
target = i + fp->jt + 1;
|
BPF_EMIT_JMP;
|
break;
|
}
|
|
/* Convert some jumps when 'jump_true' is next insn. */
|
if (fp->jt == 0) {
|
switch (BPF_OP(fp->code)) {
|
case BPF_JEQ:
|
insn->code = BPF_JMP | BPF_JNE | bpf_src;
|
break;
|
case BPF_JGT:
|
insn->code = BPF_JMP | BPF_JLE | bpf_src;
|
break;
|
case BPF_JGE:
|
insn->code = BPF_JMP | BPF_JLT | bpf_src;
|
break;
|
default:
|
goto jmp_rest;
|
}
|
|
target = i + fp->jf + 1;
|
BPF_EMIT_JMP;
|
break;
|
}
|
jmp_rest:
|
/* Other jumps are mapped into two insns: Jxx and JA. */
|
target = i + fp->jt + 1;
|
insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
|
BPF_EMIT_JMP;
|
insn++;
|
|
insn->code = BPF_JMP | BPF_JA;
|
target = i + fp->jf + 1;
|
BPF_EMIT_JMP;
|
break;
|
|
/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
|
case BPF_LDX | BPF_MSH | BPF_B: {
|
struct sock_filter tmp = {
|
.code = BPF_LD | BPF_ABS | BPF_B,
|
.k = fp->k,
|
};
|
|
*seen_ld_abs = true;
|
|
/* X = A */
|
*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
|
/* A = BPF_R0 = *(u8 *) (skb->data + K) */
|
convert_bpf_ld_abs(&tmp, &insn);
|
insn++;
|
/* A &= 0xf */
|
*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
|
/* A <<= 2 */
|
*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
|
/* tmp = X */
|
*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
|
/* X = A */
|
*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
|
/* A = tmp */
|
*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
|
break;
|
}
|
/* RET_K is remaped into 2 insns. RET_A case doesn't need an
|
* extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
|
*/
|
case BPF_RET | BPF_A:
|
case BPF_RET | BPF_K:
|
if (BPF_RVAL(fp->code) == BPF_K)
|
*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
|
0, fp->k);
|
*insn = BPF_EXIT_INSN();
|
break;
|
|
/* Store to stack. */
|
case BPF_ST:
|
case BPF_STX:
|
stack_off = fp->k * 4 + 4;
|
*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
|
BPF_ST ? BPF_REG_A : BPF_REG_X,
|
-stack_off);
|
/* check_load_and_stores() verifies that classic BPF can
|
* load from stack only after write, so tracking
|
* stack_depth for ST|STX insns is enough
|
*/
|
if (new_prog && new_prog->aux->stack_depth < stack_off)
|
new_prog->aux->stack_depth = stack_off;
|
break;
|
|
/* Load from stack. */
|
case BPF_LD | BPF_MEM:
|
case BPF_LDX | BPF_MEM:
|
stack_off = fp->k * 4 + 4;
|
*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
|
BPF_REG_A : BPF_REG_X, BPF_REG_FP,
|
-stack_off);
|
break;
|
|
/* A = K or X = K */
|
case BPF_LD | BPF_IMM:
|
case BPF_LDX | BPF_IMM:
|
*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
|
BPF_REG_A : BPF_REG_X, fp->k);
|
break;
|
|
/* X = A */
|
case BPF_MISC | BPF_TAX:
|
*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
|
break;
|
|
/* A = X */
|
case BPF_MISC | BPF_TXA:
|
*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
|
break;
|
|
/* A = skb->len or X = skb->len */
|
case BPF_LD | BPF_W | BPF_LEN:
|
case BPF_LDX | BPF_W | BPF_LEN:
|
*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
|
BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
|
offsetof(struct sk_buff, len));
|
break;
|
|
/* Access seccomp_data fields. */
|
case BPF_LDX | BPF_ABS | BPF_W:
|
/* A = *(u32 *) (ctx + K) */
|
*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
|
break;
|
|
/* Unknown instruction. */
|
default:
|
goto err;
|
}
|
|
insn++;
|
if (new_prog)
|
memcpy(new_insn, tmp_insns,
|
sizeof(*insn) * (insn - tmp_insns));
|
new_insn += insn - tmp_insns;
|
}
|
|
if (!new_prog) {
|
/* Only calculating new length. */
|
*new_len = new_insn - first_insn;
|
if (*seen_ld_abs)
|
*new_len += 4; /* Prologue bits. */
|
return 0;
|
}
|
|
pass++;
|
if (new_flen != new_insn - first_insn) {
|
new_flen = new_insn - first_insn;
|
if (pass > 2)
|
goto err;
|
goto do_pass;
|
}
|
|
kfree(addrs);
|
BUG_ON(*new_len != new_flen);
|
return 0;
|
err:
|
kfree(addrs);
|
return -EINVAL;
|
}
|
|
/* Security:
|
*
|
* As we dont want to clear mem[] array for each packet going through
|
* __bpf_prog_run(), we check that filter loaded by user never try to read
|
* a cell if not previously written, and we check all branches to be sure
|
* a malicious user doesn't try to abuse us.
|
*/
|
static int check_load_and_stores(const struct sock_filter *filter, int flen)
|
{
|
u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
|
int pc, ret = 0;
|
|
BUILD_BUG_ON(BPF_MEMWORDS > 16);
|
|
masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
|
if (!masks)
|
return -ENOMEM;
|
|
memset(masks, 0xff, flen * sizeof(*masks));
|
|
for (pc = 0; pc < flen; pc++) {
|
memvalid &= masks[pc];
|
|
switch (filter[pc].code) {
|
case BPF_ST:
|
case BPF_STX:
|
memvalid |= (1 << filter[pc].k);
|
break;
|
case BPF_LD | BPF_MEM:
|
case BPF_LDX | BPF_MEM:
|
if (!(memvalid & (1 << filter[pc].k))) {
|
ret = -EINVAL;
|
goto error;
|
}
|
break;
|
case BPF_JMP | BPF_JA:
|
/* A jump must set masks on target */
|
masks[pc + 1 + filter[pc].k] &= memvalid;
|
memvalid = ~0;
|
break;
|
case BPF_JMP | BPF_JEQ | BPF_K:
|
case BPF_JMP | BPF_JEQ | BPF_X:
|
case BPF_JMP | BPF_JGE | BPF_K:
|
case BPF_JMP | BPF_JGE | BPF_X:
|
case BPF_JMP | BPF_JGT | BPF_K:
|
case BPF_JMP | BPF_JGT | BPF_X:
|
case BPF_JMP | BPF_JSET | BPF_K:
|
case BPF_JMP | BPF_JSET | BPF_X:
|
/* A jump must set masks on targets */
|
masks[pc + 1 + filter[pc].jt] &= memvalid;
|
masks[pc + 1 + filter[pc].jf] &= memvalid;
|
memvalid = ~0;
|
break;
|
}
|
}
|
error:
|
kfree(masks);
|
return ret;
|
}
|
|
static bool chk_code_allowed(u16 code_to_probe)
|
{
|
static const bool codes[] = {
|
/* 32 bit ALU operations */
|
[BPF_ALU | BPF_ADD | BPF_K] = true,
|
[BPF_ALU | BPF_ADD | BPF_X] = true,
|
[BPF_ALU | BPF_SUB | BPF_K] = true,
|
[BPF_ALU | BPF_SUB | BPF_X] = true,
|
[BPF_ALU | BPF_MUL | BPF_K] = true,
|
[BPF_ALU | BPF_MUL | BPF_X] = true,
|
[BPF_ALU | BPF_DIV | BPF_K] = true,
|
[BPF_ALU | BPF_DIV | BPF_X] = true,
|
[BPF_ALU | BPF_MOD | BPF_K] = true,
|
[BPF_ALU | BPF_MOD | BPF_X] = true,
|
[BPF_ALU | BPF_AND | BPF_K] = true,
|
[BPF_ALU | BPF_AND | BPF_X] = true,
|
[BPF_ALU | BPF_OR | BPF_K] = true,
|
[BPF_ALU | BPF_OR | BPF_X] = true,
|
[BPF_ALU | BPF_XOR | BPF_K] = true,
|
[BPF_ALU | BPF_XOR | BPF_X] = true,
|
[BPF_ALU | BPF_LSH | BPF_K] = true,
|
[BPF_ALU | BPF_LSH | BPF_X] = true,
|
[BPF_ALU | BPF_RSH | BPF_K] = true,
|
[BPF_ALU | BPF_RSH | BPF_X] = true,
|
[BPF_ALU | BPF_NEG] = true,
|
/* Load instructions */
|
[BPF_LD | BPF_W | BPF_ABS] = true,
|
[BPF_LD | BPF_H | BPF_ABS] = true,
|
[BPF_LD | BPF_B | BPF_ABS] = true,
|
[BPF_LD | BPF_W | BPF_LEN] = true,
|
[BPF_LD | BPF_W | BPF_IND] = true,
|
[BPF_LD | BPF_H | BPF_IND] = true,
|
[BPF_LD | BPF_B | BPF_IND] = true,
|
[BPF_LD | BPF_IMM] = true,
|
[BPF_LD | BPF_MEM] = true,
|
[BPF_LDX | BPF_W | BPF_LEN] = true,
|
[BPF_LDX | BPF_B | BPF_MSH] = true,
|
[BPF_LDX | BPF_IMM] = true,
|
[BPF_LDX | BPF_MEM] = true,
|
/* Store instructions */
|
[BPF_ST] = true,
|
[BPF_STX] = true,
|
/* Misc instructions */
|
[BPF_MISC | BPF_TAX] = true,
|
[BPF_MISC | BPF_TXA] = true,
|
/* Return instructions */
|
[BPF_RET | BPF_K] = true,
|
[BPF_RET | BPF_A] = true,
|
/* Jump instructions */
|
[BPF_JMP | BPF_JA] = true,
|
[BPF_JMP | BPF_JEQ | BPF_K] = true,
|
[BPF_JMP | BPF_JEQ | BPF_X] = true,
|
[BPF_JMP | BPF_JGE | BPF_K] = true,
|
[BPF_JMP | BPF_JGE | BPF_X] = true,
|
[BPF_JMP | BPF_JGT | BPF_K] = true,
|
[BPF_JMP | BPF_JGT | BPF_X] = true,
|
[BPF_JMP | BPF_JSET | BPF_K] = true,
|
[BPF_JMP | BPF_JSET | BPF_X] = true,
|
};
|
|
if (code_to_probe >= ARRAY_SIZE(codes))
|
return false;
|
|
return codes[code_to_probe];
|
}
|
|
static bool bpf_check_basics_ok(const struct sock_filter *filter,
|
unsigned int flen)
|
{
|
if (filter == NULL)
|
return false;
|
if (flen == 0 || flen > BPF_MAXINSNS)
|
return false;
|
|
return true;
|
}
|
|
/**
|
* bpf_check_classic - verify socket filter code
|
* @filter: filter to verify
|
* @flen: length of filter
|
*
|
* Check the user's filter code. If we let some ugly
|
* filter code slip through kaboom! The filter must contain
|
* no references or jumps that are out of range, no illegal
|
* instructions, and must end with a RET instruction.
|
*
|
* All jumps are forward as they are not signed.
|
*
|
* Returns 0 if the rule set is legal or -EINVAL if not.
|
*/
|
static int bpf_check_classic(const struct sock_filter *filter,
|
unsigned int flen)
|
{
|
bool anc_found;
|
int pc;
|
|
/* Check the filter code now */
|
for (pc = 0; pc < flen; pc++) {
|
const struct sock_filter *ftest = &filter[pc];
|
|
/* May we actually operate on this code? */
|
if (!chk_code_allowed(ftest->code))
|
return -EINVAL;
|
|
/* Some instructions need special checks */
|
switch (ftest->code) {
|
case BPF_ALU | BPF_DIV | BPF_K:
|
case BPF_ALU | BPF_MOD | BPF_K:
|
/* Check for division by zero */
|
if (ftest->k == 0)
|
return -EINVAL;
|
break;
|
case BPF_ALU | BPF_LSH | BPF_K:
|
case BPF_ALU | BPF_RSH | BPF_K:
|
if (ftest->k >= 32)
|
return -EINVAL;
|
break;
|
case BPF_LD | BPF_MEM:
|
case BPF_LDX | BPF_MEM:
|
case BPF_ST:
|
case BPF_STX:
|
/* Check for invalid memory addresses */
|
if (ftest->k >= BPF_MEMWORDS)
|
return -EINVAL;
|
break;
|
case BPF_JMP | BPF_JA:
|
/* Note, the large ftest->k might cause loops.
|
* Compare this with conditional jumps below,
|
* where offsets are limited. --ANK (981016)
|
*/
|
if (ftest->k >= (unsigned int)(flen - pc - 1))
|
return -EINVAL;
|
break;
|
case BPF_JMP | BPF_JEQ | BPF_K:
|
case BPF_JMP | BPF_JEQ | BPF_X:
|
case BPF_JMP | BPF_JGE | BPF_K:
|
case BPF_JMP | BPF_JGE | BPF_X:
|
case BPF_JMP | BPF_JGT | BPF_K:
|
case BPF_JMP | BPF_JGT | BPF_X:
|
case BPF_JMP | BPF_JSET | BPF_K:
|
case BPF_JMP | BPF_JSET | BPF_X:
|
/* Both conditionals must be safe */
|
if (pc + ftest->jt + 1 >= flen ||
|
pc + ftest->jf + 1 >= flen)
|
return -EINVAL;
|
break;
|
case BPF_LD | BPF_W | BPF_ABS:
|
case BPF_LD | BPF_H | BPF_ABS:
|
case BPF_LD | BPF_B | BPF_ABS:
|
anc_found = false;
|
if (bpf_anc_helper(ftest) & BPF_ANC)
|
anc_found = true;
|
/* Ancillary operation unknown or unsupported */
|
if (anc_found == false && ftest->k >= SKF_AD_OFF)
|
return -EINVAL;
|
}
|
}
|
|
/* Last instruction must be a RET code */
|
switch (filter[flen - 1].code) {
|
case BPF_RET | BPF_K:
|
case BPF_RET | BPF_A:
|
return check_load_and_stores(filter, flen);
|
}
|
|
return -EINVAL;
|
}
|
|
static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
|
const struct sock_fprog *fprog)
|
{
|
unsigned int fsize = bpf_classic_proglen(fprog);
|
struct sock_fprog_kern *fkprog;
|
|
fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
|
if (!fp->orig_prog)
|
return -ENOMEM;
|
|
fkprog = fp->orig_prog;
|
fkprog->len = fprog->len;
|
|
fkprog->filter = kmemdup(fp->insns, fsize,
|
GFP_KERNEL | __GFP_NOWARN);
|
if (!fkprog->filter) {
|
kfree(fp->orig_prog);
|
return -ENOMEM;
|
}
|
|
return 0;
|
}
|
|
static void bpf_release_orig_filter(struct bpf_prog *fp)
|
{
|
struct sock_fprog_kern *fprog = fp->orig_prog;
|
|
if (fprog) {
|
kfree(fprog->filter);
|
kfree(fprog);
|
}
|
}
|
|
static void __bpf_prog_release(struct bpf_prog *prog)
|
{
|
if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
|
bpf_prog_put(prog);
|
} else {
|
bpf_release_orig_filter(prog);
|
bpf_prog_free(prog);
|
}
|
}
|
|
static void __sk_filter_release(struct sk_filter *fp)
|
{
|
__bpf_prog_release(fp->prog);
|
kfree(fp);
|
}
|
|
/**
|
* sk_filter_release_rcu - Release a socket filter by rcu_head
|
* @rcu: rcu_head that contains the sk_filter to free
|
*/
|
static void sk_filter_release_rcu(struct rcu_head *rcu)
|
{
|
struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
|
|
__sk_filter_release(fp);
|
}
|
|
/**
|
* sk_filter_release - release a socket filter
|
* @fp: filter to remove
|
*
|
* Remove a filter from a socket and release its resources.
|
*/
|
static void sk_filter_release(struct sk_filter *fp)
|
{
|
if (refcount_dec_and_test(&fp->refcnt))
|
call_rcu(&fp->rcu, sk_filter_release_rcu);
|
}
|
|
void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
|
{
|
u32 filter_size = bpf_prog_size(fp->prog->len);
|
|
atomic_sub(filter_size, &sk->sk_omem_alloc);
|
sk_filter_release(fp);
|
}
|
|
/* try to charge the socket memory if there is space available
|
* return true on success
|
*/
|
static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
|
{
|
u32 filter_size = bpf_prog_size(fp->prog->len);
|
int optmem_max = READ_ONCE(sysctl_optmem_max);
|
|
/* same check as in sock_kmalloc() */
|
if (filter_size <= optmem_max &&
|
atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
|
atomic_add(filter_size, &sk->sk_omem_alloc);
|
return true;
|
}
|
return false;
|
}
|
|
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
|
{
|
if (!refcount_inc_not_zero(&fp->refcnt))
|
return false;
|
|
if (!__sk_filter_charge(sk, fp)) {
|
sk_filter_release(fp);
|
return false;
|
}
|
return true;
|
}
|
|
static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
|
{
|
struct sock_filter *old_prog;
|
struct bpf_prog *old_fp;
|
int err, new_len, old_len = fp->len;
|
bool seen_ld_abs = false;
|
|
/* We are free to overwrite insns et al right here as it
|
* won't be used at this point in time anymore internally
|
* after the migration to the internal BPF instruction
|
* representation.
|
*/
|
BUILD_BUG_ON(sizeof(struct sock_filter) !=
|
sizeof(struct bpf_insn));
|
|
/* Conversion cannot happen on overlapping memory areas,
|
* so we need to keep the user BPF around until the 2nd
|
* pass. At this time, the user BPF is stored in fp->insns.
|
*/
|
old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
|
GFP_KERNEL | __GFP_NOWARN);
|
if (!old_prog) {
|
err = -ENOMEM;
|
goto out_err;
|
}
|
|
/* 1st pass: calculate the new program length. */
|
err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
|
&seen_ld_abs);
|
if (err)
|
goto out_err_free;
|
|
/* Expand fp for appending the new filter representation. */
|
old_fp = fp;
|
fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
|
if (!fp) {
|
/* The old_fp is still around in case we couldn't
|
* allocate new memory, so uncharge on that one.
|
*/
|
fp = old_fp;
|
err = -ENOMEM;
|
goto out_err_free;
|
}
|
|
fp->len = new_len;
|
|
/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
|
err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
|
&seen_ld_abs);
|
if (err)
|
/* 2nd bpf_convert_filter() can fail only if it fails
|
* to allocate memory, remapping must succeed. Note,
|
* that at this time old_fp has already been released
|
* by krealloc().
|
*/
|
goto out_err_free;
|
|
fp = bpf_prog_select_runtime(fp, &err);
|
if (err)
|
goto out_err_free;
|
|
kfree(old_prog);
|
return fp;
|
|
out_err_free:
|
kfree(old_prog);
|
out_err:
|
__bpf_prog_release(fp);
|
return ERR_PTR(err);
|
}
|
|
static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
|
bpf_aux_classic_check_t trans)
|
{
|
int err;
|
|
fp->bpf_func = NULL;
|
fp->jited = 0;
|
|
err = bpf_check_classic(fp->insns, fp->len);
|
if (err) {
|
__bpf_prog_release(fp);
|
return ERR_PTR(err);
|
}
|
|
/* There might be additional checks and transformations
|
* needed on classic filters, f.e. in case of seccomp.
|
*/
|
if (trans) {
|
err = trans(fp->insns, fp->len);
|
if (err) {
|
__bpf_prog_release(fp);
|
return ERR_PTR(err);
|
}
|
}
|
|
/* Probe if we can JIT compile the filter and if so, do
|
* the compilation of the filter.
|
*/
|
bpf_jit_compile(fp);
|
|
/* JIT compiler couldn't process this filter, so do the
|
* internal BPF translation for the optimized interpreter.
|
*/
|
if (!fp->jited)
|
fp = bpf_migrate_filter(fp);
|
|
return fp;
|
}
|
|
/**
|
* bpf_prog_create - create an unattached filter
|
* @pfp: the unattached filter that is created
|
* @fprog: the filter program
|
*
|
* Create a filter independent of any socket. We first run some
|
* sanity checks on it to make sure it does not explode on us later.
|
* If an error occurs or there is insufficient memory for the filter
|
* a negative errno code is returned. On success the return is zero.
|
*/
|
int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
|
{
|
unsigned int fsize = bpf_classic_proglen(fprog);
|
struct bpf_prog *fp;
|
|
/* Make sure new filter is there and in the right amounts. */
|
if (!bpf_check_basics_ok(fprog->filter, fprog->len))
|
return -EINVAL;
|
|
fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
|
if (!fp)
|
return -ENOMEM;
|
|
memcpy(fp->insns, fprog->filter, fsize);
|
|
fp->len = fprog->len;
|
/* Since unattached filters are not copied back to user
|
* space through sk_get_filter(), we do not need to hold
|
* a copy here, and can spare us the work.
|
*/
|
fp->orig_prog = NULL;
|
|
/* bpf_prepare_filter() already takes care of freeing
|
* memory in case something goes wrong.
|
*/
|
fp = bpf_prepare_filter(fp, NULL);
|
if (IS_ERR(fp))
|
return PTR_ERR(fp);
|
|
*pfp = fp;
|
return 0;
|
}
|
EXPORT_SYMBOL_GPL(bpf_prog_create);
|
|
/**
|
* bpf_prog_create_from_user - create an unattached filter from user buffer
|
* @pfp: the unattached filter that is created
|
* @fprog: the filter program
|
* @trans: post-classic verifier transformation handler
|
* @save_orig: save classic BPF program
|
*
|
* This function effectively does the same as bpf_prog_create(), only
|
* that it builds up its insns buffer from user space provided buffer.
|
* It also allows for passing a bpf_aux_classic_check_t handler.
|
*/
|
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
|
bpf_aux_classic_check_t trans, bool save_orig)
|
{
|
unsigned int fsize = bpf_classic_proglen(fprog);
|
struct bpf_prog *fp;
|
int err;
|
|
/* Make sure new filter is there and in the right amounts. */
|
if (!bpf_check_basics_ok(fprog->filter, fprog->len))
|
return -EINVAL;
|
|
fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
|
if (!fp)
|
return -ENOMEM;
|
|
if (copy_from_user(fp->insns, fprog->filter, fsize)) {
|
__bpf_prog_free(fp);
|
return -EFAULT;
|
}
|
|
fp->len = fprog->len;
|
fp->orig_prog = NULL;
|
|
if (save_orig) {
|
err = bpf_prog_store_orig_filter(fp, fprog);
|
if (err) {
|
__bpf_prog_free(fp);
|
return -ENOMEM;
|
}
|
}
|
|
/* bpf_prepare_filter() already takes care of freeing
|
* memory in case something goes wrong.
|
*/
|
fp = bpf_prepare_filter(fp, trans);
|
if (IS_ERR(fp))
|
return PTR_ERR(fp);
|
|
*pfp = fp;
|
return 0;
|
}
|
EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
|
|
void bpf_prog_destroy(struct bpf_prog *fp)
|
{
|
__bpf_prog_release(fp);
|
}
|
EXPORT_SYMBOL_GPL(bpf_prog_destroy);
|
|
static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
|
{
|
struct sk_filter *fp, *old_fp;
|
|
fp = kmalloc(sizeof(*fp), GFP_KERNEL);
|
if (!fp)
|
return -ENOMEM;
|
|
fp->prog = prog;
|
|
if (!__sk_filter_charge(sk, fp)) {
|
kfree(fp);
|
return -ENOMEM;
|
}
|
refcount_set(&fp->refcnt, 1);
|
|
old_fp = rcu_dereference_protected(sk->sk_filter,
|
lockdep_sock_is_held(sk));
|
rcu_assign_pointer(sk->sk_filter, fp);
|
|
if (old_fp)
|
sk_filter_uncharge(sk, old_fp);
|
|
return 0;
|
}
|
|
static
|
struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
|
{
|
unsigned int fsize = bpf_classic_proglen(fprog);
|
struct bpf_prog *prog;
|
int err;
|
|
if (sock_flag(sk, SOCK_FILTER_LOCKED))
|
return ERR_PTR(-EPERM);
|
|
/* Make sure new filter is there and in the right amounts. */
|
if (!bpf_check_basics_ok(fprog->filter, fprog->len))
|
return ERR_PTR(-EINVAL);
|
|
prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
|
if (!prog)
|
return ERR_PTR(-ENOMEM);
|
|
if (copy_from_user(prog->insns, fprog->filter, fsize)) {
|
__bpf_prog_free(prog);
|
return ERR_PTR(-EFAULT);
|
}
|
|
prog->len = fprog->len;
|
|
err = bpf_prog_store_orig_filter(prog, fprog);
|
if (err) {
|
__bpf_prog_free(prog);
|
return ERR_PTR(-ENOMEM);
|
}
|
|
/* bpf_prepare_filter() already takes care of freeing
|
* memory in case something goes wrong.
|
*/
|
return bpf_prepare_filter(prog, NULL);
|
}
|
|
/**
|
* sk_attach_filter - attach a socket filter
|
* @fprog: the filter program
|
* @sk: the socket to use
|
*
|
* Attach the user's filter code. We first run some sanity checks on
|
* it to make sure it does not explode on us later. If an error
|
* occurs or there is insufficient memory for the filter a negative
|
* errno code is returned. On success the return is zero.
|
*/
|
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
|
{
|
struct bpf_prog *prog = __get_filter(fprog, sk);
|
int err;
|
|
if (IS_ERR(prog))
|
return PTR_ERR(prog);
|
|
err = __sk_attach_prog(prog, sk);
|
if (err < 0) {
|
__bpf_prog_release(prog);
|
return err;
|
}
|
|
return 0;
|
}
|
EXPORT_SYMBOL_GPL(sk_attach_filter);
|
|
int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
|
{
|
struct bpf_prog *prog = __get_filter(fprog, sk);
|
int err;
|
|
if (IS_ERR(prog))
|
return PTR_ERR(prog);
|
|
if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
|
err = -ENOMEM;
|
else
|
err = reuseport_attach_prog(sk, prog);
|
|
if (err)
|
__bpf_prog_release(prog);
|
|
return err;
|
}
|
|
static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
|
{
|
if (sock_flag(sk, SOCK_FILTER_LOCKED))
|
return ERR_PTR(-EPERM);
|
|
return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
|
}
|
|
int sk_attach_bpf(u32 ufd, struct sock *sk)
|
{
|
struct bpf_prog *prog = __get_bpf(ufd, sk);
|
int err;
|
|
if (IS_ERR(prog))
|
return PTR_ERR(prog);
|
|
err = __sk_attach_prog(prog, sk);
|
if (err < 0) {
|
bpf_prog_put(prog);
|
return err;
|
}
|
|
return 0;
|
}
|
|
int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
|
{
|
struct bpf_prog *prog;
|
int err;
|
|
if (sock_flag(sk, SOCK_FILTER_LOCKED))
|
return -EPERM;
|
|
prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
|
if (PTR_ERR(prog) == -EINVAL)
|
prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
|
if (IS_ERR(prog))
|
return PTR_ERR(prog);
|
|
if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
|
/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
|
* bpf prog (e.g. sockmap). It depends on the
|
* limitation imposed by bpf_prog_load().
|
* Hence, sysctl_optmem_max is not checked.
|
*/
|
if ((sk->sk_type != SOCK_STREAM &&
|
sk->sk_type != SOCK_DGRAM) ||
|
(sk->sk_protocol != IPPROTO_UDP &&
|
sk->sk_protocol != IPPROTO_TCP) ||
|
(sk->sk_family != AF_INET &&
|
sk->sk_family != AF_INET6)) {
|
err = -ENOTSUPP;
|
goto err_prog_put;
|
}
|
} else {
|
/* BPF_PROG_TYPE_SOCKET_FILTER */
|
if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
|
err = -ENOMEM;
|
goto err_prog_put;
|
}
|
}
|
|
err = reuseport_attach_prog(sk, prog);
|
err_prog_put:
|
if (err)
|
bpf_prog_put(prog);
|
|
return err;
|
}
|
|
void sk_reuseport_prog_free(struct bpf_prog *prog)
|
{
|
if (!prog)
|
return;
|
|
if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
|
bpf_prog_put(prog);
|
else
|
bpf_prog_destroy(prog);
|
}
|
|
struct bpf_scratchpad {
|
union {
|
__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
|
u8 buff[MAX_BPF_STACK];
|
};
|
};
|
|
static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
|
|
static inline int __bpf_try_make_writable(struct sk_buff *skb,
|
unsigned int write_len)
|
{
|
return skb_ensure_writable(skb, write_len);
|
}
|
|
static inline int bpf_try_make_writable(struct sk_buff *skb,
|
unsigned int write_len)
|
{
|
int err = __bpf_try_make_writable(skb, write_len);
|
|
bpf_compute_data_pointers(skb);
|
return err;
|
}
|
|
static int bpf_try_make_head_writable(struct sk_buff *skb)
|
{
|
return bpf_try_make_writable(skb, skb_headlen(skb));
|
}
|
|
static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
|
{
|
if (skb_at_tc_ingress(skb))
|
skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
|
}
|
|
static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
|
{
|
if (skb_at_tc_ingress(skb))
|
skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
|
}
|
|
BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
|
const void *, from, u32, len, u64, flags)
|
{
|
void *ptr;
|
|
if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
|
return -EINVAL;
|
if (unlikely(offset > INT_MAX))
|
return -EFAULT;
|
if (unlikely(bpf_try_make_writable(skb, offset + len)))
|
return -EFAULT;
|
|
ptr = skb->data + offset;
|
if (flags & BPF_F_RECOMPUTE_CSUM)
|
__skb_postpull_rcsum(skb, ptr, len, offset);
|
|
memcpy(ptr, from, len);
|
|
if (flags & BPF_F_RECOMPUTE_CSUM)
|
__skb_postpush_rcsum(skb, ptr, len, offset);
|
if (flags & BPF_F_INVALIDATE_HASH)
|
skb_clear_hash(skb);
|
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
|
.func = bpf_skb_store_bytes,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_PTR_TO_MEM,
|
.arg4_type = ARG_CONST_SIZE,
|
.arg5_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
|
void *, to, u32, len)
|
{
|
void *ptr;
|
|
if (unlikely(offset > INT_MAX))
|
goto err_clear;
|
|
ptr = skb_header_pointer(skb, offset, len, to);
|
if (unlikely(!ptr))
|
goto err_clear;
|
if (ptr != to)
|
memcpy(to, ptr, len);
|
|
return 0;
|
err_clear:
|
memset(to, 0, len);
|
return -EFAULT;
|
}
|
|
static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
|
.func = bpf_skb_load_bytes,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_PTR_TO_UNINIT_MEM,
|
.arg4_type = ARG_CONST_SIZE,
|
};
|
|
BPF_CALL_4(bpf_flow_dissector_load_bytes,
|
const struct bpf_flow_dissector *, ctx, u32, offset,
|
void *, to, u32, len)
|
{
|
void *ptr;
|
|
if (unlikely(offset > 0xffff))
|
goto err_clear;
|
|
if (unlikely(!ctx->skb))
|
goto err_clear;
|
|
ptr = skb_header_pointer(ctx->skb, offset, len, to);
|
if (unlikely(!ptr))
|
goto err_clear;
|
if (ptr != to)
|
memcpy(to, ptr, len);
|
|
return 0;
|
err_clear:
|
memset(to, 0, len);
|
return -EFAULT;
|
}
|
|
static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
|
.func = bpf_flow_dissector_load_bytes,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_PTR_TO_UNINIT_MEM,
|
.arg4_type = ARG_CONST_SIZE,
|
};
|
|
BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
|
u32, offset, void *, to, u32, len, u32, start_header)
|
{
|
u8 *end = skb_tail_pointer(skb);
|
u8 *start, *ptr;
|
|
if (unlikely(offset > 0xffff))
|
goto err_clear;
|
|
switch (start_header) {
|
case BPF_HDR_START_MAC:
|
if (unlikely(!skb_mac_header_was_set(skb)))
|
goto err_clear;
|
start = skb_mac_header(skb);
|
break;
|
case BPF_HDR_START_NET:
|
start = skb_network_header(skb);
|
break;
|
default:
|
goto err_clear;
|
}
|
|
ptr = start + offset;
|
|
if (likely(ptr + len <= end)) {
|
memcpy(to, ptr, len);
|
return 0;
|
}
|
|
err_clear:
|
memset(to, 0, len);
|
return -EFAULT;
|
}
|
|
static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
|
.func = bpf_skb_load_bytes_relative,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_PTR_TO_UNINIT_MEM,
|
.arg4_type = ARG_CONST_SIZE,
|
.arg5_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
|
{
|
/* Idea is the following: should the needed direct read/write
|
* test fail during runtime, we can pull in more data and redo
|
* again, since implicitly, we invalidate previous checks here.
|
*
|
* Or, since we know how much we need to make read/writeable,
|
* this can be done once at the program beginning for direct
|
* access case. By this we overcome limitations of only current
|
* headroom being accessible.
|
*/
|
return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
|
}
|
|
static const struct bpf_func_proto bpf_skb_pull_data_proto = {
|
.func = bpf_skb_pull_data,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
|
{
|
return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
|
}
|
|
static const struct bpf_func_proto bpf_sk_fullsock_proto = {
|
.func = bpf_sk_fullsock,
|
.gpl_only = false,
|
.ret_type = RET_PTR_TO_SOCKET_OR_NULL,
|
.arg1_type = ARG_PTR_TO_SOCK_COMMON,
|
};
|
|
static inline int sk_skb_try_make_writable(struct sk_buff *skb,
|
unsigned int write_len)
|
{
|
int err = __bpf_try_make_writable(skb, write_len);
|
|
bpf_compute_data_end_sk_skb(skb);
|
return err;
|
}
|
|
BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
|
{
|
/* Idea is the following: should the needed direct read/write
|
* test fail during runtime, we can pull in more data and redo
|
* again, since implicitly, we invalidate previous checks here.
|
*
|
* Or, since we know how much we need to make read/writeable,
|
* this can be done once at the program beginning for direct
|
* access case. By this we overcome limitations of only current
|
* headroom being accessible.
|
*/
|
return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
|
}
|
|
static const struct bpf_func_proto sk_skb_pull_data_proto = {
|
.func = sk_skb_pull_data,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
|
u64, from, u64, to, u64, flags)
|
{
|
__sum16 *ptr;
|
|
if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
|
return -EINVAL;
|
if (unlikely(offset > 0xffff || offset & 1))
|
return -EFAULT;
|
if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
|
return -EFAULT;
|
|
ptr = (__sum16 *)(skb->data + offset);
|
switch (flags & BPF_F_HDR_FIELD_MASK) {
|
case 0:
|
if (unlikely(from != 0))
|
return -EINVAL;
|
|
csum_replace_by_diff(ptr, to);
|
break;
|
case 2:
|
csum_replace2(ptr, from, to);
|
break;
|
case 4:
|
csum_replace4(ptr, from, to);
|
break;
|
default:
|
return -EINVAL;
|
}
|
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
|
.func = bpf_l3_csum_replace,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
.arg4_type = ARG_ANYTHING,
|
.arg5_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
|
u64, from, u64, to, u64, flags)
|
{
|
bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
|
bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
|
bool do_mforce = flags & BPF_F_MARK_ENFORCE;
|
__sum16 *ptr;
|
|
if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
|
BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
|
return -EINVAL;
|
if (unlikely(offset > 0xffff || offset & 1))
|
return -EFAULT;
|
if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
|
return -EFAULT;
|
|
ptr = (__sum16 *)(skb->data + offset);
|
if (is_mmzero && !do_mforce && !*ptr)
|
return 0;
|
|
switch (flags & BPF_F_HDR_FIELD_MASK) {
|
case 0:
|
if (unlikely(from != 0))
|
return -EINVAL;
|
|
inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
|
break;
|
case 2:
|
inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
|
break;
|
case 4:
|
inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
|
break;
|
default:
|
return -EINVAL;
|
}
|
|
if (is_mmzero && !*ptr)
|
*ptr = CSUM_MANGLED_0;
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
|
.func = bpf_l4_csum_replace,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
.arg4_type = ARG_ANYTHING,
|
.arg5_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
|
__be32 *, to, u32, to_size, __wsum, seed)
|
{
|
struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
|
u32 diff_size = from_size + to_size;
|
int i, j = 0;
|
|
/* This is quite flexible, some examples:
|
*
|
* from_size == 0, to_size > 0, seed := csum --> pushing data
|
* from_size > 0, to_size == 0, seed := csum --> pulling data
|
* from_size > 0, to_size > 0, seed := 0 --> diffing data
|
*
|
* Even for diffing, from_size and to_size don't need to be equal.
|
*/
|
if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
|
diff_size > sizeof(sp->diff)))
|
return -EINVAL;
|
|
for (i = 0; i < from_size / sizeof(__be32); i++, j++)
|
sp->diff[j] = ~from[i];
|
for (i = 0; i < to_size / sizeof(__be32); i++, j++)
|
sp->diff[j] = to[i];
|
|
return csum_partial(sp->diff, diff_size, seed);
|
}
|
|
static const struct bpf_func_proto bpf_csum_diff_proto = {
|
.func = bpf_csum_diff,
|
.gpl_only = false,
|
.pkt_access = true,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_MEM_OR_NULL,
|
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
|
.arg3_type = ARG_PTR_TO_MEM_OR_NULL,
|
.arg4_type = ARG_CONST_SIZE_OR_ZERO,
|
.arg5_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
|
{
|
/* The interface is to be used in combination with bpf_csum_diff()
|
* for direct packet writes. csum rotation for alignment as well
|
* as emulating csum_sub() can be done from the eBPF program.
|
*/
|
if (skb->ip_summed == CHECKSUM_COMPLETE)
|
return (skb->csum = csum_add(skb->csum, csum));
|
|
return -ENOTSUPP;
|
}
|
|
static const struct bpf_func_proto bpf_csum_update_proto = {
|
.func = bpf_csum_update,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
|
{
|
/* The interface is to be used in combination with bpf_skb_adjust_room()
|
* for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
|
* is passed as flags, for example.
|
*/
|
switch (level) {
|
case BPF_CSUM_LEVEL_INC:
|
__skb_incr_checksum_unnecessary(skb);
|
break;
|
case BPF_CSUM_LEVEL_DEC:
|
__skb_decr_checksum_unnecessary(skb);
|
break;
|
case BPF_CSUM_LEVEL_RESET:
|
__skb_reset_checksum_unnecessary(skb);
|
break;
|
case BPF_CSUM_LEVEL_QUERY:
|
return skb->ip_summed == CHECKSUM_UNNECESSARY ?
|
skb->csum_level : -EACCES;
|
default:
|
return -EINVAL;
|
}
|
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_csum_level_proto = {
|
.func = bpf_csum_level,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
};
|
|
static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
|
{
|
return dev_forward_skb(dev, skb);
|
}
|
|
static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
|
struct sk_buff *skb)
|
{
|
int ret = ____dev_forward_skb(dev, skb);
|
|
if (likely(!ret)) {
|
skb->dev = dev;
|
ret = netif_rx(skb);
|
}
|
|
return ret;
|
}
|
|
static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
|
{
|
int ret;
|
|
if (dev_xmit_recursion()) {
|
net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
|
kfree_skb(skb);
|
return -ENETDOWN;
|
}
|
|
skb->dev = dev;
|
skb->tstamp = 0;
|
|
dev_xmit_recursion_inc();
|
ret = dev_queue_xmit(skb);
|
dev_xmit_recursion_dec();
|
|
return ret;
|
}
|
|
static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
|
u32 flags)
|
{
|
unsigned int mlen = skb_network_offset(skb);
|
|
if (mlen) {
|
__skb_pull(skb, mlen);
|
|
/* At ingress, the mac header has already been pulled once.
|
* At egress, skb_pospull_rcsum has to be done in case that
|
* the skb is originated from ingress (i.e. a forwarded skb)
|
* to ensure that rcsum starts at net header.
|
*/
|
if (!skb_at_tc_ingress(skb))
|
skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
|
}
|
skb_pop_mac_header(skb);
|
skb_reset_mac_len(skb);
|
return flags & BPF_F_INGRESS ?
|
__bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
|
}
|
|
static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
|
u32 flags)
|
{
|
/* Verify that a link layer header is carried */
|
if (unlikely(skb->mac_header >= skb->network_header)) {
|
kfree_skb(skb);
|
return -ERANGE;
|
}
|
|
bpf_push_mac_rcsum(skb);
|
return flags & BPF_F_INGRESS ?
|
__bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
|
}
|
|
static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
|
u32 flags)
|
{
|
if (dev_is_mac_header_xmit(dev))
|
return __bpf_redirect_common(skb, dev, flags);
|
else
|
return __bpf_redirect_no_mac(skb, dev, flags);
|
}
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
|
struct net_device *dev, struct bpf_nh_params *nh)
|
{
|
u32 hh_len = LL_RESERVED_SPACE(dev);
|
const struct in6_addr *nexthop;
|
struct dst_entry *dst = NULL;
|
struct neighbour *neigh;
|
|
if (dev_xmit_recursion()) {
|
net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
|
goto out_drop;
|
}
|
|
skb->dev = dev;
|
skb->tstamp = 0;
|
|
if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
|
struct sk_buff *skb2;
|
|
skb2 = skb_realloc_headroom(skb, hh_len);
|
if (unlikely(!skb2)) {
|
kfree_skb(skb);
|
return -ENOMEM;
|
}
|
if (skb->sk)
|
skb_set_owner_w(skb2, skb->sk);
|
consume_skb(skb);
|
skb = skb2;
|
}
|
|
rcu_read_lock_bh();
|
if (!nh) {
|
dst = skb_dst(skb);
|
nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
|
&ipv6_hdr(skb)->daddr);
|
} else {
|
nexthop = &nh->ipv6_nh;
|
}
|
neigh = ip_neigh_gw6(dev, nexthop);
|
if (likely(!IS_ERR(neigh))) {
|
int ret;
|
|
sock_confirm_neigh(skb, neigh);
|
dev_xmit_recursion_inc();
|
ret = neigh_output(neigh, skb, false);
|
dev_xmit_recursion_dec();
|
rcu_read_unlock_bh();
|
return ret;
|
}
|
rcu_read_unlock_bh();
|
if (dst)
|
IP6_INC_STATS(dev_net(dst->dev),
|
ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
|
out_drop:
|
kfree_skb(skb);
|
return -ENETDOWN;
|
}
|
|
static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
|
struct bpf_nh_params *nh)
|
{
|
const struct ipv6hdr *ip6h = ipv6_hdr(skb);
|
struct net *net = dev_net(dev);
|
int err, ret = NET_XMIT_DROP;
|
|
if (!nh) {
|
struct dst_entry *dst;
|
struct flowi6 fl6 = {
|
.flowi6_flags = FLOWI_FLAG_ANYSRC,
|
.flowi6_mark = skb->mark,
|
.flowlabel = ip6_flowinfo(ip6h),
|
.flowi6_oif = dev->ifindex,
|
.flowi6_proto = ip6h->nexthdr,
|
.daddr = ip6h->daddr,
|
.saddr = ip6h->saddr,
|
};
|
|
dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
|
if (IS_ERR(dst))
|
goto out_drop;
|
|
skb_dst_set(skb, dst);
|
} else if (nh->nh_family != AF_INET6) {
|
goto out_drop;
|
}
|
|
err = bpf_out_neigh_v6(net, skb, dev, nh);
|
if (unlikely(net_xmit_eval(err)))
|
dev->stats.tx_errors++;
|
else
|
ret = NET_XMIT_SUCCESS;
|
goto out_xmit;
|
out_drop:
|
dev->stats.tx_errors++;
|
kfree_skb(skb);
|
out_xmit:
|
return ret;
|
}
|
#else
|
static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
|
struct bpf_nh_params *nh)
|
{
|
kfree_skb(skb);
|
return NET_XMIT_DROP;
|
}
|
#endif /* CONFIG_IPV6 */
|
|
#if IS_ENABLED(CONFIG_INET)
|
static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
|
struct net_device *dev, struct bpf_nh_params *nh)
|
{
|
u32 hh_len = LL_RESERVED_SPACE(dev);
|
struct neighbour *neigh;
|
bool is_v6gw = false;
|
|
if (dev_xmit_recursion()) {
|
net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
|
goto out_drop;
|
}
|
|
skb->dev = dev;
|
skb->tstamp = 0;
|
|
if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
|
struct sk_buff *skb2;
|
|
skb2 = skb_realloc_headroom(skb, hh_len);
|
if (unlikely(!skb2)) {
|
kfree_skb(skb);
|
return -ENOMEM;
|
}
|
if (skb->sk)
|
skb_set_owner_w(skb2, skb->sk);
|
consume_skb(skb);
|
skb = skb2;
|
}
|
|
rcu_read_lock_bh();
|
if (!nh) {
|
struct dst_entry *dst = skb_dst(skb);
|
struct rtable *rt = container_of(dst, struct rtable, dst);
|
|
neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
|
} else if (nh->nh_family == AF_INET6) {
|
neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
|
is_v6gw = true;
|
} else if (nh->nh_family == AF_INET) {
|
neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
|
} else {
|
rcu_read_unlock_bh();
|
goto out_drop;
|
}
|
|
if (likely(!IS_ERR(neigh))) {
|
int ret;
|
|
sock_confirm_neigh(skb, neigh);
|
dev_xmit_recursion_inc();
|
ret = neigh_output(neigh, skb, is_v6gw);
|
dev_xmit_recursion_dec();
|
rcu_read_unlock_bh();
|
return ret;
|
}
|
rcu_read_unlock_bh();
|
out_drop:
|
kfree_skb(skb);
|
return -ENETDOWN;
|
}
|
|
static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
|
struct bpf_nh_params *nh)
|
{
|
const struct iphdr *ip4h = ip_hdr(skb);
|
struct net *net = dev_net(dev);
|
int err, ret = NET_XMIT_DROP;
|
|
if (!nh) {
|
struct flowi4 fl4 = {
|
.flowi4_flags = FLOWI_FLAG_ANYSRC,
|
.flowi4_mark = skb->mark,
|
.flowi4_tos = RT_TOS(ip4h->tos),
|
.flowi4_oif = dev->ifindex,
|
.flowi4_proto = ip4h->protocol,
|
.daddr = ip4h->daddr,
|
.saddr = ip4h->saddr,
|
};
|
struct rtable *rt;
|
|
rt = ip_route_output_flow(net, &fl4, NULL);
|
if (IS_ERR(rt))
|
goto out_drop;
|
if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
|
ip_rt_put(rt);
|
goto out_drop;
|
}
|
|
skb_dst_set(skb, &rt->dst);
|
}
|
|
err = bpf_out_neigh_v4(net, skb, dev, nh);
|
if (unlikely(net_xmit_eval(err)))
|
dev->stats.tx_errors++;
|
else
|
ret = NET_XMIT_SUCCESS;
|
goto out_xmit;
|
out_drop:
|
dev->stats.tx_errors++;
|
kfree_skb(skb);
|
out_xmit:
|
return ret;
|
}
|
#else
|
static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
|
struct bpf_nh_params *nh)
|
{
|
kfree_skb(skb);
|
return NET_XMIT_DROP;
|
}
|
#endif /* CONFIG_INET */
|
|
static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
|
struct bpf_nh_params *nh)
|
{
|
struct ethhdr *ethh = eth_hdr(skb);
|
|
if (unlikely(skb->mac_header >= skb->network_header))
|
goto out;
|
bpf_push_mac_rcsum(skb);
|
if (is_multicast_ether_addr(ethh->h_dest))
|
goto out;
|
|
skb_pull(skb, sizeof(*ethh));
|
skb_unset_mac_header(skb);
|
skb_reset_network_header(skb);
|
|
if (skb->protocol == htons(ETH_P_IP))
|
return __bpf_redirect_neigh_v4(skb, dev, nh);
|
else if (skb->protocol == htons(ETH_P_IPV6))
|
return __bpf_redirect_neigh_v6(skb, dev, nh);
|
out:
|
kfree_skb(skb);
|
return -ENOTSUPP;
|
}
|
|
/* Internal, non-exposed redirect flags. */
|
enum {
|
BPF_F_NEIGH = (1ULL << 1),
|
BPF_F_PEER = (1ULL << 2),
|
BPF_F_NEXTHOP = (1ULL << 3),
|
#define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
|
};
|
|
BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
|
{
|
struct net_device *dev;
|
struct sk_buff *clone;
|
int ret;
|
|
if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
|
return -EINVAL;
|
|
dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
|
if (unlikely(!dev))
|
return -EINVAL;
|
|
clone = skb_clone(skb, GFP_ATOMIC);
|
if (unlikely(!clone))
|
return -ENOMEM;
|
|
/* For direct write, we need to keep the invariant that the skbs
|
* we're dealing with need to be uncloned. Should uncloning fail
|
* here, we need to free the just generated clone to unclone once
|
* again.
|
*/
|
ret = bpf_try_make_head_writable(skb);
|
if (unlikely(ret)) {
|
kfree_skb(clone);
|
return -ENOMEM;
|
}
|
|
return __bpf_redirect(clone, dev, flags);
|
}
|
|
static const struct bpf_func_proto bpf_clone_redirect_proto = {
|
.func = bpf_clone_redirect,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
};
|
|
DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
|
EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
|
|
int skb_do_redirect(struct sk_buff *skb)
|
{
|
struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
|
struct net *net = dev_net(skb->dev);
|
struct net_device *dev;
|
u32 flags = ri->flags;
|
|
dev = dev_get_by_index_rcu(net, ri->tgt_index);
|
ri->tgt_index = 0;
|
ri->flags = 0;
|
if (unlikely(!dev))
|
goto out_drop;
|
if (flags & BPF_F_PEER) {
|
const struct net_device_ops *ops = dev->netdev_ops;
|
|
if (unlikely(!ops->ndo_get_peer_dev ||
|
!skb_at_tc_ingress(skb)))
|
goto out_drop;
|
dev = ops->ndo_get_peer_dev(dev);
|
if (unlikely(!dev ||
|
!is_skb_forwardable(dev, skb) ||
|
net_eq(net, dev_net(dev))))
|
goto out_drop;
|
skb->dev = dev;
|
return -EAGAIN;
|
}
|
return flags & BPF_F_NEIGH ?
|
__bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
|
&ri->nh : NULL) :
|
__bpf_redirect(skb, dev, flags);
|
out_drop:
|
kfree_skb(skb);
|
return -EINVAL;
|
}
|
|
BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
|
{
|
struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
|
|
if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
|
return TC_ACT_SHOT;
|
|
ri->flags = flags;
|
ri->tgt_index = ifindex;
|
|
return TC_ACT_REDIRECT;
|
}
|
|
static const struct bpf_func_proto bpf_redirect_proto = {
|
.func = bpf_redirect,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_ANYTHING,
|
.arg2_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
|
{
|
struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
|
|
if (unlikely(flags))
|
return TC_ACT_SHOT;
|
|
ri->flags = BPF_F_PEER;
|
ri->tgt_index = ifindex;
|
|
return TC_ACT_REDIRECT;
|
}
|
|
static const struct bpf_func_proto bpf_redirect_peer_proto = {
|
.func = bpf_redirect_peer,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_ANYTHING,
|
.arg2_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
|
int, plen, u64, flags)
|
{
|
struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
|
|
if (unlikely((plen && plen < sizeof(*params)) || flags))
|
return TC_ACT_SHOT;
|
|
ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
|
ri->tgt_index = ifindex;
|
|
BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
|
if (plen)
|
memcpy(&ri->nh, params, sizeof(ri->nh));
|
|
return TC_ACT_REDIRECT;
|
}
|
|
static const struct bpf_func_proto bpf_redirect_neigh_proto = {
|
.func = bpf_redirect_neigh,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_ANYTHING,
|
.arg2_type = ARG_PTR_TO_MEM_OR_NULL,
|
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
|
.arg4_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
|
{
|
msg->apply_bytes = bytes;
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
|
.func = bpf_msg_apply_bytes,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
|
{
|
msg->cork_bytes = bytes;
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
|
.func = bpf_msg_cork_bytes,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
|
u32, end, u64, flags)
|
{
|
u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
|
u32 first_sge, last_sge, i, shift, bytes_sg_total;
|
struct scatterlist *sge;
|
u8 *raw, *to, *from;
|
struct page *page;
|
|
if (unlikely(flags || end <= start))
|
return -EINVAL;
|
|
/* First find the starting scatterlist element */
|
i = msg->sg.start;
|
do {
|
offset += len;
|
len = sk_msg_elem(msg, i)->length;
|
if (start < offset + len)
|
break;
|
sk_msg_iter_var_next(i);
|
} while (i != msg->sg.end);
|
|
if (unlikely(start >= offset + len))
|
return -EINVAL;
|
|
first_sge = i;
|
/* The start may point into the sg element so we need to also
|
* account for the headroom.
|
*/
|
bytes_sg_total = start - offset + bytes;
|
if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
|
goto out;
|
|
/* At this point we need to linearize multiple scatterlist
|
* elements or a single shared page. Either way we need to
|
* copy into a linear buffer exclusively owned by BPF. Then
|
* place the buffer in the scatterlist and fixup the original
|
* entries by removing the entries now in the linear buffer
|
* and shifting the remaining entries. For now we do not try
|
* to copy partial entries to avoid complexity of running out
|
* of sg_entry slots. The downside is reading a single byte
|
* will copy the entire sg entry.
|
*/
|
do {
|
copy += sk_msg_elem(msg, i)->length;
|
sk_msg_iter_var_next(i);
|
if (bytes_sg_total <= copy)
|
break;
|
} while (i != msg->sg.end);
|
last_sge = i;
|
|
if (unlikely(bytes_sg_total > copy))
|
return -EINVAL;
|
|
page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
|
get_order(copy));
|
if (unlikely(!page))
|
return -ENOMEM;
|
|
raw = page_address(page);
|
i = first_sge;
|
do {
|
sge = sk_msg_elem(msg, i);
|
from = sg_virt(sge);
|
len = sge->length;
|
to = raw + poffset;
|
|
memcpy(to, from, len);
|
poffset += len;
|
sge->length = 0;
|
put_page(sg_page(sge));
|
|
sk_msg_iter_var_next(i);
|
} while (i != last_sge);
|
|
sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
|
|
/* To repair sg ring we need to shift entries. If we only
|
* had a single entry though we can just replace it and
|
* be done. Otherwise walk the ring and shift the entries.
|
*/
|
WARN_ON_ONCE(last_sge == first_sge);
|
shift = last_sge > first_sge ?
|
last_sge - first_sge - 1 :
|
NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
|
if (!shift)
|
goto out;
|
|
i = first_sge;
|
sk_msg_iter_var_next(i);
|
do {
|
u32 move_from;
|
|
if (i + shift >= NR_MSG_FRAG_IDS)
|
move_from = i + shift - NR_MSG_FRAG_IDS;
|
else
|
move_from = i + shift;
|
if (move_from == msg->sg.end)
|
break;
|
|
msg->sg.data[i] = msg->sg.data[move_from];
|
msg->sg.data[move_from].length = 0;
|
msg->sg.data[move_from].page_link = 0;
|
msg->sg.data[move_from].offset = 0;
|
sk_msg_iter_var_next(i);
|
} while (1);
|
|
msg->sg.end = msg->sg.end - shift > msg->sg.end ?
|
msg->sg.end - shift + NR_MSG_FRAG_IDS :
|
msg->sg.end - shift;
|
out:
|
msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
|
msg->data_end = msg->data + bytes;
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_msg_pull_data_proto = {
|
.func = bpf_msg_pull_data,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
.arg4_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
|
u32, len, u64, flags)
|
{
|
struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
|
u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
|
u8 *raw, *to, *from;
|
struct page *page;
|
|
if (unlikely(flags))
|
return -EINVAL;
|
|
if (unlikely(len == 0))
|
return 0;
|
|
/* First find the starting scatterlist element */
|
i = msg->sg.start;
|
do {
|
offset += l;
|
l = sk_msg_elem(msg, i)->length;
|
|
if (start < offset + l)
|
break;
|
sk_msg_iter_var_next(i);
|
} while (i != msg->sg.end);
|
|
if (start >= offset + l)
|
return -EINVAL;
|
|
space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
|
|
/* If no space available will fallback to copy, we need at
|
* least one scatterlist elem available to push data into
|
* when start aligns to the beginning of an element or two
|
* when it falls inside an element. We handle the start equals
|
* offset case because its the common case for inserting a
|
* header.
|
*/
|
if (!space || (space == 1 && start != offset))
|
copy = msg->sg.data[i].length;
|
|
page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
|
get_order(copy + len));
|
if (unlikely(!page))
|
return -ENOMEM;
|
|
if (copy) {
|
int front, back;
|
|
raw = page_address(page);
|
|
psge = sk_msg_elem(msg, i);
|
front = start - offset;
|
back = psge->length - front;
|
from = sg_virt(psge);
|
|
if (front)
|
memcpy(raw, from, front);
|
|
if (back) {
|
from += front;
|
to = raw + front + len;
|
|
memcpy(to, from, back);
|
}
|
|
put_page(sg_page(psge));
|
} else if (start - offset) {
|
psge = sk_msg_elem(msg, i);
|
rsge = sk_msg_elem_cpy(msg, i);
|
|
psge->length = start - offset;
|
rsge.length -= psge->length;
|
rsge.offset += start;
|
|
sk_msg_iter_var_next(i);
|
sg_unmark_end(psge);
|
sg_unmark_end(&rsge);
|
sk_msg_iter_next(msg, end);
|
}
|
|
/* Slot(s) to place newly allocated data */
|
new = i;
|
|
/* Shift one or two slots as needed */
|
if (!copy) {
|
sge = sk_msg_elem_cpy(msg, i);
|
|
sk_msg_iter_var_next(i);
|
sg_unmark_end(&sge);
|
sk_msg_iter_next(msg, end);
|
|
nsge = sk_msg_elem_cpy(msg, i);
|
if (rsge.length) {
|
sk_msg_iter_var_next(i);
|
nnsge = sk_msg_elem_cpy(msg, i);
|
}
|
|
while (i != msg->sg.end) {
|
msg->sg.data[i] = sge;
|
sge = nsge;
|
sk_msg_iter_var_next(i);
|
if (rsge.length) {
|
nsge = nnsge;
|
nnsge = sk_msg_elem_cpy(msg, i);
|
} else {
|
nsge = sk_msg_elem_cpy(msg, i);
|
}
|
}
|
}
|
|
/* Place newly allocated data buffer */
|
sk_mem_charge(msg->sk, len);
|
msg->sg.size += len;
|
__clear_bit(new, &msg->sg.copy);
|
sg_set_page(&msg->sg.data[new], page, len + copy, 0);
|
if (rsge.length) {
|
get_page(sg_page(&rsge));
|
sk_msg_iter_var_next(new);
|
msg->sg.data[new] = rsge;
|
}
|
|
sk_msg_compute_data_pointers(msg);
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_msg_push_data_proto = {
|
.func = bpf_msg_push_data,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
.arg4_type = ARG_ANYTHING,
|
};
|
|
static void sk_msg_shift_left(struct sk_msg *msg, int i)
|
{
|
int prev;
|
|
do {
|
prev = i;
|
sk_msg_iter_var_next(i);
|
msg->sg.data[prev] = msg->sg.data[i];
|
} while (i != msg->sg.end);
|
|
sk_msg_iter_prev(msg, end);
|
}
|
|
static void sk_msg_shift_right(struct sk_msg *msg, int i)
|
{
|
struct scatterlist tmp, sge;
|
|
sk_msg_iter_next(msg, end);
|
sge = sk_msg_elem_cpy(msg, i);
|
sk_msg_iter_var_next(i);
|
tmp = sk_msg_elem_cpy(msg, i);
|
|
while (i != msg->sg.end) {
|
msg->sg.data[i] = sge;
|
sk_msg_iter_var_next(i);
|
sge = tmp;
|
tmp = sk_msg_elem_cpy(msg, i);
|
}
|
}
|
|
BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
|
u32, len, u64, flags)
|
{
|
u32 i = 0, l = 0, space, offset = 0;
|
u64 last = start + len;
|
int pop;
|
|
if (unlikely(flags))
|
return -EINVAL;
|
|
/* First find the starting scatterlist element */
|
i = msg->sg.start;
|
do {
|
offset += l;
|
l = sk_msg_elem(msg, i)->length;
|
|
if (start < offset + l)
|
break;
|
sk_msg_iter_var_next(i);
|
} while (i != msg->sg.end);
|
|
/* Bounds checks: start and pop must be inside message */
|
if (start >= offset + l || last >= msg->sg.size)
|
return -EINVAL;
|
|
space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
|
|
pop = len;
|
/* --------------| offset
|
* -| start |-------- len -------|
|
*
|
* |----- a ----|-------- pop -------|----- b ----|
|
* |______________________________________________| length
|
*
|
*
|
* a: region at front of scatter element to save
|
* b: region at back of scatter element to save when length > A + pop
|
* pop: region to pop from element, same as input 'pop' here will be
|
* decremented below per iteration.
|
*
|
* Two top-level cases to handle when start != offset, first B is non
|
* zero and second B is zero corresponding to when a pop includes more
|
* than one element.
|
*
|
* Then if B is non-zero AND there is no space allocate space and
|
* compact A, B regions into page. If there is space shift ring to
|
* the rigth free'ing the next element in ring to place B, leaving
|
* A untouched except to reduce length.
|
*/
|
if (start != offset) {
|
struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
|
int a = start;
|
int b = sge->length - pop - a;
|
|
sk_msg_iter_var_next(i);
|
|
if (pop < sge->length - a) {
|
if (space) {
|
sge->length = a;
|
sk_msg_shift_right(msg, i);
|
nsge = sk_msg_elem(msg, i);
|
get_page(sg_page(sge));
|
sg_set_page(nsge,
|
sg_page(sge),
|
b, sge->offset + pop + a);
|
} else {
|
struct page *page, *orig;
|
u8 *to, *from;
|
|
page = alloc_pages(__GFP_NOWARN |
|
__GFP_COMP | GFP_ATOMIC,
|
get_order(a + b));
|
if (unlikely(!page))
|
return -ENOMEM;
|
|
sge->length = a;
|
orig = sg_page(sge);
|
from = sg_virt(sge);
|
to = page_address(page);
|
memcpy(to, from, a);
|
memcpy(to + a, from + a + pop, b);
|
sg_set_page(sge, page, a + b, 0);
|
put_page(orig);
|
}
|
pop = 0;
|
} else if (pop >= sge->length - a) {
|
pop -= (sge->length - a);
|
sge->length = a;
|
}
|
}
|
|
/* From above the current layout _must_ be as follows,
|
*
|
* -| offset
|
* -| start
|
*
|
* |---- pop ---|---------------- b ------------|
|
* |____________________________________________| length
|
*
|
* Offset and start of the current msg elem are equal because in the
|
* previous case we handled offset != start and either consumed the
|
* entire element and advanced to the next element OR pop == 0.
|
*
|
* Two cases to handle here are first pop is less than the length
|
* leaving some remainder b above. Simply adjust the element's layout
|
* in this case. Or pop >= length of the element so that b = 0. In this
|
* case advance to next element decrementing pop.
|
*/
|
while (pop) {
|
struct scatterlist *sge = sk_msg_elem(msg, i);
|
|
if (pop < sge->length) {
|
sge->length -= pop;
|
sge->offset += pop;
|
pop = 0;
|
} else {
|
pop -= sge->length;
|
sk_msg_shift_left(msg, i);
|
}
|
sk_msg_iter_var_next(i);
|
}
|
|
sk_mem_uncharge(msg->sk, len - pop);
|
msg->sg.size -= (len - pop);
|
sk_msg_compute_data_pointers(msg);
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_msg_pop_data_proto = {
|
.func = bpf_msg_pop_data,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
.arg4_type = ARG_ANYTHING,
|
};
|
|
#ifdef CONFIG_CGROUP_NET_CLASSID
|
BPF_CALL_0(bpf_get_cgroup_classid_curr)
|
{
|
return __task_get_classid(current);
|
}
|
|
static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
|
.func = bpf_get_cgroup_classid_curr,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
};
|
|
BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
|
{
|
struct sock *sk = skb_to_full_sk(skb);
|
|
if (!sk || !sk_fullsock(sk))
|
return 0;
|
|
return sock_cgroup_classid(&sk->sk_cgrp_data);
|
}
|
|
static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
|
.func = bpf_skb_cgroup_classid,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
};
|
#endif
|
|
BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
|
{
|
return task_get_classid(skb);
|
}
|
|
static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
|
.func = bpf_get_cgroup_classid,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
};
|
|
BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
|
{
|
return dst_tclassid(skb);
|
}
|
|
static const struct bpf_func_proto bpf_get_route_realm_proto = {
|
.func = bpf_get_route_realm,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
};
|
|
BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
|
{
|
/* If skb_clear_hash() was called due to mangling, we can
|
* trigger SW recalculation here. Later access to hash
|
* can then use the inline skb->hash via context directly
|
* instead of calling this helper again.
|
*/
|
return skb_get_hash(skb);
|
}
|
|
static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
|
.func = bpf_get_hash_recalc,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
};
|
|
BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
|
{
|
/* After all direct packet write, this can be used once for
|
* triggering a lazy recalc on next skb_get_hash() invocation.
|
*/
|
skb_clear_hash(skb);
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
|
.func = bpf_set_hash_invalid,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
};
|
|
BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
|
{
|
/* Set user specified hash as L4(+), so that it gets returned
|
* on skb_get_hash() call unless BPF prog later on triggers a
|
* skb_clear_hash().
|
*/
|
__skb_set_sw_hash(skb, hash, true);
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_set_hash_proto = {
|
.func = bpf_set_hash,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
|
u16, vlan_tci)
|
{
|
int ret;
|
|
if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
|
vlan_proto != htons(ETH_P_8021AD)))
|
vlan_proto = htons(ETH_P_8021Q);
|
|
bpf_push_mac_rcsum(skb);
|
ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
|
bpf_pull_mac_rcsum(skb);
|
|
bpf_compute_data_pointers(skb);
|
return ret;
|
}
|
|
static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
|
.func = bpf_skb_vlan_push,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
|
{
|
int ret;
|
|
bpf_push_mac_rcsum(skb);
|
ret = skb_vlan_pop(skb);
|
bpf_pull_mac_rcsum(skb);
|
|
bpf_compute_data_pointers(skb);
|
return ret;
|
}
|
|
static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
|
.func = bpf_skb_vlan_pop,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
};
|
|
static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
|
{
|
/* Caller already did skb_cow() with len as headroom,
|
* so no need to do it here.
|
*/
|
skb_push(skb, len);
|
memmove(skb->data, skb->data + len, off);
|
memset(skb->data + off, 0, len);
|
|
/* No skb_postpush_rcsum(skb, skb->data + off, len)
|
* needed here as it does not change the skb->csum
|
* result for checksum complete when summing over
|
* zeroed blocks.
|
*/
|
return 0;
|
}
|
|
static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
|
{
|
/* skb_ensure_writable() is not needed here, as we're
|
* already working on an uncloned skb.
|
*/
|
if (unlikely(!pskb_may_pull(skb, off + len)))
|
return -ENOMEM;
|
|
skb_postpull_rcsum(skb, skb->data + off, len);
|
memmove(skb->data + len, skb->data, off);
|
__skb_pull(skb, len);
|
|
return 0;
|
}
|
|
static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
|
{
|
bool trans_same = skb->transport_header == skb->network_header;
|
int ret;
|
|
/* There's no need for __skb_push()/__skb_pull() pair to
|
* get to the start of the mac header as we're guaranteed
|
* to always start from here under eBPF.
|
*/
|
ret = bpf_skb_generic_push(skb, off, len);
|
if (likely(!ret)) {
|
skb->mac_header -= len;
|
skb->network_header -= len;
|
if (trans_same)
|
skb->transport_header = skb->network_header;
|
}
|
|
return ret;
|
}
|
|
static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
|
{
|
bool trans_same = skb->transport_header == skb->network_header;
|
int ret;
|
|
/* Same here, __skb_push()/__skb_pull() pair not needed. */
|
ret = bpf_skb_generic_pop(skb, off, len);
|
if (likely(!ret)) {
|
skb->mac_header += len;
|
skb->network_header += len;
|
if (trans_same)
|
skb->transport_header = skb->network_header;
|
}
|
|
return ret;
|
}
|
|
static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
|
{
|
const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
|
u32 off = skb_mac_header_len(skb);
|
int ret;
|
|
ret = skb_cow(skb, len_diff);
|
if (unlikely(ret < 0))
|
return ret;
|
|
ret = bpf_skb_net_hdr_push(skb, off, len_diff);
|
if (unlikely(ret < 0))
|
return ret;
|
|
if (skb_is_gso(skb)) {
|
struct skb_shared_info *shinfo = skb_shinfo(skb);
|
|
/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
|
if (shinfo->gso_type & SKB_GSO_TCPV4) {
|
shinfo->gso_type &= ~SKB_GSO_TCPV4;
|
shinfo->gso_type |= SKB_GSO_TCPV6;
|
}
|
}
|
|
skb->protocol = htons(ETH_P_IPV6);
|
skb_clear_hash(skb);
|
|
return 0;
|
}
|
|
static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
|
{
|
const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
|
u32 off = skb_mac_header_len(skb);
|
int ret;
|
|
ret = skb_unclone(skb, GFP_ATOMIC);
|
if (unlikely(ret < 0))
|
return ret;
|
|
ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
|
if (unlikely(ret < 0))
|
return ret;
|
|
if (skb_is_gso(skb)) {
|
struct skb_shared_info *shinfo = skb_shinfo(skb);
|
|
/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
|
if (shinfo->gso_type & SKB_GSO_TCPV6) {
|
shinfo->gso_type &= ~SKB_GSO_TCPV6;
|
shinfo->gso_type |= SKB_GSO_TCPV4;
|
}
|
}
|
|
skb->protocol = htons(ETH_P_IP);
|
skb_clear_hash(skb);
|
|
return 0;
|
}
|
|
static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
|
{
|
__be16 from_proto = skb->protocol;
|
|
if (from_proto == htons(ETH_P_IP) &&
|
to_proto == htons(ETH_P_IPV6))
|
return bpf_skb_proto_4_to_6(skb);
|
|
if (from_proto == htons(ETH_P_IPV6) &&
|
to_proto == htons(ETH_P_IP))
|
return bpf_skb_proto_6_to_4(skb);
|
|
return -ENOTSUPP;
|
}
|
|
BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
|
u64, flags)
|
{
|
int ret;
|
|
if (unlikely(flags))
|
return -EINVAL;
|
|
/* General idea is that this helper does the basic groundwork
|
* needed for changing the protocol, and eBPF program fills the
|
* rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
|
* and other helpers, rather than passing a raw buffer here.
|
*
|
* The rationale is to keep this minimal and without a need to
|
* deal with raw packet data. F.e. even if we would pass buffers
|
* here, the program still needs to call the bpf_lX_csum_replace()
|
* helpers anyway. Plus, this way we keep also separation of
|
* concerns, since f.e. bpf_skb_store_bytes() should only take
|
* care of stores.
|
*
|
* Currently, additional options and extension header space are
|
* not supported, but flags register is reserved so we can adapt
|
* that. For offloads, we mark packet as dodgy, so that headers
|
* need to be verified first.
|
*/
|
ret = bpf_skb_proto_xlat(skb, proto);
|
bpf_compute_data_pointers(skb);
|
return ret;
|
}
|
|
static const struct bpf_func_proto bpf_skb_change_proto_proto = {
|
.func = bpf_skb_change_proto,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
|
{
|
/* We only allow a restricted subset to be changed for now. */
|
if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
|
!skb_pkt_type_ok(pkt_type)))
|
return -EINVAL;
|
|
skb->pkt_type = pkt_type;
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_skb_change_type_proto = {
|
.func = bpf_skb_change_type,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
};
|
|
static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
|
{
|
switch (skb->protocol) {
|
case htons(ETH_P_IP):
|
return sizeof(struct iphdr);
|
case htons(ETH_P_IPV6):
|
return sizeof(struct ipv6hdr);
|
default:
|
return ~0U;
|
}
|
}
|
|
#define BPF_F_ADJ_ROOM_ENCAP_L3_MASK (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
|
BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
|
|
#define BPF_F_ADJ_ROOM_MASK (BPF_F_ADJ_ROOM_FIXED_GSO | \
|
BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
|
BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
|
BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
|
BPF_F_ADJ_ROOM_ENCAP_L2( \
|
BPF_ADJ_ROOM_ENCAP_L2_MASK))
|
|
static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
|
u64 flags)
|
{
|
u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
|
bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
|
u16 mac_len = 0, inner_net = 0, inner_trans = 0;
|
unsigned int gso_type = SKB_GSO_DODGY;
|
int ret;
|
|
if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
|
/* udp gso_size delineates datagrams, only allow if fixed */
|
if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
|
!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
|
return -ENOTSUPP;
|
}
|
|
ret = skb_cow_head(skb, len_diff);
|
if (unlikely(ret < 0))
|
return ret;
|
|
if (encap) {
|
if (skb->protocol != htons(ETH_P_IP) &&
|
skb->protocol != htons(ETH_P_IPV6))
|
return -ENOTSUPP;
|
|
if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
|
flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
|
return -EINVAL;
|
|
if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
|
flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
|
return -EINVAL;
|
|
if (skb->encapsulation)
|
return -EALREADY;
|
|
mac_len = skb->network_header - skb->mac_header;
|
inner_net = skb->network_header;
|
if (inner_mac_len > len_diff)
|
return -EINVAL;
|
inner_trans = skb->transport_header;
|
}
|
|
ret = bpf_skb_net_hdr_push(skb, off, len_diff);
|
if (unlikely(ret < 0))
|
return ret;
|
|
if (encap) {
|
skb->inner_mac_header = inner_net - inner_mac_len;
|
skb->inner_network_header = inner_net;
|
skb->inner_transport_header = inner_trans;
|
skb_set_inner_protocol(skb, skb->protocol);
|
|
skb->encapsulation = 1;
|
skb_set_network_header(skb, mac_len);
|
|
if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
|
gso_type |= SKB_GSO_UDP_TUNNEL;
|
else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
|
gso_type |= SKB_GSO_GRE;
|
else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
|
gso_type |= SKB_GSO_IPXIP6;
|
else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
|
gso_type |= SKB_GSO_IPXIP4;
|
|
if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
|
flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
|
int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
|
sizeof(struct ipv6hdr) :
|
sizeof(struct iphdr);
|
|
skb_set_transport_header(skb, mac_len + nh_len);
|
}
|
|
/* Match skb->protocol to new outer l3 protocol */
|
if (skb->protocol == htons(ETH_P_IP) &&
|
flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
|
skb->protocol = htons(ETH_P_IPV6);
|
else if (skb->protocol == htons(ETH_P_IPV6) &&
|
flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
|
skb->protocol = htons(ETH_P_IP);
|
}
|
|
if (skb_is_gso(skb)) {
|
struct skb_shared_info *shinfo = skb_shinfo(skb);
|
|
/* Due to header grow, MSS needs to be downgraded. */
|
if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
|
skb_decrease_gso_size(shinfo, len_diff);
|
|
/* Header must be checked, and gso_segs recomputed. */
|
shinfo->gso_type |= gso_type;
|
shinfo->gso_segs = 0;
|
}
|
|
return 0;
|
}
|
|
static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
|
u64 flags)
|
{
|
int ret;
|
|
if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
|
BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
|
return -EINVAL;
|
|
if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
|
/* udp gso_size delineates datagrams, only allow if fixed */
|
if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
|
!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
|
return -ENOTSUPP;
|
}
|
|
ret = skb_unclone(skb, GFP_ATOMIC);
|
if (unlikely(ret < 0))
|
return ret;
|
|
ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
|
if (unlikely(ret < 0))
|
return ret;
|
|
if (skb_is_gso(skb)) {
|
struct skb_shared_info *shinfo = skb_shinfo(skb);
|
|
/* Due to header shrink, MSS can be upgraded. */
|
if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
|
skb_increase_gso_size(shinfo, len_diff);
|
|
/* Header must be checked, and gso_segs recomputed. */
|
shinfo->gso_type |= SKB_GSO_DODGY;
|
shinfo->gso_segs = 0;
|
}
|
|
return 0;
|
}
|
|
#define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
|
|
BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
|
u32, mode, u64, flags)
|
{
|
u32 len_diff_abs = abs(len_diff);
|
bool shrink = len_diff < 0;
|
int ret = 0;
|
|
if (unlikely(flags || mode))
|
return -EINVAL;
|
if (unlikely(len_diff_abs > 0xfffU))
|
return -EFAULT;
|
|
if (!shrink) {
|
ret = skb_cow(skb, len_diff);
|
if (unlikely(ret < 0))
|
return ret;
|
__skb_push(skb, len_diff_abs);
|
memset(skb->data, 0, len_diff_abs);
|
} else {
|
if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
|
return -ENOMEM;
|
__skb_pull(skb, len_diff_abs);
|
}
|
bpf_compute_data_end_sk_skb(skb);
|
if (tls_sw_has_ctx_rx(skb->sk)) {
|
struct strp_msg *rxm = strp_msg(skb);
|
|
rxm->full_len += len_diff;
|
}
|
return ret;
|
}
|
|
static const struct bpf_func_proto sk_skb_adjust_room_proto = {
|
.func = sk_skb_adjust_room,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
.arg4_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
|
u32, mode, u64, flags)
|
{
|
u32 len_cur, len_diff_abs = abs(len_diff);
|
u32 len_min = bpf_skb_net_base_len(skb);
|
u32 len_max = BPF_SKB_MAX_LEN;
|
__be16 proto = skb->protocol;
|
bool shrink = len_diff < 0;
|
u32 off;
|
int ret;
|
|
if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
|
BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
|
return -EINVAL;
|
if (unlikely(len_diff_abs > 0xfffU))
|
return -EFAULT;
|
if (unlikely(proto != htons(ETH_P_IP) &&
|
proto != htons(ETH_P_IPV6)))
|
return -ENOTSUPP;
|
|
off = skb_mac_header_len(skb);
|
switch (mode) {
|
case BPF_ADJ_ROOM_NET:
|
off += bpf_skb_net_base_len(skb);
|
break;
|
case BPF_ADJ_ROOM_MAC:
|
break;
|
default:
|
return -ENOTSUPP;
|
}
|
|
len_cur = skb->len - skb_network_offset(skb);
|
if ((shrink && (len_diff_abs >= len_cur ||
|
len_cur - len_diff_abs < len_min)) ||
|
(!shrink && (skb->len + len_diff_abs > len_max &&
|
!skb_is_gso(skb))))
|
return -ENOTSUPP;
|
|
ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
|
bpf_skb_net_grow(skb, off, len_diff_abs, flags);
|
if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
|
__skb_reset_checksum_unnecessary(skb);
|
|
bpf_compute_data_pointers(skb);
|
return ret;
|
}
|
|
static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
|
.func = bpf_skb_adjust_room,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
.arg4_type = ARG_ANYTHING,
|
};
|
|
static u32 __bpf_skb_min_len(const struct sk_buff *skb)
|
{
|
u32 min_len = skb_network_offset(skb);
|
|
if (skb_transport_header_was_set(skb))
|
min_len = skb_transport_offset(skb);
|
if (skb->ip_summed == CHECKSUM_PARTIAL)
|
min_len = skb_checksum_start_offset(skb) +
|
skb->csum_offset + sizeof(__sum16);
|
return min_len;
|
}
|
|
static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
|
{
|
unsigned int old_len = skb->len;
|
int ret;
|
|
ret = __skb_grow_rcsum(skb, new_len);
|
if (!ret)
|
memset(skb->data + old_len, 0, new_len - old_len);
|
return ret;
|
}
|
|
static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
|
{
|
return __skb_trim_rcsum(skb, new_len);
|
}
|
|
static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
|
u64 flags)
|
{
|
u32 max_len = BPF_SKB_MAX_LEN;
|
u32 min_len = __bpf_skb_min_len(skb);
|
int ret;
|
|
if (unlikely(flags || new_len > max_len || new_len < min_len))
|
return -EINVAL;
|
if (skb->encapsulation)
|
return -ENOTSUPP;
|
|
/* The basic idea of this helper is that it's performing the
|
* needed work to either grow or trim an skb, and eBPF program
|
* rewrites the rest via helpers like bpf_skb_store_bytes(),
|
* bpf_lX_csum_replace() and others rather than passing a raw
|
* buffer here. This one is a slow path helper and intended
|
* for replies with control messages.
|
*
|
* Like in bpf_skb_change_proto(), we want to keep this rather
|
* minimal and without protocol specifics so that we are able
|
* to separate concerns as in bpf_skb_store_bytes() should only
|
* be the one responsible for writing buffers.
|
*
|
* It's really expected to be a slow path operation here for
|
* control message replies, so we're implicitly linearizing,
|
* uncloning and drop offloads from the skb by this.
|
*/
|
ret = __bpf_try_make_writable(skb, skb->len);
|
if (!ret) {
|
if (new_len > skb->len)
|
ret = bpf_skb_grow_rcsum(skb, new_len);
|
else if (new_len < skb->len)
|
ret = bpf_skb_trim_rcsum(skb, new_len);
|
if (!ret && skb_is_gso(skb))
|
skb_gso_reset(skb);
|
}
|
return ret;
|
}
|
|
BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
|
u64, flags)
|
{
|
int ret = __bpf_skb_change_tail(skb, new_len, flags);
|
|
bpf_compute_data_pointers(skb);
|
return ret;
|
}
|
|
static const struct bpf_func_proto bpf_skb_change_tail_proto = {
|
.func = bpf_skb_change_tail,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
|
u64, flags)
|
{
|
int ret = __bpf_skb_change_tail(skb, new_len, flags);
|
|
bpf_compute_data_end_sk_skb(skb);
|
return ret;
|
}
|
|
static const struct bpf_func_proto sk_skb_change_tail_proto = {
|
.func = sk_skb_change_tail,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
};
|
|
static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
|
u64 flags)
|
{
|
u32 max_len = BPF_SKB_MAX_LEN;
|
u32 new_len = skb->len + head_room;
|
int ret;
|
|
if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
|
new_len < skb->len))
|
return -EINVAL;
|
|
ret = skb_cow(skb, head_room);
|
if (likely(!ret)) {
|
/* Idea for this helper is that we currently only
|
* allow to expand on mac header. This means that
|
* skb->protocol network header, etc, stay as is.
|
* Compared to bpf_skb_change_tail(), we're more
|
* flexible due to not needing to linearize or
|
* reset GSO. Intention for this helper is to be
|
* used by an L3 skb that needs to push mac header
|
* for redirection into L2 device.
|
*/
|
__skb_push(skb, head_room);
|
memset(skb->data, 0, head_room);
|
skb_reset_mac_header(skb);
|
skb_reset_mac_len(skb);
|
}
|
|
return ret;
|
}
|
|
BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
|
u64, flags)
|
{
|
int ret = __bpf_skb_change_head(skb, head_room, flags);
|
|
bpf_compute_data_pointers(skb);
|
return ret;
|
}
|
|
static const struct bpf_func_proto bpf_skb_change_head_proto = {
|
.func = bpf_skb_change_head,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
|
u64, flags)
|
{
|
int ret = __bpf_skb_change_head(skb, head_room, flags);
|
|
bpf_compute_data_end_sk_skb(skb);
|
return ret;
|
}
|
|
static const struct bpf_func_proto sk_skb_change_head_proto = {
|
.func = sk_skb_change_head,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
};
|
static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
|
{
|
return xdp_data_meta_unsupported(xdp) ? 0 :
|
xdp->data - xdp->data_meta;
|
}
|
|
BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
|
{
|
void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
|
unsigned long metalen = xdp_get_metalen(xdp);
|
void *data_start = xdp_frame_end + metalen;
|
void *data = xdp->data + offset;
|
|
if (unlikely(data < data_start ||
|
data > xdp->data_end - ETH_HLEN))
|
return -EINVAL;
|
|
if (metalen)
|
memmove(xdp->data_meta + offset,
|
xdp->data_meta, metalen);
|
xdp->data_meta += offset;
|
xdp->data = data;
|
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
|
.func = bpf_xdp_adjust_head,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
|
{
|
void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
|
void *data_end = xdp->data_end + offset;
|
|
/* Notice that xdp_data_hard_end have reserved some tailroom */
|
if (unlikely(data_end > data_hard_end))
|
return -EINVAL;
|
|
/* ALL drivers MUST init xdp->frame_sz, chicken check below */
|
if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
|
WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
|
return -EINVAL;
|
}
|
|
if (unlikely(data_end < xdp->data + ETH_HLEN))
|
return -EINVAL;
|
|
/* Clear memory area on grow, can contain uninit kernel memory */
|
if (offset > 0)
|
memset(xdp->data_end, 0, offset);
|
|
xdp->data_end = data_end;
|
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
|
.func = bpf_xdp_adjust_tail,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
|
{
|
void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
|
void *meta = xdp->data_meta + offset;
|
unsigned long metalen = xdp->data - meta;
|
|
if (xdp_data_meta_unsupported(xdp))
|
return -ENOTSUPP;
|
if (unlikely(meta < xdp_frame_end ||
|
meta > xdp->data))
|
return -EINVAL;
|
if (unlikely((metalen & (sizeof(__u32) - 1)) ||
|
(metalen > 32)))
|
return -EACCES;
|
|
xdp->data_meta = meta;
|
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
|
.func = bpf_xdp_adjust_meta,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
};
|
|
static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
|
struct bpf_map *map, struct xdp_buff *xdp)
|
{
|
switch (map->map_type) {
|
case BPF_MAP_TYPE_DEVMAP:
|
case BPF_MAP_TYPE_DEVMAP_HASH:
|
return dev_map_enqueue(fwd, xdp, dev_rx);
|
case BPF_MAP_TYPE_CPUMAP:
|
return cpu_map_enqueue(fwd, xdp, dev_rx);
|
case BPF_MAP_TYPE_XSKMAP:
|
return __xsk_map_redirect(fwd, xdp);
|
default:
|
return -EBADRQC;
|
}
|
return 0;
|
}
|
|
void xdp_do_flush(void)
|
{
|
__dev_flush();
|
__cpu_map_flush();
|
__xsk_map_flush();
|
}
|
EXPORT_SYMBOL_GPL(xdp_do_flush);
|
|
static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
|
{
|
switch (map->map_type) {
|
case BPF_MAP_TYPE_DEVMAP:
|
return __dev_map_lookup_elem(map, index);
|
case BPF_MAP_TYPE_DEVMAP_HASH:
|
return __dev_map_hash_lookup_elem(map, index);
|
case BPF_MAP_TYPE_CPUMAP:
|
return __cpu_map_lookup_elem(map, index);
|
case BPF_MAP_TYPE_XSKMAP:
|
return __xsk_map_lookup_elem(map, index);
|
default:
|
return NULL;
|
}
|
}
|
|
void bpf_clear_redirect_map(struct bpf_map *map)
|
{
|
struct bpf_redirect_info *ri;
|
int cpu;
|
|
for_each_possible_cpu(cpu) {
|
ri = per_cpu_ptr(&bpf_redirect_info, cpu);
|
/* Avoid polluting remote cacheline due to writes if
|
* not needed. Once we pass this test, we need the
|
* cmpxchg() to make sure it hasn't been changed in
|
* the meantime by remote CPU.
|
*/
|
if (unlikely(READ_ONCE(ri->map) == map))
|
cmpxchg(&ri->map, map, NULL);
|
}
|
}
|
|
int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
|
struct bpf_prog *xdp_prog)
|
{
|
struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
|
struct bpf_map *map = READ_ONCE(ri->map);
|
u32 index = ri->tgt_index;
|
void *fwd = ri->tgt_value;
|
int err;
|
|
ri->tgt_index = 0;
|
ri->tgt_value = NULL;
|
WRITE_ONCE(ri->map, NULL);
|
|
if (unlikely(!map)) {
|
fwd = dev_get_by_index_rcu(dev_net(dev), index);
|
if (unlikely(!fwd)) {
|
err = -EINVAL;
|
goto err;
|
}
|
|
err = dev_xdp_enqueue(fwd, xdp, dev);
|
} else {
|
err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
|
}
|
|
if (unlikely(err))
|
goto err;
|
|
_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
|
return 0;
|
err:
|
_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
|
return err;
|
}
|
EXPORT_SYMBOL_GPL(xdp_do_redirect);
|
|
static int xdp_do_generic_redirect_map(struct net_device *dev,
|
struct sk_buff *skb,
|
struct xdp_buff *xdp,
|
struct bpf_prog *xdp_prog,
|
struct bpf_map *map)
|
{
|
struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
|
u32 index = ri->tgt_index;
|
void *fwd = ri->tgt_value;
|
int err = 0;
|
|
ri->tgt_index = 0;
|
ri->tgt_value = NULL;
|
WRITE_ONCE(ri->map, NULL);
|
|
if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
|
map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
|
struct bpf_dtab_netdev *dst = fwd;
|
|
err = dev_map_generic_redirect(dst, skb, xdp_prog);
|
if (unlikely(err))
|
goto err;
|
} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
|
struct xdp_sock *xs = fwd;
|
|
err = xsk_generic_rcv(xs, xdp);
|
if (err)
|
goto err;
|
consume_skb(skb);
|
} else {
|
/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
|
err = -EBADRQC;
|
goto err;
|
}
|
|
_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
|
return 0;
|
err:
|
_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
|
return err;
|
}
|
|
int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
|
struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
|
{
|
struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
|
struct bpf_map *map = READ_ONCE(ri->map);
|
u32 index = ri->tgt_index;
|
struct net_device *fwd;
|
int err = 0;
|
|
if (map)
|
return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
|
map);
|
ri->tgt_index = 0;
|
fwd = dev_get_by_index_rcu(dev_net(dev), index);
|
if (unlikely(!fwd)) {
|
err = -EINVAL;
|
goto err;
|
}
|
|
err = xdp_ok_fwd_dev(fwd, skb->len);
|
if (unlikely(err))
|
goto err;
|
|
skb->dev = fwd;
|
_trace_xdp_redirect(dev, xdp_prog, index);
|
generic_xdp_tx(skb, xdp_prog);
|
return 0;
|
err:
|
_trace_xdp_redirect_err(dev, xdp_prog, index, err);
|
return err;
|
}
|
|
BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
|
{
|
struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
|
|
if (unlikely(flags))
|
return XDP_ABORTED;
|
|
ri->flags = flags;
|
ri->tgt_index = ifindex;
|
ri->tgt_value = NULL;
|
WRITE_ONCE(ri->map, NULL);
|
|
return XDP_REDIRECT;
|
}
|
|
static const struct bpf_func_proto bpf_xdp_redirect_proto = {
|
.func = bpf_xdp_redirect,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_ANYTHING,
|
.arg2_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
|
u64, flags)
|
{
|
struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
|
|
/* Lower bits of the flags are used as return code on lookup failure */
|
if (unlikely(flags > XDP_TX))
|
return XDP_ABORTED;
|
|
ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
|
if (unlikely(!ri->tgt_value)) {
|
/* If the lookup fails we want to clear out the state in the
|
* redirect_info struct completely, so that if an eBPF program
|
* performs multiple lookups, the last one always takes
|
* precedence.
|
*/
|
WRITE_ONCE(ri->map, NULL);
|
return flags;
|
}
|
|
ri->flags = flags;
|
ri->tgt_index = ifindex;
|
WRITE_ONCE(ri->map, map);
|
|
return XDP_REDIRECT;
|
}
|
|
static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
|
.func = bpf_xdp_redirect_map,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_CONST_MAP_PTR,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
};
|
|
static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
|
unsigned long off, unsigned long len)
|
{
|
void *ptr = skb_header_pointer(skb, off, len, dst_buff);
|
|
if (unlikely(!ptr))
|
return len;
|
if (ptr != dst_buff)
|
memcpy(dst_buff, ptr, len);
|
|
return 0;
|
}
|
|
BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
|
u64, flags, void *, meta, u64, meta_size)
|
{
|
u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
|
|
if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
|
return -EINVAL;
|
if (unlikely(!skb || skb_size > skb->len))
|
return -EFAULT;
|
|
return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
|
bpf_skb_copy);
|
}
|
|
static const struct bpf_func_proto bpf_skb_event_output_proto = {
|
.func = bpf_skb_event_output,
|
.gpl_only = true,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_CONST_MAP_PTR,
|
.arg3_type = ARG_ANYTHING,
|
.arg4_type = ARG_PTR_TO_MEM,
|
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
|
};
|
|
BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
|
|
const struct bpf_func_proto bpf_skb_output_proto = {
|
.func = bpf_skb_event_output,
|
.gpl_only = true,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_BTF_ID,
|
.arg1_btf_id = &bpf_skb_output_btf_ids[0],
|
.arg2_type = ARG_CONST_MAP_PTR,
|
.arg3_type = ARG_ANYTHING,
|
.arg4_type = ARG_PTR_TO_MEM,
|
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
|
};
|
|
static unsigned short bpf_tunnel_key_af(u64 flags)
|
{
|
return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
|
}
|
|
BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
|
u32, size, u64, flags)
|
{
|
const struct ip_tunnel_info *info = skb_tunnel_info(skb);
|
u8 compat[sizeof(struct bpf_tunnel_key)];
|
void *to_orig = to;
|
int err;
|
|
if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
|
err = -EINVAL;
|
goto err_clear;
|
}
|
if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
|
err = -EPROTO;
|
goto err_clear;
|
}
|
if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
|
err = -EINVAL;
|
switch (size) {
|
case offsetof(struct bpf_tunnel_key, tunnel_label):
|
case offsetof(struct bpf_tunnel_key, tunnel_ext):
|
goto set_compat;
|
case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
|
/* Fixup deprecated structure layouts here, so we have
|
* a common path later on.
|
*/
|
if (ip_tunnel_info_af(info) != AF_INET)
|
goto err_clear;
|
set_compat:
|
to = (struct bpf_tunnel_key *)compat;
|
break;
|
default:
|
goto err_clear;
|
}
|
}
|
|
to->tunnel_id = be64_to_cpu(info->key.tun_id);
|
to->tunnel_tos = info->key.tos;
|
to->tunnel_ttl = info->key.ttl;
|
to->tunnel_ext = 0;
|
|
if (flags & BPF_F_TUNINFO_IPV6) {
|
memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
|
sizeof(to->remote_ipv6));
|
to->tunnel_label = be32_to_cpu(info->key.label);
|
} else {
|
to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
|
memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
|
to->tunnel_label = 0;
|
}
|
|
if (unlikely(size != sizeof(struct bpf_tunnel_key)))
|
memcpy(to_orig, to, size);
|
|
return 0;
|
err_clear:
|
memset(to_orig, 0, size);
|
return err;
|
}
|
|
static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
|
.func = bpf_skb_get_tunnel_key,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_UNINIT_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
.arg4_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
|
{
|
const struct ip_tunnel_info *info = skb_tunnel_info(skb);
|
int err;
|
|
if (unlikely(!info ||
|
!(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
|
err = -ENOENT;
|
goto err_clear;
|
}
|
if (unlikely(size < info->options_len)) {
|
err = -ENOMEM;
|
goto err_clear;
|
}
|
|
ip_tunnel_info_opts_get(to, info);
|
if (size > info->options_len)
|
memset(to + info->options_len, 0, size - info->options_len);
|
|
return info->options_len;
|
err_clear:
|
memset(to, 0, size);
|
return err;
|
}
|
|
static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
|
.func = bpf_skb_get_tunnel_opt,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_UNINIT_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
};
|
|
static struct metadata_dst __percpu *md_dst;
|
|
BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
|
const struct bpf_tunnel_key *, from, u32, size, u64, flags)
|
{
|
struct metadata_dst *md = this_cpu_ptr(md_dst);
|
u8 compat[sizeof(struct bpf_tunnel_key)];
|
struct ip_tunnel_info *info;
|
|
if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
|
BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
|
return -EINVAL;
|
if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
|
switch (size) {
|
case offsetof(struct bpf_tunnel_key, tunnel_label):
|
case offsetof(struct bpf_tunnel_key, tunnel_ext):
|
case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
|
/* Fixup deprecated structure layouts here, so we have
|
* a common path later on.
|
*/
|
memcpy(compat, from, size);
|
memset(compat + size, 0, sizeof(compat) - size);
|
from = (const struct bpf_tunnel_key *) compat;
|
break;
|
default:
|
return -EINVAL;
|
}
|
}
|
if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
|
from->tunnel_ext))
|
return -EINVAL;
|
|
skb_dst_drop(skb);
|
dst_hold((struct dst_entry *) md);
|
skb_dst_set(skb, (struct dst_entry *) md);
|
|
info = &md->u.tun_info;
|
memset(info, 0, sizeof(*info));
|
info->mode = IP_TUNNEL_INFO_TX;
|
|
info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
|
if (flags & BPF_F_DONT_FRAGMENT)
|
info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
|
if (flags & BPF_F_ZERO_CSUM_TX)
|
info->key.tun_flags &= ~TUNNEL_CSUM;
|
if (flags & BPF_F_SEQ_NUMBER)
|
info->key.tun_flags |= TUNNEL_SEQ;
|
|
info->key.tun_id = cpu_to_be64(from->tunnel_id);
|
info->key.tos = from->tunnel_tos;
|
info->key.ttl = from->tunnel_ttl;
|
|
if (flags & BPF_F_TUNINFO_IPV6) {
|
info->mode |= IP_TUNNEL_INFO_IPV6;
|
memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
|
sizeof(from->remote_ipv6));
|
info->key.label = cpu_to_be32(from->tunnel_label) &
|
IPV6_FLOWLABEL_MASK;
|
} else {
|
info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
|
}
|
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
|
.func = bpf_skb_set_tunnel_key,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
.arg4_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
|
const u8 *, from, u32, size)
|
{
|
struct ip_tunnel_info *info = skb_tunnel_info(skb);
|
const struct metadata_dst *md = this_cpu_ptr(md_dst);
|
|
if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
|
return -EINVAL;
|
if (unlikely(size > IP_TUNNEL_OPTS_MAX))
|
return -ENOMEM;
|
|
ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
|
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
|
.func = bpf_skb_set_tunnel_opt,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
};
|
|
static const struct bpf_func_proto *
|
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
|
{
|
if (!md_dst) {
|
struct metadata_dst __percpu *tmp;
|
|
tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
|
METADATA_IP_TUNNEL,
|
GFP_KERNEL);
|
if (!tmp)
|
return NULL;
|
if (cmpxchg(&md_dst, NULL, tmp))
|
metadata_dst_free_percpu(tmp);
|
}
|
|
switch (which) {
|
case BPF_FUNC_skb_set_tunnel_key:
|
return &bpf_skb_set_tunnel_key_proto;
|
case BPF_FUNC_skb_set_tunnel_opt:
|
return &bpf_skb_set_tunnel_opt_proto;
|
default:
|
return NULL;
|
}
|
}
|
|
BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
|
u32, idx)
|
{
|
struct bpf_array *array = container_of(map, struct bpf_array, map);
|
struct cgroup *cgrp;
|
struct sock *sk;
|
|
sk = skb_to_full_sk(skb);
|
if (!sk || !sk_fullsock(sk))
|
return -ENOENT;
|
if (unlikely(idx >= array->map.max_entries))
|
return -E2BIG;
|
|
cgrp = READ_ONCE(array->ptrs[idx]);
|
if (unlikely(!cgrp))
|
return -EAGAIN;
|
|
return sk_under_cgroup_hierarchy(sk, cgrp);
|
}
|
|
static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
|
.func = bpf_skb_under_cgroup,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_CONST_MAP_PTR,
|
.arg3_type = ARG_ANYTHING,
|
};
|
|
#ifdef CONFIG_SOCK_CGROUP_DATA
|
static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
|
{
|
struct cgroup *cgrp;
|
|
sk = sk_to_full_sk(sk);
|
if (!sk || !sk_fullsock(sk))
|
return 0;
|
|
cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
|
return cgroup_id(cgrp);
|
}
|
|
BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
|
{
|
return __bpf_sk_cgroup_id(skb->sk);
|
}
|
|
static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
|
.func = bpf_skb_cgroup_id,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
};
|
|
static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
|
int ancestor_level)
|
{
|
struct cgroup *ancestor;
|
struct cgroup *cgrp;
|
|
sk = sk_to_full_sk(sk);
|
if (!sk || !sk_fullsock(sk))
|
return 0;
|
|
cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
|
ancestor = cgroup_ancestor(cgrp, ancestor_level);
|
if (!ancestor)
|
return 0;
|
|
return cgroup_id(ancestor);
|
}
|
|
BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
|
ancestor_level)
|
{
|
return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
|
}
|
|
static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
|
.func = bpf_skb_ancestor_cgroup_id,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
|
{
|
return __bpf_sk_cgroup_id(sk);
|
}
|
|
static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
|
.func = bpf_sk_cgroup_id,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
|
};
|
|
BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
|
{
|
return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
|
}
|
|
static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
|
.func = bpf_sk_ancestor_cgroup_id,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
|
.arg2_type = ARG_ANYTHING,
|
};
|
#endif
|
|
static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
|
unsigned long off, unsigned long len)
|
{
|
memcpy(dst_buff, src_buff + off, len);
|
return 0;
|
}
|
|
BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
|
u64, flags, void *, meta, u64, meta_size)
|
{
|
u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
|
|
if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
|
return -EINVAL;
|
if (unlikely(!xdp ||
|
xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
|
return -EFAULT;
|
|
return bpf_event_output(map, flags, meta, meta_size, xdp->data,
|
xdp_size, bpf_xdp_copy);
|
}
|
|
static const struct bpf_func_proto bpf_xdp_event_output_proto = {
|
.func = bpf_xdp_event_output,
|
.gpl_only = true,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_CONST_MAP_PTR,
|
.arg3_type = ARG_ANYTHING,
|
.arg4_type = ARG_PTR_TO_MEM,
|
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
|
};
|
|
BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
|
|
const struct bpf_func_proto bpf_xdp_output_proto = {
|
.func = bpf_xdp_event_output,
|
.gpl_only = true,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_BTF_ID,
|
.arg1_btf_id = &bpf_xdp_output_btf_ids[0],
|
.arg2_type = ARG_CONST_MAP_PTR,
|
.arg3_type = ARG_ANYTHING,
|
.arg4_type = ARG_PTR_TO_MEM,
|
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
|
};
|
|
BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
|
{
|
return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
|
}
|
|
static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
|
.func = bpf_get_socket_cookie,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
};
|
|
BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
|
{
|
return __sock_gen_cookie(ctx->sk);
|
}
|
|
static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
|
.func = bpf_get_socket_cookie_sock_addr,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
};
|
|
BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
|
{
|
return __sock_gen_cookie(ctx);
|
}
|
|
static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
|
.func = bpf_get_socket_cookie_sock,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
};
|
|
BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
|
{
|
return __sock_gen_cookie(ctx->sk);
|
}
|
|
static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
|
.func = bpf_get_socket_cookie_sock_ops,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
};
|
|
static u64 __bpf_get_netns_cookie(struct sock *sk)
|
{
|
#ifdef CONFIG_NET_NS
|
return __net_gen_cookie(sk ? sk->sk_net.net : &init_net);
|
#else
|
return 0;
|
#endif
|
}
|
|
BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
|
{
|
return __bpf_get_netns_cookie(ctx);
|
}
|
|
static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
|
.func = bpf_get_netns_cookie_sock,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX_OR_NULL,
|
};
|
|
BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
|
{
|
return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
|
}
|
|
static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
|
.func = bpf_get_netns_cookie_sock_addr,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX_OR_NULL,
|
};
|
|
BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
|
{
|
struct sock *sk = sk_to_full_sk(skb->sk);
|
kuid_t kuid;
|
|
if (!sk || !sk_fullsock(sk))
|
return overflowuid;
|
kuid = sock_net_uid(sock_net(sk), sk);
|
return from_kuid_munged(sock_net(sk)->user_ns, kuid);
|
}
|
|
static const struct bpf_func_proto bpf_get_socket_uid_proto = {
|
.func = bpf_get_socket_uid,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
};
|
|
static int _bpf_setsockopt(struct sock *sk, int level, int optname,
|
char *optval, int optlen)
|
{
|
char devname[IFNAMSIZ];
|
int val, valbool;
|
struct net *net;
|
int ifindex;
|
int ret = 0;
|
|
if (!sk_fullsock(sk))
|
return -EINVAL;
|
|
sock_owned_by_me(sk);
|
|
if (level == SOL_SOCKET) {
|
if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
|
return -EINVAL;
|
val = *((int *)optval);
|
valbool = val ? 1 : 0;
|
|
/* Only some socketops are supported */
|
switch (optname) {
|
case SO_RCVBUF:
|
val = min_t(u32, val, READ_ONCE(sysctl_rmem_max));
|
val = min_t(int, val, INT_MAX / 2);
|
sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
|
WRITE_ONCE(sk->sk_rcvbuf,
|
max_t(int, val * 2, SOCK_MIN_RCVBUF));
|
break;
|
case SO_SNDBUF:
|
val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
|
val = min_t(int, val, INT_MAX / 2);
|
sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
|
WRITE_ONCE(sk->sk_sndbuf,
|
max_t(int, val * 2, SOCK_MIN_SNDBUF));
|
break;
|
case SO_MAX_PACING_RATE: /* 32bit version */
|
if (val != ~0U)
|
cmpxchg(&sk->sk_pacing_status,
|
SK_PACING_NONE,
|
SK_PACING_NEEDED);
|
sk->sk_max_pacing_rate = (val == ~0U) ?
|
~0UL : (unsigned int)val;
|
sk->sk_pacing_rate = min(sk->sk_pacing_rate,
|
sk->sk_max_pacing_rate);
|
break;
|
case SO_PRIORITY:
|
sk->sk_priority = val;
|
break;
|
case SO_RCVLOWAT:
|
if (val < 0)
|
val = INT_MAX;
|
WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
|
break;
|
case SO_MARK:
|
if (sk->sk_mark != val) {
|
sk->sk_mark = val;
|
sk_dst_reset(sk);
|
}
|
break;
|
case SO_BINDTODEVICE:
|
optlen = min_t(long, optlen, IFNAMSIZ - 1);
|
strncpy(devname, optval, optlen);
|
devname[optlen] = 0;
|
|
ifindex = 0;
|
if (devname[0] != '\0') {
|
struct net_device *dev;
|
|
ret = -ENODEV;
|
|
net = sock_net(sk);
|
dev = dev_get_by_name(net, devname);
|
if (!dev)
|
break;
|
ifindex = dev->ifindex;
|
dev_put(dev);
|
}
|
ret = sock_bindtoindex(sk, ifindex, false);
|
break;
|
case SO_KEEPALIVE:
|
if (sk->sk_prot->keepalive)
|
sk->sk_prot->keepalive(sk, valbool);
|
sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
|
break;
|
default:
|
ret = -EINVAL;
|
}
|
#ifdef CONFIG_INET
|
} else if (level == SOL_IP) {
|
if (optlen != sizeof(int) || sk->sk_family != AF_INET)
|
return -EINVAL;
|
|
val = *((int *)optval);
|
/* Only some options are supported */
|
switch (optname) {
|
case IP_TOS:
|
if (val < -1 || val > 0xff) {
|
ret = -EINVAL;
|
} else {
|
struct inet_sock *inet = inet_sk(sk);
|
|
if (val == -1)
|
val = 0;
|
inet->tos = val;
|
}
|
break;
|
default:
|
ret = -EINVAL;
|
}
|
#if IS_ENABLED(CONFIG_IPV6)
|
} else if (level == SOL_IPV6) {
|
if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
|
return -EINVAL;
|
|
val = *((int *)optval);
|
/* Only some options are supported */
|
switch (optname) {
|
case IPV6_TCLASS:
|
if (val < -1 || val > 0xff) {
|
ret = -EINVAL;
|
} else {
|
struct ipv6_pinfo *np = inet6_sk(sk);
|
|
if (val == -1)
|
val = 0;
|
np->tclass = val;
|
}
|
break;
|
default:
|
ret = -EINVAL;
|
}
|
#endif
|
} else if (level == SOL_TCP &&
|
sk->sk_prot->setsockopt == tcp_setsockopt) {
|
if (optname == TCP_CONGESTION) {
|
char name[TCP_CA_NAME_MAX];
|
|
strncpy(name, optval, min_t(long, optlen,
|
TCP_CA_NAME_MAX-1));
|
name[TCP_CA_NAME_MAX-1] = 0;
|
ret = tcp_set_congestion_control(sk, name, false, true);
|
} else {
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
struct tcp_sock *tp = tcp_sk(sk);
|
unsigned long timeout;
|
|
if (optlen != sizeof(int))
|
return -EINVAL;
|
|
val = *((int *)optval);
|
/* Only some options are supported */
|
switch (optname) {
|
case TCP_BPF_IW:
|
if (val <= 0 || tp->data_segs_out > tp->syn_data)
|
ret = -EINVAL;
|
else
|
tp->snd_cwnd = val;
|
break;
|
case TCP_BPF_SNDCWND_CLAMP:
|
if (val <= 0) {
|
ret = -EINVAL;
|
} else {
|
tp->snd_cwnd_clamp = val;
|
tp->snd_ssthresh = val;
|
}
|
break;
|
case TCP_BPF_DELACK_MAX:
|
timeout = usecs_to_jiffies(val);
|
if (timeout > TCP_DELACK_MAX ||
|
timeout < TCP_TIMEOUT_MIN)
|
return -EINVAL;
|
inet_csk(sk)->icsk_delack_max = timeout;
|
break;
|
case TCP_BPF_RTO_MIN:
|
timeout = usecs_to_jiffies(val);
|
if (timeout > TCP_RTO_MIN ||
|
timeout < TCP_TIMEOUT_MIN)
|
return -EINVAL;
|
inet_csk(sk)->icsk_rto_min = timeout;
|
break;
|
case TCP_SAVE_SYN:
|
if (val < 0 || val > 1)
|
ret = -EINVAL;
|
else
|
tp->save_syn = val;
|
break;
|
case TCP_KEEPIDLE:
|
ret = tcp_sock_set_keepidle_locked(sk, val);
|
break;
|
case TCP_KEEPINTVL:
|
if (val < 1 || val > MAX_TCP_KEEPINTVL)
|
ret = -EINVAL;
|
else
|
tp->keepalive_intvl = val * HZ;
|
break;
|
case TCP_KEEPCNT:
|
if (val < 1 || val > MAX_TCP_KEEPCNT)
|
ret = -EINVAL;
|
else
|
tp->keepalive_probes = val;
|
break;
|
case TCP_SYNCNT:
|
if (val < 1 || val > MAX_TCP_SYNCNT)
|
ret = -EINVAL;
|
else
|
icsk->icsk_syn_retries = val;
|
break;
|
case TCP_USER_TIMEOUT:
|
if (val < 0)
|
ret = -EINVAL;
|
else
|
icsk->icsk_user_timeout = val;
|
break;
|
case TCP_NOTSENT_LOWAT:
|
tp->notsent_lowat = val;
|
sk->sk_write_space(sk);
|
break;
|
default:
|
ret = -EINVAL;
|
}
|
}
|
#endif
|
} else {
|
ret = -EINVAL;
|
}
|
return ret;
|
}
|
|
static int _bpf_getsockopt(struct sock *sk, int level, int optname,
|
char *optval, int optlen)
|
{
|
if (!sk_fullsock(sk))
|
goto err_clear;
|
|
sock_owned_by_me(sk);
|
|
#ifdef CONFIG_INET
|
if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
|
struct inet_connection_sock *icsk;
|
struct tcp_sock *tp;
|
|
switch (optname) {
|
case TCP_CONGESTION:
|
icsk = inet_csk(sk);
|
|
if (!icsk->icsk_ca_ops || optlen <= 1)
|
goto err_clear;
|
strncpy(optval, icsk->icsk_ca_ops->name, optlen);
|
optval[optlen - 1] = 0;
|
break;
|
case TCP_SAVED_SYN:
|
tp = tcp_sk(sk);
|
|
if (optlen <= 0 || !tp->saved_syn ||
|
optlen > tcp_saved_syn_len(tp->saved_syn))
|
goto err_clear;
|
memcpy(optval, tp->saved_syn->data, optlen);
|
break;
|
default:
|
goto err_clear;
|
}
|
} else if (level == SOL_IP) {
|
struct inet_sock *inet = inet_sk(sk);
|
|
if (optlen != sizeof(int) || sk->sk_family != AF_INET)
|
goto err_clear;
|
|
/* Only some options are supported */
|
switch (optname) {
|
case IP_TOS:
|
*((int *)optval) = (int)inet->tos;
|
break;
|
default:
|
goto err_clear;
|
}
|
#if IS_ENABLED(CONFIG_IPV6)
|
} else if (level == SOL_IPV6) {
|
struct ipv6_pinfo *np = inet6_sk(sk);
|
|
if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
|
goto err_clear;
|
|
/* Only some options are supported */
|
switch (optname) {
|
case IPV6_TCLASS:
|
*((int *)optval) = (int)np->tclass;
|
break;
|
default:
|
goto err_clear;
|
}
|
#endif
|
} else {
|
goto err_clear;
|
}
|
return 0;
|
#endif
|
err_clear:
|
memset(optval, 0, optlen);
|
return -EINVAL;
|
}
|
|
BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
|
int, level, int, optname, char *, optval, int, optlen)
|
{
|
return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
|
}
|
|
static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
|
.func = bpf_sock_addr_setsockopt,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
.arg4_type = ARG_PTR_TO_MEM,
|
.arg5_type = ARG_CONST_SIZE,
|
};
|
|
BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
|
int, level, int, optname, char *, optval, int, optlen)
|
{
|
return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
|
}
|
|
static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
|
.func = bpf_sock_addr_getsockopt,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
.arg4_type = ARG_PTR_TO_UNINIT_MEM,
|
.arg5_type = ARG_CONST_SIZE,
|
};
|
|
BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
|
int, level, int, optname, char *, optval, int, optlen)
|
{
|
return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
|
}
|
|
static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
|
.func = bpf_sock_ops_setsockopt,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
.arg4_type = ARG_PTR_TO_MEM,
|
.arg5_type = ARG_CONST_SIZE,
|
};
|
|
static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
|
int optname, const u8 **start)
|
{
|
struct sk_buff *syn_skb = bpf_sock->syn_skb;
|
const u8 *hdr_start;
|
int ret;
|
|
if (syn_skb) {
|
/* sk is a request_sock here */
|
|
if (optname == TCP_BPF_SYN) {
|
hdr_start = syn_skb->data;
|
ret = tcp_hdrlen(syn_skb);
|
} else if (optname == TCP_BPF_SYN_IP) {
|
hdr_start = skb_network_header(syn_skb);
|
ret = skb_network_header_len(syn_skb) +
|
tcp_hdrlen(syn_skb);
|
} else {
|
/* optname == TCP_BPF_SYN_MAC */
|
hdr_start = skb_mac_header(syn_skb);
|
ret = skb_mac_header_len(syn_skb) +
|
skb_network_header_len(syn_skb) +
|
tcp_hdrlen(syn_skb);
|
}
|
} else {
|
struct sock *sk = bpf_sock->sk;
|
struct saved_syn *saved_syn;
|
|
if (sk->sk_state == TCP_NEW_SYN_RECV)
|
/* synack retransmit. bpf_sock->syn_skb will
|
* not be available. It has to resort to
|
* saved_syn (if it is saved).
|
*/
|
saved_syn = inet_reqsk(sk)->saved_syn;
|
else
|
saved_syn = tcp_sk(sk)->saved_syn;
|
|
if (!saved_syn)
|
return -ENOENT;
|
|
if (optname == TCP_BPF_SYN) {
|
hdr_start = saved_syn->data +
|
saved_syn->mac_hdrlen +
|
saved_syn->network_hdrlen;
|
ret = saved_syn->tcp_hdrlen;
|
} else if (optname == TCP_BPF_SYN_IP) {
|
hdr_start = saved_syn->data +
|
saved_syn->mac_hdrlen;
|
ret = saved_syn->network_hdrlen +
|
saved_syn->tcp_hdrlen;
|
} else {
|
/* optname == TCP_BPF_SYN_MAC */
|
|
/* TCP_SAVE_SYN may not have saved the mac hdr */
|
if (!saved_syn->mac_hdrlen)
|
return -ENOENT;
|
|
hdr_start = saved_syn->data;
|
ret = saved_syn->mac_hdrlen +
|
saved_syn->network_hdrlen +
|
saved_syn->tcp_hdrlen;
|
}
|
}
|
|
*start = hdr_start;
|
return ret;
|
}
|
|
BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
|
int, level, int, optname, char *, optval, int, optlen)
|
{
|
if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
|
optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
|
int ret, copy_len = 0;
|
const u8 *start;
|
|
ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
|
if (ret > 0) {
|
copy_len = ret;
|
if (optlen < copy_len) {
|
copy_len = optlen;
|
ret = -ENOSPC;
|
}
|
|
memcpy(optval, start, copy_len);
|
}
|
|
/* Zero out unused buffer at the end */
|
memset(optval + copy_len, 0, optlen - copy_len);
|
|
return ret;
|
}
|
|
return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
|
}
|
|
static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
|
.func = bpf_sock_ops_getsockopt,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
.arg4_type = ARG_PTR_TO_UNINIT_MEM,
|
.arg5_type = ARG_CONST_SIZE,
|
};
|
|
BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
|
int, argval)
|
{
|
struct sock *sk = bpf_sock->sk;
|
int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
|
|
if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
|
return -EINVAL;
|
|
tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
|
|
return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
|
}
|
|
static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
|
.func = bpf_sock_ops_cb_flags_set,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
};
|
|
const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
|
EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
|
|
BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
|
int, addr_len)
|
{
|
#ifdef CONFIG_INET
|
struct sock *sk = ctx->sk;
|
u32 flags = BIND_FROM_BPF;
|
int err;
|
|
err = -EINVAL;
|
if (addr_len < offsetofend(struct sockaddr, sa_family))
|
return err;
|
if (addr->sa_family == AF_INET) {
|
if (addr_len < sizeof(struct sockaddr_in))
|
return err;
|
if (((struct sockaddr_in *)addr)->sin_port == htons(0))
|
flags |= BIND_FORCE_ADDRESS_NO_PORT;
|
return __inet_bind(sk, addr, addr_len, flags);
|
#if IS_ENABLED(CONFIG_IPV6)
|
} else if (addr->sa_family == AF_INET6) {
|
if (addr_len < SIN6_LEN_RFC2133)
|
return err;
|
if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
|
flags |= BIND_FORCE_ADDRESS_NO_PORT;
|
/* ipv6_bpf_stub cannot be NULL, since it's called from
|
* bpf_cgroup_inet6_connect hook and ipv6 is already loaded
|
*/
|
return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
|
#endif /* CONFIG_IPV6 */
|
}
|
#endif /* CONFIG_INET */
|
|
return -EAFNOSUPPORT;
|
}
|
|
static const struct bpf_func_proto bpf_bind_proto = {
|
.func = bpf_bind,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
};
|
|
#ifdef CONFIG_XFRM
|
BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
|
struct bpf_xfrm_state *, to, u32, size, u64, flags)
|
{
|
const struct sec_path *sp = skb_sec_path(skb);
|
const struct xfrm_state *x;
|
|
if (!sp || unlikely(index >= sp->len || flags))
|
goto err_clear;
|
|
x = sp->xvec[index];
|
|
if (unlikely(size != sizeof(struct bpf_xfrm_state)))
|
goto err_clear;
|
|
to->reqid = x->props.reqid;
|
to->spi = x->id.spi;
|
to->family = x->props.family;
|
to->ext = 0;
|
|
if (to->family == AF_INET6) {
|
memcpy(to->remote_ipv6, x->props.saddr.a6,
|
sizeof(to->remote_ipv6));
|
} else {
|
to->remote_ipv4 = x->props.saddr.a4;
|
memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
|
}
|
|
return 0;
|
err_clear:
|
memset(to, 0, size);
|
return -EINVAL;
|
}
|
|
static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
|
.func = bpf_skb_get_xfrm_state,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_PTR_TO_UNINIT_MEM,
|
.arg4_type = ARG_CONST_SIZE,
|
.arg5_type = ARG_ANYTHING,
|
};
|
#endif
|
|
#if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
|
static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
|
const struct neighbour *neigh,
|
const struct net_device *dev)
|
{
|
memcpy(params->dmac, neigh->ha, ETH_ALEN);
|
memcpy(params->smac, dev->dev_addr, ETH_ALEN);
|
params->h_vlan_TCI = 0;
|
params->h_vlan_proto = 0;
|
|
return 0;
|
}
|
#endif
|
|
#if IS_ENABLED(CONFIG_INET)
|
static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
|
u32 flags, bool check_mtu)
|
{
|
struct fib_nh_common *nhc;
|
struct in_device *in_dev;
|
struct neighbour *neigh;
|
struct net_device *dev;
|
struct fib_result res;
|
struct flowi4 fl4;
|
int err;
|
u32 mtu;
|
|
dev = dev_get_by_index_rcu(net, params->ifindex);
|
if (unlikely(!dev))
|
return -ENODEV;
|
|
/* verify forwarding is enabled on this interface */
|
in_dev = __in_dev_get_rcu(dev);
|
if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
|
return BPF_FIB_LKUP_RET_FWD_DISABLED;
|
|
if (flags & BPF_FIB_LOOKUP_OUTPUT) {
|
fl4.flowi4_iif = 1;
|
fl4.flowi4_oif = params->ifindex;
|
} else {
|
fl4.flowi4_iif = params->ifindex;
|
fl4.flowi4_oif = 0;
|
}
|
fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
|
fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
|
fl4.flowi4_flags = 0;
|
|
fl4.flowi4_proto = params->l4_protocol;
|
fl4.daddr = params->ipv4_dst;
|
fl4.saddr = params->ipv4_src;
|
fl4.fl4_sport = params->sport;
|
fl4.fl4_dport = params->dport;
|
fl4.flowi4_multipath_hash = 0;
|
|
if (flags & BPF_FIB_LOOKUP_DIRECT) {
|
u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
|
struct fib_table *tb;
|
|
tb = fib_get_table(net, tbid);
|
if (unlikely(!tb))
|
return BPF_FIB_LKUP_RET_NOT_FWDED;
|
|
err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
|
} else {
|
fl4.flowi4_mark = 0;
|
fl4.flowi4_secid = 0;
|
fl4.flowi4_tun_key.tun_id = 0;
|
fl4.flowi4_uid = sock_net_uid(net, NULL);
|
|
err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
|
}
|
|
if (err) {
|
/* map fib lookup errors to RTN_ type */
|
if (err == -EINVAL)
|
return BPF_FIB_LKUP_RET_BLACKHOLE;
|
if (err == -EHOSTUNREACH)
|
return BPF_FIB_LKUP_RET_UNREACHABLE;
|
if (err == -EACCES)
|
return BPF_FIB_LKUP_RET_PROHIBIT;
|
|
return BPF_FIB_LKUP_RET_NOT_FWDED;
|
}
|
|
if (res.type != RTN_UNICAST)
|
return BPF_FIB_LKUP_RET_NOT_FWDED;
|
|
if (fib_info_num_path(res.fi) > 1)
|
fib_select_path(net, &res, &fl4, NULL);
|
|
if (check_mtu) {
|
mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
|
if (params->tot_len > mtu)
|
return BPF_FIB_LKUP_RET_FRAG_NEEDED;
|
}
|
|
nhc = res.nhc;
|
|
/* do not handle lwt encaps right now */
|
if (nhc->nhc_lwtstate)
|
return BPF_FIB_LKUP_RET_UNSUPP_LWT;
|
|
dev = nhc->nhc_dev;
|
|
params->rt_metric = res.fi->fib_priority;
|
params->ifindex = dev->ifindex;
|
|
/* xdp and cls_bpf programs are run in RCU-bh so
|
* rcu_read_lock_bh is not needed here
|
*/
|
if (likely(nhc->nhc_gw_family != AF_INET6)) {
|
if (nhc->nhc_gw_family)
|
params->ipv4_dst = nhc->nhc_gw.ipv4;
|
|
neigh = __ipv4_neigh_lookup_noref(dev,
|
(__force u32)params->ipv4_dst);
|
} else {
|
struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
|
|
params->family = AF_INET6;
|
*dst = nhc->nhc_gw.ipv6;
|
neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
|
}
|
|
if (!neigh)
|
return BPF_FIB_LKUP_RET_NO_NEIGH;
|
|
return bpf_fib_set_fwd_params(params, neigh, dev);
|
}
|
#endif
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
|
u32 flags, bool check_mtu)
|
{
|
struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
|
struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
|
struct fib6_result res = {};
|
struct neighbour *neigh;
|
struct net_device *dev;
|
struct inet6_dev *idev;
|
struct flowi6 fl6;
|
int strict = 0;
|
int oif, err;
|
u32 mtu;
|
|
/* link local addresses are never forwarded */
|
if (rt6_need_strict(dst) || rt6_need_strict(src))
|
return BPF_FIB_LKUP_RET_NOT_FWDED;
|
|
dev = dev_get_by_index_rcu(net, params->ifindex);
|
if (unlikely(!dev))
|
return -ENODEV;
|
|
idev = __in6_dev_get_safely(dev);
|
if (unlikely(!idev || !idev->cnf.forwarding))
|
return BPF_FIB_LKUP_RET_FWD_DISABLED;
|
|
if (flags & BPF_FIB_LOOKUP_OUTPUT) {
|
fl6.flowi6_iif = 1;
|
oif = fl6.flowi6_oif = params->ifindex;
|
} else {
|
oif = fl6.flowi6_iif = params->ifindex;
|
fl6.flowi6_oif = 0;
|
strict = RT6_LOOKUP_F_HAS_SADDR;
|
}
|
fl6.flowlabel = params->flowinfo;
|
fl6.flowi6_scope = 0;
|
fl6.flowi6_flags = 0;
|
fl6.mp_hash = 0;
|
|
fl6.flowi6_proto = params->l4_protocol;
|
fl6.daddr = *dst;
|
fl6.saddr = *src;
|
fl6.fl6_sport = params->sport;
|
fl6.fl6_dport = params->dport;
|
|
if (flags & BPF_FIB_LOOKUP_DIRECT) {
|
u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
|
struct fib6_table *tb;
|
|
tb = ipv6_stub->fib6_get_table(net, tbid);
|
if (unlikely(!tb))
|
return BPF_FIB_LKUP_RET_NOT_FWDED;
|
|
err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
|
strict);
|
} else {
|
fl6.flowi6_mark = 0;
|
fl6.flowi6_secid = 0;
|
fl6.flowi6_tun_key.tun_id = 0;
|
fl6.flowi6_uid = sock_net_uid(net, NULL);
|
|
err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
|
}
|
|
if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
|
res.f6i == net->ipv6.fib6_null_entry))
|
return BPF_FIB_LKUP_RET_NOT_FWDED;
|
|
switch (res.fib6_type) {
|
/* only unicast is forwarded */
|
case RTN_UNICAST:
|
break;
|
case RTN_BLACKHOLE:
|
return BPF_FIB_LKUP_RET_BLACKHOLE;
|
case RTN_UNREACHABLE:
|
return BPF_FIB_LKUP_RET_UNREACHABLE;
|
case RTN_PROHIBIT:
|
return BPF_FIB_LKUP_RET_PROHIBIT;
|
default:
|
return BPF_FIB_LKUP_RET_NOT_FWDED;
|
}
|
|
ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
|
fl6.flowi6_oif != 0, NULL, strict);
|
|
if (check_mtu) {
|
mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
|
if (params->tot_len > mtu)
|
return BPF_FIB_LKUP_RET_FRAG_NEEDED;
|
}
|
|
if (res.nh->fib_nh_lws)
|
return BPF_FIB_LKUP_RET_UNSUPP_LWT;
|
|
if (res.nh->fib_nh_gw_family)
|
*dst = res.nh->fib_nh_gw6;
|
|
dev = res.nh->fib_nh_dev;
|
params->rt_metric = res.f6i->fib6_metric;
|
params->ifindex = dev->ifindex;
|
|
/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
|
* not needed here.
|
*/
|
neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
|
if (!neigh)
|
return BPF_FIB_LKUP_RET_NO_NEIGH;
|
|
return bpf_fib_set_fwd_params(params, neigh, dev);
|
}
|
#endif
|
|
BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
|
struct bpf_fib_lookup *, params, int, plen, u32, flags)
|
{
|
if (plen < sizeof(*params))
|
return -EINVAL;
|
|
if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
|
return -EINVAL;
|
|
switch (params->family) {
|
#if IS_ENABLED(CONFIG_INET)
|
case AF_INET:
|
return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
|
flags, true);
|
#endif
|
#if IS_ENABLED(CONFIG_IPV6)
|
case AF_INET6:
|
return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
|
flags, true);
|
#endif
|
}
|
return -EAFNOSUPPORT;
|
}
|
|
static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
|
.func = bpf_xdp_fib_lookup,
|
.gpl_only = true,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
.arg4_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
|
struct bpf_fib_lookup *, params, int, plen, u32, flags)
|
{
|
struct net *net = dev_net(skb->dev);
|
int rc = -EAFNOSUPPORT;
|
bool check_mtu = false;
|
|
if (plen < sizeof(*params))
|
return -EINVAL;
|
|
if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
|
return -EINVAL;
|
|
if (params->tot_len)
|
check_mtu = true;
|
|
switch (params->family) {
|
#if IS_ENABLED(CONFIG_INET)
|
case AF_INET:
|
rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
|
break;
|
#endif
|
#if IS_ENABLED(CONFIG_IPV6)
|
case AF_INET6:
|
rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
|
break;
|
#endif
|
}
|
|
if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
|
struct net_device *dev;
|
|
/* When tot_len isn't provided by user, check skb
|
* against MTU of FIB lookup resulting net_device
|
*/
|
dev = dev_get_by_index_rcu(net, params->ifindex);
|
if (!is_skb_forwardable(dev, skb))
|
rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
|
}
|
|
return rc;
|
}
|
|
static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
|
.func = bpf_skb_fib_lookup,
|
.gpl_only = true,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
.arg4_type = ARG_ANYTHING,
|
};
|
|
#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
|
static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
|
{
|
int err;
|
struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
|
|
if (!seg6_validate_srh(srh, len, false))
|
return -EINVAL;
|
|
switch (type) {
|
case BPF_LWT_ENCAP_SEG6_INLINE:
|
if (skb->protocol != htons(ETH_P_IPV6))
|
return -EBADMSG;
|
|
err = seg6_do_srh_inline(skb, srh);
|
break;
|
case BPF_LWT_ENCAP_SEG6:
|
skb_reset_inner_headers(skb);
|
skb->encapsulation = 1;
|
err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
|
break;
|
default:
|
return -EINVAL;
|
}
|
|
bpf_compute_data_pointers(skb);
|
if (err)
|
return err;
|
|
skb_set_transport_header(skb, sizeof(struct ipv6hdr));
|
|
return seg6_lookup_nexthop(skb, NULL, 0);
|
}
|
#endif /* CONFIG_IPV6_SEG6_BPF */
|
|
#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
|
static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
|
bool ingress)
|
{
|
return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
|
}
|
#endif
|
|
BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
|
u32, len)
|
{
|
switch (type) {
|
#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
|
case BPF_LWT_ENCAP_SEG6:
|
case BPF_LWT_ENCAP_SEG6_INLINE:
|
return bpf_push_seg6_encap(skb, type, hdr, len);
|
#endif
|
#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
|
case BPF_LWT_ENCAP_IP:
|
return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
|
#endif
|
default:
|
return -EINVAL;
|
}
|
}
|
|
BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
|
void *, hdr, u32, len)
|
{
|
switch (type) {
|
#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
|
case BPF_LWT_ENCAP_IP:
|
return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
|
#endif
|
default:
|
return -EINVAL;
|
}
|
}
|
|
static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
|
.func = bpf_lwt_in_push_encap,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_PTR_TO_MEM,
|
.arg4_type = ARG_CONST_SIZE
|
};
|
|
static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
|
.func = bpf_lwt_xmit_push_encap,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_PTR_TO_MEM,
|
.arg4_type = ARG_CONST_SIZE
|
};
|
|
#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
|
BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
|
const void *, from, u32, len)
|
{
|
struct seg6_bpf_srh_state *srh_state =
|
this_cpu_ptr(&seg6_bpf_srh_states);
|
struct ipv6_sr_hdr *srh = srh_state->srh;
|
void *srh_tlvs, *srh_end, *ptr;
|
int srhoff = 0;
|
|
if (srh == NULL)
|
return -EINVAL;
|
|
srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
|
srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
|
|
ptr = skb->data + offset;
|
if (ptr >= srh_tlvs && ptr + len <= srh_end)
|
srh_state->valid = false;
|
else if (ptr < (void *)&srh->flags ||
|
ptr + len > (void *)&srh->segments)
|
return -EFAULT;
|
|
if (unlikely(bpf_try_make_writable(skb, offset + len)))
|
return -EFAULT;
|
if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
|
return -EINVAL;
|
srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
|
|
memcpy(skb->data + offset, from, len);
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
|
.func = bpf_lwt_seg6_store_bytes,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_PTR_TO_MEM,
|
.arg4_type = ARG_CONST_SIZE
|
};
|
|
static void bpf_update_srh_state(struct sk_buff *skb)
|
{
|
struct seg6_bpf_srh_state *srh_state =
|
this_cpu_ptr(&seg6_bpf_srh_states);
|
int srhoff = 0;
|
|
if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
|
srh_state->srh = NULL;
|
} else {
|
srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
|
srh_state->hdrlen = srh_state->srh->hdrlen << 3;
|
srh_state->valid = true;
|
}
|
}
|
|
BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
|
u32, action, void *, param, u32, param_len)
|
{
|
struct seg6_bpf_srh_state *srh_state =
|
this_cpu_ptr(&seg6_bpf_srh_states);
|
int hdroff = 0;
|
int err;
|
|
switch (action) {
|
case SEG6_LOCAL_ACTION_END_X:
|
if (!seg6_bpf_has_valid_srh(skb))
|
return -EBADMSG;
|
if (param_len != sizeof(struct in6_addr))
|
return -EINVAL;
|
return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
|
case SEG6_LOCAL_ACTION_END_T:
|
if (!seg6_bpf_has_valid_srh(skb))
|
return -EBADMSG;
|
if (param_len != sizeof(int))
|
return -EINVAL;
|
return seg6_lookup_nexthop(skb, NULL, *(int *)param);
|
case SEG6_LOCAL_ACTION_END_DT6:
|
if (!seg6_bpf_has_valid_srh(skb))
|
return -EBADMSG;
|
if (param_len != sizeof(int))
|
return -EINVAL;
|
|
if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
|
return -EBADMSG;
|
if (!pskb_pull(skb, hdroff))
|
return -EBADMSG;
|
|
skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
|
skb_reset_network_header(skb);
|
skb_reset_transport_header(skb);
|
skb->encapsulation = 0;
|
|
bpf_compute_data_pointers(skb);
|
bpf_update_srh_state(skb);
|
return seg6_lookup_nexthop(skb, NULL, *(int *)param);
|
case SEG6_LOCAL_ACTION_END_B6:
|
if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
|
return -EBADMSG;
|
err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
|
param, param_len);
|
if (!err)
|
bpf_update_srh_state(skb);
|
|
return err;
|
case SEG6_LOCAL_ACTION_END_B6_ENCAP:
|
if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
|
return -EBADMSG;
|
err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
|
param, param_len);
|
if (!err)
|
bpf_update_srh_state(skb);
|
|
return err;
|
default:
|
return -EINVAL;
|
}
|
}
|
|
static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
|
.func = bpf_lwt_seg6_action,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_PTR_TO_MEM,
|
.arg4_type = ARG_CONST_SIZE
|
};
|
|
BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
|
s32, len)
|
{
|
struct seg6_bpf_srh_state *srh_state =
|
this_cpu_ptr(&seg6_bpf_srh_states);
|
struct ipv6_sr_hdr *srh = srh_state->srh;
|
void *srh_end, *srh_tlvs, *ptr;
|
struct ipv6hdr *hdr;
|
int srhoff = 0;
|
int ret;
|
|
if (unlikely(srh == NULL))
|
return -EINVAL;
|
|
srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
|
((srh->first_segment + 1) << 4));
|
srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
|
srh_state->hdrlen);
|
ptr = skb->data + offset;
|
|
if (unlikely(ptr < srh_tlvs || ptr > srh_end))
|
return -EFAULT;
|
if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
|
return -EFAULT;
|
|
if (len > 0) {
|
ret = skb_cow_head(skb, len);
|
if (unlikely(ret < 0))
|
return ret;
|
|
ret = bpf_skb_net_hdr_push(skb, offset, len);
|
} else {
|
ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
|
}
|
|
bpf_compute_data_pointers(skb);
|
if (unlikely(ret < 0))
|
return ret;
|
|
hdr = (struct ipv6hdr *)skb->data;
|
hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
|
|
if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
|
return -EINVAL;
|
srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
|
srh_state->hdrlen += len;
|
srh_state->valid = false;
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
|
.func = bpf_lwt_seg6_adjust_srh,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
};
|
#endif /* CONFIG_IPV6_SEG6_BPF */
|
|
#ifdef CONFIG_INET
|
static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
|
int dif, int sdif, u8 family, u8 proto)
|
{
|
bool refcounted = false;
|
struct sock *sk = NULL;
|
|
if (family == AF_INET) {
|
__be32 src4 = tuple->ipv4.saddr;
|
__be32 dst4 = tuple->ipv4.daddr;
|
|
if (proto == IPPROTO_TCP)
|
sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
|
src4, tuple->ipv4.sport,
|
dst4, tuple->ipv4.dport,
|
dif, sdif, &refcounted);
|
else
|
sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
|
dst4, tuple->ipv4.dport,
|
dif, sdif, &udp_table, NULL);
|
#if IS_ENABLED(CONFIG_IPV6)
|
} else {
|
struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
|
struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
|
|
if (proto == IPPROTO_TCP)
|
sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
|
src6, tuple->ipv6.sport,
|
dst6, ntohs(tuple->ipv6.dport),
|
dif, sdif, &refcounted);
|
else if (likely(ipv6_bpf_stub))
|
sk = ipv6_bpf_stub->udp6_lib_lookup(net,
|
src6, tuple->ipv6.sport,
|
dst6, tuple->ipv6.dport,
|
dif, sdif,
|
&udp_table, NULL);
|
#endif
|
}
|
|
if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
|
WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
|
sk = NULL;
|
}
|
return sk;
|
}
|
|
/* bpf_skc_lookup performs the core lookup for different types of sockets,
|
* taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
|
* Returns the socket as an 'unsigned long' to simplify the casting in the
|
* callers to satisfy BPF_CALL declarations.
|
*/
|
static struct sock *
|
__bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
|
struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
|
u64 flags)
|
{
|
struct sock *sk = NULL;
|
u8 family = AF_UNSPEC;
|
struct net *net;
|
int sdif;
|
|
if (len == sizeof(tuple->ipv4))
|
family = AF_INET;
|
else if (len == sizeof(tuple->ipv6))
|
family = AF_INET6;
|
else
|
return NULL;
|
|
if (unlikely(family == AF_UNSPEC || flags ||
|
!((s32)netns_id < 0 || netns_id <= S32_MAX)))
|
goto out;
|
|
if (family == AF_INET)
|
sdif = inet_sdif(skb);
|
else
|
sdif = inet6_sdif(skb);
|
|
if ((s32)netns_id < 0) {
|
net = caller_net;
|
sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
|
} else {
|
net = get_net_ns_by_id(caller_net, netns_id);
|
if (unlikely(!net))
|
goto out;
|
sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
|
put_net(net);
|
}
|
|
out:
|
return sk;
|
}
|
|
static struct sock *
|
__bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
|
struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
|
u64 flags)
|
{
|
struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
|
ifindex, proto, netns_id, flags);
|
|
if (sk) {
|
struct sock *sk2 = sk_to_full_sk(sk);
|
|
/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
|
* sock refcnt is decremented to prevent a request_sock leak.
|
*/
|
if (!sk_fullsock(sk2))
|
sk2 = NULL;
|
if (sk2 != sk) {
|
sock_gen_put(sk);
|
/* Ensure there is no need to bump sk2 refcnt */
|
if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
|
WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
|
return NULL;
|
}
|
sk = sk2;
|
}
|
}
|
|
return sk;
|
}
|
|
static struct sock *
|
bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
|
u8 proto, u64 netns_id, u64 flags)
|
{
|
struct net *caller_net;
|
int ifindex;
|
|
if (skb->dev) {
|
caller_net = dev_net(skb->dev);
|
ifindex = skb->dev->ifindex;
|
} else {
|
caller_net = sock_net(skb->sk);
|
ifindex = 0;
|
}
|
|
return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
|
netns_id, flags);
|
}
|
|
static struct sock *
|
bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
|
u8 proto, u64 netns_id, u64 flags)
|
{
|
struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
|
flags);
|
|
if (sk) {
|
struct sock *sk2 = sk_to_full_sk(sk);
|
|
/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
|
* sock refcnt is decremented to prevent a request_sock leak.
|
*/
|
if (!sk_fullsock(sk2))
|
sk2 = NULL;
|
if (sk2 != sk) {
|
sock_gen_put(sk);
|
/* Ensure there is no need to bump sk2 refcnt */
|
if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
|
WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
|
return NULL;
|
}
|
sk = sk2;
|
}
|
}
|
|
return sk;
|
}
|
|
BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
|
struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
|
{
|
return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
|
netns_id, flags);
|
}
|
|
static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
|
.func = bpf_skc_lookup_tcp,
|
.gpl_only = false,
|
.pkt_access = true,
|
.ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
.arg4_type = ARG_ANYTHING,
|
.arg5_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
|
struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
|
{
|
return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
|
netns_id, flags);
|
}
|
|
static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
|
.func = bpf_sk_lookup_tcp,
|
.gpl_only = false,
|
.pkt_access = true,
|
.ret_type = RET_PTR_TO_SOCKET_OR_NULL,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
.arg4_type = ARG_ANYTHING,
|
.arg5_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
|
struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
|
{
|
return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
|
netns_id, flags);
|
}
|
|
static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
|
.func = bpf_sk_lookup_udp,
|
.gpl_only = false,
|
.pkt_access = true,
|
.ret_type = RET_PTR_TO_SOCKET_OR_NULL,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
.arg4_type = ARG_ANYTHING,
|
.arg5_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_1(bpf_sk_release, struct sock *, sk)
|
{
|
if (sk && sk_is_refcounted(sk))
|
sock_gen_put(sk);
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_sk_release_proto = {
|
.func = bpf_sk_release,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
|
};
|
|
BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
|
struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
|
{
|
struct net *caller_net = dev_net(ctx->rxq->dev);
|
int ifindex = ctx->rxq->dev->ifindex;
|
|
return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
|
ifindex, IPPROTO_UDP, netns_id,
|
flags);
|
}
|
|
static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
|
.func = bpf_xdp_sk_lookup_udp,
|
.gpl_only = false,
|
.pkt_access = true,
|
.ret_type = RET_PTR_TO_SOCKET_OR_NULL,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
.arg4_type = ARG_ANYTHING,
|
.arg5_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
|
struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
|
{
|
struct net *caller_net = dev_net(ctx->rxq->dev);
|
int ifindex = ctx->rxq->dev->ifindex;
|
|
return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
|
ifindex, IPPROTO_TCP, netns_id,
|
flags);
|
}
|
|
static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
|
.func = bpf_xdp_skc_lookup_tcp,
|
.gpl_only = false,
|
.pkt_access = true,
|
.ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
.arg4_type = ARG_ANYTHING,
|
.arg5_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
|
struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
|
{
|
struct net *caller_net = dev_net(ctx->rxq->dev);
|
int ifindex = ctx->rxq->dev->ifindex;
|
|
return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
|
ifindex, IPPROTO_TCP, netns_id,
|
flags);
|
}
|
|
static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
|
.func = bpf_xdp_sk_lookup_tcp,
|
.gpl_only = false,
|
.pkt_access = true,
|
.ret_type = RET_PTR_TO_SOCKET_OR_NULL,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
.arg4_type = ARG_ANYTHING,
|
.arg5_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
|
struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
|
{
|
return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
|
sock_net(ctx->sk), 0,
|
IPPROTO_TCP, netns_id, flags);
|
}
|
|
static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
|
.func = bpf_sock_addr_skc_lookup_tcp,
|
.gpl_only = false,
|
.ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
.arg4_type = ARG_ANYTHING,
|
.arg5_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
|
struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
|
{
|
return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
|
sock_net(ctx->sk), 0, IPPROTO_TCP,
|
netns_id, flags);
|
}
|
|
static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
|
.func = bpf_sock_addr_sk_lookup_tcp,
|
.gpl_only = false,
|
.ret_type = RET_PTR_TO_SOCKET_OR_NULL,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
.arg4_type = ARG_ANYTHING,
|
.arg5_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
|
struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
|
{
|
return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
|
sock_net(ctx->sk), 0, IPPROTO_UDP,
|
netns_id, flags);
|
}
|
|
static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
|
.func = bpf_sock_addr_sk_lookup_udp,
|
.gpl_only = false,
|
.ret_type = RET_PTR_TO_SOCKET_OR_NULL,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
.arg4_type = ARG_ANYTHING,
|
.arg5_type = ARG_ANYTHING,
|
};
|
|
bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
|
struct bpf_insn_access_aux *info)
|
{
|
if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
|
icsk_retransmits))
|
return false;
|
|
if (off % size != 0)
|
return false;
|
|
switch (off) {
|
case offsetof(struct bpf_tcp_sock, bytes_received):
|
case offsetof(struct bpf_tcp_sock, bytes_acked):
|
return size == sizeof(__u64);
|
default:
|
return size == sizeof(__u32);
|
}
|
}
|
|
u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
|
const struct bpf_insn *si,
|
struct bpf_insn *insn_buf,
|
struct bpf_prog *prog, u32 *target_size)
|
{
|
struct bpf_insn *insn = insn_buf;
|
|
#define BPF_TCP_SOCK_GET_COMMON(FIELD) \
|
do { \
|
BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) > \
|
sizeof_field(struct bpf_tcp_sock, FIELD)); \
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
|
si->dst_reg, si->src_reg, \
|
offsetof(struct tcp_sock, FIELD)); \
|
} while (0)
|
|
#define BPF_INET_SOCK_GET_COMMON(FIELD) \
|
do { \
|
BUILD_BUG_ON(sizeof_field(struct inet_connection_sock, \
|
FIELD) > \
|
sizeof_field(struct bpf_tcp_sock, FIELD)); \
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
|
struct inet_connection_sock, \
|
FIELD), \
|
si->dst_reg, si->src_reg, \
|
offsetof( \
|
struct inet_connection_sock, \
|
FIELD)); \
|
} while (0)
|
|
if (insn > insn_buf)
|
return insn - insn_buf;
|
|
switch (si->off) {
|
case offsetof(struct bpf_tcp_sock, rtt_min):
|
BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
|
sizeof(struct minmax));
|
BUILD_BUG_ON(sizeof(struct minmax) <
|
sizeof(struct minmax_sample));
|
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
|
offsetof(struct tcp_sock, rtt_min) +
|
offsetof(struct minmax_sample, v));
|
break;
|
case offsetof(struct bpf_tcp_sock, snd_cwnd):
|
BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
|
break;
|
case offsetof(struct bpf_tcp_sock, srtt_us):
|
BPF_TCP_SOCK_GET_COMMON(srtt_us);
|
break;
|
case offsetof(struct bpf_tcp_sock, snd_ssthresh):
|
BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
|
break;
|
case offsetof(struct bpf_tcp_sock, rcv_nxt):
|
BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
|
break;
|
case offsetof(struct bpf_tcp_sock, snd_nxt):
|
BPF_TCP_SOCK_GET_COMMON(snd_nxt);
|
break;
|
case offsetof(struct bpf_tcp_sock, snd_una):
|
BPF_TCP_SOCK_GET_COMMON(snd_una);
|
break;
|
case offsetof(struct bpf_tcp_sock, mss_cache):
|
BPF_TCP_SOCK_GET_COMMON(mss_cache);
|
break;
|
case offsetof(struct bpf_tcp_sock, ecn_flags):
|
BPF_TCP_SOCK_GET_COMMON(ecn_flags);
|
break;
|
case offsetof(struct bpf_tcp_sock, rate_delivered):
|
BPF_TCP_SOCK_GET_COMMON(rate_delivered);
|
break;
|
case offsetof(struct bpf_tcp_sock, rate_interval_us):
|
BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
|
break;
|
case offsetof(struct bpf_tcp_sock, packets_out):
|
BPF_TCP_SOCK_GET_COMMON(packets_out);
|
break;
|
case offsetof(struct bpf_tcp_sock, retrans_out):
|
BPF_TCP_SOCK_GET_COMMON(retrans_out);
|
break;
|
case offsetof(struct bpf_tcp_sock, total_retrans):
|
BPF_TCP_SOCK_GET_COMMON(total_retrans);
|
break;
|
case offsetof(struct bpf_tcp_sock, segs_in):
|
BPF_TCP_SOCK_GET_COMMON(segs_in);
|
break;
|
case offsetof(struct bpf_tcp_sock, data_segs_in):
|
BPF_TCP_SOCK_GET_COMMON(data_segs_in);
|
break;
|
case offsetof(struct bpf_tcp_sock, segs_out):
|
BPF_TCP_SOCK_GET_COMMON(segs_out);
|
break;
|
case offsetof(struct bpf_tcp_sock, data_segs_out):
|
BPF_TCP_SOCK_GET_COMMON(data_segs_out);
|
break;
|
case offsetof(struct bpf_tcp_sock, lost_out):
|
BPF_TCP_SOCK_GET_COMMON(lost_out);
|
break;
|
case offsetof(struct bpf_tcp_sock, sacked_out):
|
BPF_TCP_SOCK_GET_COMMON(sacked_out);
|
break;
|
case offsetof(struct bpf_tcp_sock, bytes_received):
|
BPF_TCP_SOCK_GET_COMMON(bytes_received);
|
break;
|
case offsetof(struct bpf_tcp_sock, bytes_acked):
|
BPF_TCP_SOCK_GET_COMMON(bytes_acked);
|
break;
|
case offsetof(struct bpf_tcp_sock, dsack_dups):
|
BPF_TCP_SOCK_GET_COMMON(dsack_dups);
|
break;
|
case offsetof(struct bpf_tcp_sock, delivered):
|
BPF_TCP_SOCK_GET_COMMON(delivered);
|
break;
|
case offsetof(struct bpf_tcp_sock, delivered_ce):
|
BPF_TCP_SOCK_GET_COMMON(delivered_ce);
|
break;
|
case offsetof(struct bpf_tcp_sock, icsk_retransmits):
|
BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
|
break;
|
}
|
|
return insn - insn_buf;
|
}
|
|
BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
|
{
|
if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
|
return (unsigned long)sk;
|
|
return (unsigned long)NULL;
|
}
|
|
const struct bpf_func_proto bpf_tcp_sock_proto = {
|
.func = bpf_tcp_sock,
|
.gpl_only = false,
|
.ret_type = RET_PTR_TO_TCP_SOCK_OR_NULL,
|
.arg1_type = ARG_PTR_TO_SOCK_COMMON,
|
};
|
|
BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
|
{
|
sk = sk_to_full_sk(sk);
|
|
if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
|
return (unsigned long)sk;
|
|
return (unsigned long)NULL;
|
}
|
|
static const struct bpf_func_proto bpf_get_listener_sock_proto = {
|
.func = bpf_get_listener_sock,
|
.gpl_only = false,
|
.ret_type = RET_PTR_TO_SOCKET_OR_NULL,
|
.arg1_type = ARG_PTR_TO_SOCK_COMMON,
|
};
|
|
BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
|
{
|
unsigned int iphdr_len;
|
|
switch (skb_protocol(skb, true)) {
|
case cpu_to_be16(ETH_P_IP):
|
iphdr_len = sizeof(struct iphdr);
|
break;
|
case cpu_to_be16(ETH_P_IPV6):
|
iphdr_len = sizeof(struct ipv6hdr);
|
break;
|
default:
|
return 0;
|
}
|
|
if (skb_headlen(skb) < iphdr_len)
|
return 0;
|
|
if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
|
return 0;
|
|
return INET_ECN_set_ce(skb);
|
}
|
|
bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
|
struct bpf_insn_access_aux *info)
|
{
|
if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
|
return false;
|
|
if (off % size != 0)
|
return false;
|
|
switch (off) {
|
default:
|
return size == sizeof(__u32);
|
}
|
}
|
|
u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
|
const struct bpf_insn *si,
|
struct bpf_insn *insn_buf,
|
struct bpf_prog *prog, u32 *target_size)
|
{
|
struct bpf_insn *insn = insn_buf;
|
|
#define BPF_XDP_SOCK_GET(FIELD) \
|
do { \
|
BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) > \
|
sizeof_field(struct bpf_xdp_sock, FIELD)); \
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
|
si->dst_reg, si->src_reg, \
|
offsetof(struct xdp_sock, FIELD)); \
|
} while (0)
|
|
switch (si->off) {
|
case offsetof(struct bpf_xdp_sock, queue_id):
|
BPF_XDP_SOCK_GET(queue_id);
|
break;
|
}
|
|
return insn - insn_buf;
|
}
|
|
static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
|
.func = bpf_skb_ecn_set_ce,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
};
|
|
BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
|
struct tcphdr *, th, u32, th_len)
|
{
|
#ifdef CONFIG_SYN_COOKIES
|
u32 cookie;
|
int ret;
|
|
if (unlikely(!sk || th_len < sizeof(*th)))
|
return -EINVAL;
|
|
/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
|
if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
|
return -EINVAL;
|
|
if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
|
return -EINVAL;
|
|
if (!th->ack || th->rst || th->syn)
|
return -ENOENT;
|
|
if (unlikely(iph_len < sizeof(struct iphdr)))
|
return -EINVAL;
|
|
if (tcp_synq_no_recent_overflow(sk))
|
return -ENOENT;
|
|
cookie = ntohl(th->ack_seq) - 1;
|
|
/* Both struct iphdr and struct ipv6hdr have the version field at the
|
* same offset so we can cast to the shorter header (struct iphdr).
|
*/
|
switch (((struct iphdr *)iph)->version) {
|
case 4:
|
if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
|
return -EINVAL;
|
|
ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
|
break;
|
|
#if IS_BUILTIN(CONFIG_IPV6)
|
case 6:
|
if (unlikely(iph_len < sizeof(struct ipv6hdr)))
|
return -EINVAL;
|
|
if (sk->sk_family != AF_INET6)
|
return -EINVAL;
|
|
ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
|
break;
|
#endif /* CONFIG_IPV6 */
|
|
default:
|
return -EPROTONOSUPPORT;
|
}
|
|
if (ret > 0)
|
return 0;
|
|
return -ENOENT;
|
#else
|
return -ENOTSUPP;
|
#endif
|
}
|
|
static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
|
.func = bpf_tcp_check_syncookie,
|
.gpl_only = true,
|
.pkt_access = true,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
|
.arg2_type = ARG_PTR_TO_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
.arg4_type = ARG_PTR_TO_MEM,
|
.arg5_type = ARG_CONST_SIZE,
|
};
|
|
BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
|
struct tcphdr *, th, u32, th_len)
|
{
|
#ifdef CONFIG_SYN_COOKIES
|
u32 cookie;
|
u16 mss;
|
|
if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
|
return -EINVAL;
|
|
if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
|
return -EINVAL;
|
|
if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
|
return -ENOENT;
|
|
if (!th->syn || th->ack || th->fin || th->rst)
|
return -EINVAL;
|
|
if (unlikely(iph_len < sizeof(struct iphdr)))
|
return -EINVAL;
|
|
/* Both struct iphdr and struct ipv6hdr have the version field at the
|
* same offset so we can cast to the shorter header (struct iphdr).
|
*/
|
switch (((struct iphdr *)iph)->version) {
|
case 4:
|
if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
|
return -EINVAL;
|
|
mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
|
break;
|
|
#if IS_BUILTIN(CONFIG_IPV6)
|
case 6:
|
if (unlikely(iph_len < sizeof(struct ipv6hdr)))
|
return -EINVAL;
|
|
if (sk->sk_family != AF_INET6)
|
return -EINVAL;
|
|
mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
|
break;
|
#endif /* CONFIG_IPV6 */
|
|
default:
|
return -EPROTONOSUPPORT;
|
}
|
if (mss == 0)
|
return -ENOENT;
|
|
return cookie | ((u64)mss << 32);
|
#else
|
return -EOPNOTSUPP;
|
#endif /* CONFIG_SYN_COOKIES */
|
}
|
|
static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
|
.func = bpf_tcp_gen_syncookie,
|
.gpl_only = true, /* __cookie_v*_init_sequence() is GPL */
|
.pkt_access = true,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
|
.arg2_type = ARG_PTR_TO_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
.arg4_type = ARG_PTR_TO_MEM,
|
.arg5_type = ARG_CONST_SIZE,
|
};
|
|
BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
|
{
|
if (!sk || flags != 0)
|
return -EINVAL;
|
if (!skb_at_tc_ingress(skb))
|
return -EOPNOTSUPP;
|
if (unlikely(dev_net(skb->dev) != sock_net(sk)))
|
return -ENETUNREACH;
|
if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
|
return -ESOCKTNOSUPPORT;
|
if (sk_is_refcounted(sk) &&
|
unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
|
return -ENOENT;
|
|
skb_orphan(skb);
|
skb->sk = sk;
|
skb->destructor = sock_pfree;
|
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_sk_assign_proto = {
|
.func = bpf_sk_assign,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
|
.arg3_type = ARG_ANYTHING,
|
};
|
|
static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
|
u8 search_kind, const u8 *magic,
|
u8 magic_len, bool *eol)
|
{
|
u8 kind, kind_len;
|
|
*eol = false;
|
|
while (op < opend) {
|
kind = op[0];
|
|
if (kind == TCPOPT_EOL) {
|
*eol = true;
|
return ERR_PTR(-ENOMSG);
|
} else if (kind == TCPOPT_NOP) {
|
op++;
|
continue;
|
}
|
|
if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
|
/* Something is wrong in the received header.
|
* Follow the TCP stack's tcp_parse_options()
|
* and just bail here.
|
*/
|
return ERR_PTR(-EFAULT);
|
|
kind_len = op[1];
|
if (search_kind == kind) {
|
if (!magic_len)
|
return op;
|
|
if (magic_len > kind_len - 2)
|
return ERR_PTR(-ENOMSG);
|
|
if (!memcmp(&op[2], magic, magic_len))
|
return op;
|
}
|
|
op += kind_len;
|
}
|
|
return ERR_PTR(-ENOMSG);
|
}
|
|
BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
|
void *, search_res, u32, len, u64, flags)
|
{
|
bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
|
const u8 *op, *opend, *magic, *search = search_res;
|
u8 search_kind, search_len, copy_len, magic_len;
|
int ret;
|
|
/* 2 byte is the minimal option len except TCPOPT_NOP and
|
* TCPOPT_EOL which are useless for the bpf prog to learn
|
* and this helper disallow loading them also.
|
*/
|
if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
|
return -EINVAL;
|
|
search_kind = search[0];
|
search_len = search[1];
|
|
if (search_len > len || search_kind == TCPOPT_NOP ||
|
search_kind == TCPOPT_EOL)
|
return -EINVAL;
|
|
if (search_kind == TCPOPT_EXP || search_kind == 253) {
|
/* 16 or 32 bit magic. +2 for kind and kind length */
|
if (search_len != 4 && search_len != 6)
|
return -EINVAL;
|
magic = &search[2];
|
magic_len = search_len - 2;
|
} else {
|
if (search_len)
|
return -EINVAL;
|
magic = NULL;
|
magic_len = 0;
|
}
|
|
if (load_syn) {
|
ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
|
if (ret < 0)
|
return ret;
|
|
opend = op + ret;
|
op += sizeof(struct tcphdr);
|
} else {
|
if (!bpf_sock->skb ||
|
bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
|
/* This bpf_sock->op cannot call this helper */
|
return -EPERM;
|
|
opend = bpf_sock->skb_data_end;
|
op = bpf_sock->skb->data + sizeof(struct tcphdr);
|
}
|
|
op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
|
&eol);
|
if (IS_ERR(op))
|
return PTR_ERR(op);
|
|
copy_len = op[1];
|
ret = copy_len;
|
if (copy_len > len) {
|
ret = -ENOSPC;
|
copy_len = len;
|
}
|
|
memcpy(search_res, op, copy_len);
|
return ret;
|
}
|
|
static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
|
.func = bpf_sock_ops_load_hdr_opt,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
.arg4_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
|
const void *, from, u32, len, u64, flags)
|
{
|
u8 new_kind, new_kind_len, magic_len = 0, *opend;
|
const u8 *op, *new_op, *magic = NULL;
|
struct sk_buff *skb;
|
bool eol;
|
|
if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
|
return -EPERM;
|
|
if (len < 2 || flags)
|
return -EINVAL;
|
|
new_op = from;
|
new_kind = new_op[0];
|
new_kind_len = new_op[1];
|
|
if (new_kind_len > len || new_kind == TCPOPT_NOP ||
|
new_kind == TCPOPT_EOL)
|
return -EINVAL;
|
|
if (new_kind_len > bpf_sock->remaining_opt_len)
|
return -ENOSPC;
|
|
/* 253 is another experimental kind */
|
if (new_kind == TCPOPT_EXP || new_kind == 253) {
|
if (new_kind_len < 4)
|
return -EINVAL;
|
/* Match for the 2 byte magic also.
|
* RFC 6994: the magic could be 2 or 4 bytes.
|
* Hence, matching by 2 byte only is on the
|
* conservative side but it is the right
|
* thing to do for the 'search-for-duplication'
|
* purpose.
|
*/
|
magic = &new_op[2];
|
magic_len = 2;
|
}
|
|
/* Check for duplication */
|
skb = bpf_sock->skb;
|
op = skb->data + sizeof(struct tcphdr);
|
opend = bpf_sock->skb_data_end;
|
|
op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
|
&eol);
|
if (!IS_ERR(op))
|
return -EEXIST;
|
|
if (PTR_ERR(op) != -ENOMSG)
|
return PTR_ERR(op);
|
|
if (eol)
|
/* The option has been ended. Treat it as no more
|
* header option can be written.
|
*/
|
return -ENOSPC;
|
|
/* No duplication found. Store the header option. */
|
memcpy(opend, from, new_kind_len);
|
|
bpf_sock->remaining_opt_len -= new_kind_len;
|
bpf_sock->skb_data_end += new_kind_len;
|
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
|
.func = bpf_sock_ops_store_hdr_opt,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_MEM,
|
.arg3_type = ARG_CONST_SIZE,
|
.arg4_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
|
u32, len, u64, flags)
|
{
|
if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
|
return -EPERM;
|
|
if (flags || len < 2)
|
return -EINVAL;
|
|
if (len > bpf_sock->remaining_opt_len)
|
return -ENOSPC;
|
|
bpf_sock->remaining_opt_len -= len;
|
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
|
.func = bpf_sock_ops_reserve_hdr_opt,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_ANYTHING,
|
};
|
|
#endif /* CONFIG_INET */
|
|
bool bpf_helper_changes_pkt_data(void *func)
|
{
|
if (func == bpf_skb_vlan_push ||
|
func == bpf_skb_vlan_pop ||
|
func == bpf_skb_store_bytes ||
|
func == bpf_skb_change_proto ||
|
func == bpf_skb_change_head ||
|
func == sk_skb_change_head ||
|
func == bpf_skb_change_tail ||
|
func == sk_skb_change_tail ||
|
func == bpf_skb_adjust_room ||
|
func == sk_skb_adjust_room ||
|
func == bpf_skb_pull_data ||
|
func == sk_skb_pull_data ||
|
func == bpf_clone_redirect ||
|
func == bpf_l3_csum_replace ||
|
func == bpf_l4_csum_replace ||
|
func == bpf_xdp_adjust_head ||
|
func == bpf_xdp_adjust_meta ||
|
func == bpf_msg_pull_data ||
|
func == bpf_msg_push_data ||
|
func == bpf_msg_pop_data ||
|
func == bpf_xdp_adjust_tail ||
|
#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
|
func == bpf_lwt_seg6_store_bytes ||
|
func == bpf_lwt_seg6_adjust_srh ||
|
func == bpf_lwt_seg6_action ||
|
#endif
|
#ifdef CONFIG_INET
|
func == bpf_sock_ops_store_hdr_opt ||
|
#endif
|
func == bpf_lwt_in_push_encap ||
|
func == bpf_lwt_xmit_push_encap)
|
return true;
|
|
return false;
|
}
|
|
const struct bpf_func_proto bpf_event_output_data_proto __weak;
|
const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
|
|
static const struct bpf_func_proto *
|
sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
{
|
switch (func_id) {
|
/* inet and inet6 sockets are created in a process
|
* context so there is always a valid uid/gid
|
*/
|
case BPF_FUNC_get_current_uid_gid:
|
return &bpf_get_current_uid_gid_proto;
|
case BPF_FUNC_get_local_storage:
|
return &bpf_get_local_storage_proto;
|
case BPF_FUNC_get_socket_cookie:
|
return &bpf_get_socket_cookie_sock_proto;
|
case BPF_FUNC_get_netns_cookie:
|
return &bpf_get_netns_cookie_sock_proto;
|
case BPF_FUNC_perf_event_output:
|
return &bpf_event_output_data_proto;
|
case BPF_FUNC_get_current_pid_tgid:
|
return &bpf_get_current_pid_tgid_proto;
|
case BPF_FUNC_get_current_comm:
|
return &bpf_get_current_comm_proto;
|
#ifdef CONFIG_CGROUPS
|
case BPF_FUNC_get_current_cgroup_id:
|
return &bpf_get_current_cgroup_id_proto;
|
case BPF_FUNC_get_current_ancestor_cgroup_id:
|
return &bpf_get_current_ancestor_cgroup_id_proto;
|
#endif
|
#ifdef CONFIG_CGROUP_NET_CLASSID
|
case BPF_FUNC_get_cgroup_classid:
|
return &bpf_get_cgroup_classid_curr_proto;
|
#endif
|
case BPF_FUNC_sk_storage_get:
|
return &bpf_sk_storage_get_cg_sock_proto;
|
default:
|
return bpf_base_func_proto(func_id);
|
}
|
}
|
|
static const struct bpf_func_proto *
|
sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
{
|
switch (func_id) {
|
/* inet and inet6 sockets are created in a process
|
* context so there is always a valid uid/gid
|
*/
|
case BPF_FUNC_get_current_uid_gid:
|
return &bpf_get_current_uid_gid_proto;
|
case BPF_FUNC_bind:
|
switch (prog->expected_attach_type) {
|
case BPF_CGROUP_INET4_CONNECT:
|
case BPF_CGROUP_INET6_CONNECT:
|
return &bpf_bind_proto;
|
default:
|
return NULL;
|
}
|
case BPF_FUNC_get_socket_cookie:
|
return &bpf_get_socket_cookie_sock_addr_proto;
|
case BPF_FUNC_get_netns_cookie:
|
return &bpf_get_netns_cookie_sock_addr_proto;
|
case BPF_FUNC_get_local_storage:
|
return &bpf_get_local_storage_proto;
|
case BPF_FUNC_perf_event_output:
|
return &bpf_event_output_data_proto;
|
case BPF_FUNC_get_current_pid_tgid:
|
return &bpf_get_current_pid_tgid_proto;
|
case BPF_FUNC_get_current_comm:
|
return &bpf_get_current_comm_proto;
|
#ifdef CONFIG_CGROUPS
|
case BPF_FUNC_get_current_cgroup_id:
|
return &bpf_get_current_cgroup_id_proto;
|
case BPF_FUNC_get_current_ancestor_cgroup_id:
|
return &bpf_get_current_ancestor_cgroup_id_proto;
|
#endif
|
#ifdef CONFIG_CGROUP_NET_CLASSID
|
case BPF_FUNC_get_cgroup_classid:
|
return &bpf_get_cgroup_classid_curr_proto;
|
#endif
|
#ifdef CONFIG_INET
|
case BPF_FUNC_sk_lookup_tcp:
|
return &bpf_sock_addr_sk_lookup_tcp_proto;
|
case BPF_FUNC_sk_lookup_udp:
|
return &bpf_sock_addr_sk_lookup_udp_proto;
|
case BPF_FUNC_sk_release:
|
return &bpf_sk_release_proto;
|
case BPF_FUNC_skc_lookup_tcp:
|
return &bpf_sock_addr_skc_lookup_tcp_proto;
|
#endif /* CONFIG_INET */
|
case BPF_FUNC_sk_storage_get:
|
return &bpf_sk_storage_get_proto;
|
case BPF_FUNC_sk_storage_delete:
|
return &bpf_sk_storage_delete_proto;
|
case BPF_FUNC_setsockopt:
|
switch (prog->expected_attach_type) {
|
case BPF_CGROUP_INET4_CONNECT:
|
case BPF_CGROUP_INET6_CONNECT:
|
return &bpf_sock_addr_setsockopt_proto;
|
default:
|
return NULL;
|
}
|
case BPF_FUNC_getsockopt:
|
switch (prog->expected_attach_type) {
|
case BPF_CGROUP_INET4_CONNECT:
|
case BPF_CGROUP_INET6_CONNECT:
|
return &bpf_sock_addr_getsockopt_proto;
|
default:
|
return NULL;
|
}
|
default:
|
return bpf_sk_base_func_proto(func_id);
|
}
|
}
|
|
static const struct bpf_func_proto *
|
sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
{
|
switch (func_id) {
|
case BPF_FUNC_skb_load_bytes:
|
return &bpf_skb_load_bytes_proto;
|
case BPF_FUNC_skb_load_bytes_relative:
|
return &bpf_skb_load_bytes_relative_proto;
|
case BPF_FUNC_get_socket_cookie:
|
return &bpf_get_socket_cookie_proto;
|
case BPF_FUNC_get_socket_uid:
|
return &bpf_get_socket_uid_proto;
|
case BPF_FUNC_perf_event_output:
|
return &bpf_skb_event_output_proto;
|
default:
|
return bpf_sk_base_func_proto(func_id);
|
}
|
}
|
|
const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
|
const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
|
|
static const struct bpf_func_proto *
|
cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
{
|
switch (func_id) {
|
case BPF_FUNC_get_local_storage:
|
return &bpf_get_local_storage_proto;
|
case BPF_FUNC_sk_fullsock:
|
return &bpf_sk_fullsock_proto;
|
case BPF_FUNC_sk_storage_get:
|
return &bpf_sk_storage_get_proto;
|
case BPF_FUNC_sk_storage_delete:
|
return &bpf_sk_storage_delete_proto;
|
case BPF_FUNC_perf_event_output:
|
return &bpf_skb_event_output_proto;
|
#ifdef CONFIG_SOCK_CGROUP_DATA
|
case BPF_FUNC_skb_cgroup_id:
|
return &bpf_skb_cgroup_id_proto;
|
case BPF_FUNC_skb_ancestor_cgroup_id:
|
return &bpf_skb_ancestor_cgroup_id_proto;
|
case BPF_FUNC_sk_cgroup_id:
|
return &bpf_sk_cgroup_id_proto;
|
case BPF_FUNC_sk_ancestor_cgroup_id:
|
return &bpf_sk_ancestor_cgroup_id_proto;
|
#endif
|
#ifdef CONFIG_INET
|
case BPF_FUNC_sk_lookup_tcp:
|
return &bpf_sk_lookup_tcp_proto;
|
case BPF_FUNC_sk_lookup_udp:
|
return &bpf_sk_lookup_udp_proto;
|
case BPF_FUNC_sk_release:
|
return &bpf_sk_release_proto;
|
case BPF_FUNC_skc_lookup_tcp:
|
return &bpf_skc_lookup_tcp_proto;
|
case BPF_FUNC_tcp_sock:
|
return &bpf_tcp_sock_proto;
|
case BPF_FUNC_get_listener_sock:
|
return &bpf_get_listener_sock_proto;
|
case BPF_FUNC_skb_ecn_set_ce:
|
return &bpf_skb_ecn_set_ce_proto;
|
#endif
|
default:
|
return sk_filter_func_proto(func_id, prog);
|
}
|
}
|
|
static const struct bpf_func_proto *
|
tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
{
|
switch (func_id) {
|
case BPF_FUNC_skb_store_bytes:
|
return &bpf_skb_store_bytes_proto;
|
case BPF_FUNC_skb_load_bytes:
|
return &bpf_skb_load_bytes_proto;
|
case BPF_FUNC_skb_load_bytes_relative:
|
return &bpf_skb_load_bytes_relative_proto;
|
case BPF_FUNC_skb_pull_data:
|
return &bpf_skb_pull_data_proto;
|
case BPF_FUNC_csum_diff:
|
return &bpf_csum_diff_proto;
|
case BPF_FUNC_csum_update:
|
return &bpf_csum_update_proto;
|
case BPF_FUNC_csum_level:
|
return &bpf_csum_level_proto;
|
case BPF_FUNC_l3_csum_replace:
|
return &bpf_l3_csum_replace_proto;
|
case BPF_FUNC_l4_csum_replace:
|
return &bpf_l4_csum_replace_proto;
|
case BPF_FUNC_clone_redirect:
|
return &bpf_clone_redirect_proto;
|
case BPF_FUNC_get_cgroup_classid:
|
return &bpf_get_cgroup_classid_proto;
|
case BPF_FUNC_skb_vlan_push:
|
return &bpf_skb_vlan_push_proto;
|
case BPF_FUNC_skb_vlan_pop:
|
return &bpf_skb_vlan_pop_proto;
|
case BPF_FUNC_skb_change_proto:
|
return &bpf_skb_change_proto_proto;
|
case BPF_FUNC_skb_change_type:
|
return &bpf_skb_change_type_proto;
|
case BPF_FUNC_skb_adjust_room:
|
return &bpf_skb_adjust_room_proto;
|
case BPF_FUNC_skb_change_tail:
|
return &bpf_skb_change_tail_proto;
|
case BPF_FUNC_skb_change_head:
|
return &bpf_skb_change_head_proto;
|
case BPF_FUNC_skb_get_tunnel_key:
|
return &bpf_skb_get_tunnel_key_proto;
|
case BPF_FUNC_skb_set_tunnel_key:
|
return bpf_get_skb_set_tunnel_proto(func_id);
|
case BPF_FUNC_skb_get_tunnel_opt:
|
return &bpf_skb_get_tunnel_opt_proto;
|
case BPF_FUNC_skb_set_tunnel_opt:
|
return bpf_get_skb_set_tunnel_proto(func_id);
|
case BPF_FUNC_redirect:
|
return &bpf_redirect_proto;
|
case BPF_FUNC_redirect_neigh:
|
return &bpf_redirect_neigh_proto;
|
case BPF_FUNC_redirect_peer:
|
return &bpf_redirect_peer_proto;
|
case BPF_FUNC_get_route_realm:
|
return &bpf_get_route_realm_proto;
|
case BPF_FUNC_get_hash_recalc:
|
return &bpf_get_hash_recalc_proto;
|
case BPF_FUNC_set_hash_invalid:
|
return &bpf_set_hash_invalid_proto;
|
case BPF_FUNC_set_hash:
|
return &bpf_set_hash_proto;
|
case BPF_FUNC_perf_event_output:
|
return &bpf_skb_event_output_proto;
|
case BPF_FUNC_get_smp_processor_id:
|
return &bpf_get_smp_processor_id_proto;
|
case BPF_FUNC_skb_under_cgroup:
|
return &bpf_skb_under_cgroup_proto;
|
case BPF_FUNC_get_socket_cookie:
|
return &bpf_get_socket_cookie_proto;
|
case BPF_FUNC_get_socket_uid:
|
return &bpf_get_socket_uid_proto;
|
case BPF_FUNC_fib_lookup:
|
return &bpf_skb_fib_lookup_proto;
|
case BPF_FUNC_sk_fullsock:
|
return &bpf_sk_fullsock_proto;
|
case BPF_FUNC_sk_storage_get:
|
return &bpf_sk_storage_get_proto;
|
case BPF_FUNC_sk_storage_delete:
|
return &bpf_sk_storage_delete_proto;
|
#ifdef CONFIG_XFRM
|
case BPF_FUNC_skb_get_xfrm_state:
|
return &bpf_skb_get_xfrm_state_proto;
|
#endif
|
#ifdef CONFIG_CGROUP_NET_CLASSID
|
case BPF_FUNC_skb_cgroup_classid:
|
return &bpf_skb_cgroup_classid_proto;
|
#endif
|
#ifdef CONFIG_SOCK_CGROUP_DATA
|
case BPF_FUNC_skb_cgroup_id:
|
return &bpf_skb_cgroup_id_proto;
|
case BPF_FUNC_skb_ancestor_cgroup_id:
|
return &bpf_skb_ancestor_cgroup_id_proto;
|
#endif
|
#ifdef CONFIG_INET
|
case BPF_FUNC_sk_lookup_tcp:
|
return &bpf_sk_lookup_tcp_proto;
|
case BPF_FUNC_sk_lookup_udp:
|
return &bpf_sk_lookup_udp_proto;
|
case BPF_FUNC_sk_release:
|
return &bpf_sk_release_proto;
|
case BPF_FUNC_tcp_sock:
|
return &bpf_tcp_sock_proto;
|
case BPF_FUNC_get_listener_sock:
|
return &bpf_get_listener_sock_proto;
|
case BPF_FUNC_skc_lookup_tcp:
|
return &bpf_skc_lookup_tcp_proto;
|
case BPF_FUNC_tcp_check_syncookie:
|
return &bpf_tcp_check_syncookie_proto;
|
case BPF_FUNC_skb_ecn_set_ce:
|
return &bpf_skb_ecn_set_ce_proto;
|
case BPF_FUNC_tcp_gen_syncookie:
|
return &bpf_tcp_gen_syncookie_proto;
|
case BPF_FUNC_sk_assign:
|
return &bpf_sk_assign_proto;
|
#endif
|
default:
|
return bpf_sk_base_func_proto(func_id);
|
}
|
}
|
|
static const struct bpf_func_proto *
|
xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
{
|
switch (func_id) {
|
case BPF_FUNC_perf_event_output:
|
return &bpf_xdp_event_output_proto;
|
case BPF_FUNC_get_smp_processor_id:
|
return &bpf_get_smp_processor_id_proto;
|
case BPF_FUNC_csum_diff:
|
return &bpf_csum_diff_proto;
|
case BPF_FUNC_xdp_adjust_head:
|
return &bpf_xdp_adjust_head_proto;
|
case BPF_FUNC_xdp_adjust_meta:
|
return &bpf_xdp_adjust_meta_proto;
|
case BPF_FUNC_redirect:
|
return &bpf_xdp_redirect_proto;
|
case BPF_FUNC_redirect_map:
|
return &bpf_xdp_redirect_map_proto;
|
case BPF_FUNC_xdp_adjust_tail:
|
return &bpf_xdp_adjust_tail_proto;
|
case BPF_FUNC_fib_lookup:
|
return &bpf_xdp_fib_lookup_proto;
|
#ifdef CONFIG_INET
|
case BPF_FUNC_sk_lookup_udp:
|
return &bpf_xdp_sk_lookup_udp_proto;
|
case BPF_FUNC_sk_lookup_tcp:
|
return &bpf_xdp_sk_lookup_tcp_proto;
|
case BPF_FUNC_sk_release:
|
return &bpf_sk_release_proto;
|
case BPF_FUNC_skc_lookup_tcp:
|
return &bpf_xdp_skc_lookup_tcp_proto;
|
case BPF_FUNC_tcp_check_syncookie:
|
return &bpf_tcp_check_syncookie_proto;
|
case BPF_FUNC_tcp_gen_syncookie:
|
return &bpf_tcp_gen_syncookie_proto;
|
#endif
|
default:
|
return bpf_sk_base_func_proto(func_id);
|
}
|
}
|
|
const struct bpf_func_proto bpf_sock_map_update_proto __weak;
|
const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
|
|
static const struct bpf_func_proto *
|
sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
{
|
switch (func_id) {
|
case BPF_FUNC_setsockopt:
|
return &bpf_sock_ops_setsockopt_proto;
|
case BPF_FUNC_getsockopt:
|
return &bpf_sock_ops_getsockopt_proto;
|
case BPF_FUNC_sock_ops_cb_flags_set:
|
return &bpf_sock_ops_cb_flags_set_proto;
|
case BPF_FUNC_sock_map_update:
|
return &bpf_sock_map_update_proto;
|
case BPF_FUNC_sock_hash_update:
|
return &bpf_sock_hash_update_proto;
|
case BPF_FUNC_get_socket_cookie:
|
return &bpf_get_socket_cookie_sock_ops_proto;
|
case BPF_FUNC_get_local_storage:
|
return &bpf_get_local_storage_proto;
|
case BPF_FUNC_perf_event_output:
|
return &bpf_event_output_data_proto;
|
case BPF_FUNC_sk_storage_get:
|
return &bpf_sk_storage_get_proto;
|
case BPF_FUNC_sk_storage_delete:
|
return &bpf_sk_storage_delete_proto;
|
#ifdef CONFIG_INET
|
case BPF_FUNC_load_hdr_opt:
|
return &bpf_sock_ops_load_hdr_opt_proto;
|
case BPF_FUNC_store_hdr_opt:
|
return &bpf_sock_ops_store_hdr_opt_proto;
|
case BPF_FUNC_reserve_hdr_opt:
|
return &bpf_sock_ops_reserve_hdr_opt_proto;
|
case BPF_FUNC_tcp_sock:
|
return &bpf_tcp_sock_proto;
|
#endif /* CONFIG_INET */
|
default:
|
return bpf_sk_base_func_proto(func_id);
|
}
|
}
|
|
const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
|
const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
|
|
static const struct bpf_func_proto *
|
sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
{
|
switch (func_id) {
|
case BPF_FUNC_msg_redirect_map:
|
return &bpf_msg_redirect_map_proto;
|
case BPF_FUNC_msg_redirect_hash:
|
return &bpf_msg_redirect_hash_proto;
|
case BPF_FUNC_msg_apply_bytes:
|
return &bpf_msg_apply_bytes_proto;
|
case BPF_FUNC_msg_cork_bytes:
|
return &bpf_msg_cork_bytes_proto;
|
case BPF_FUNC_msg_pull_data:
|
return &bpf_msg_pull_data_proto;
|
case BPF_FUNC_msg_push_data:
|
return &bpf_msg_push_data_proto;
|
case BPF_FUNC_msg_pop_data:
|
return &bpf_msg_pop_data_proto;
|
case BPF_FUNC_perf_event_output:
|
return &bpf_event_output_data_proto;
|
case BPF_FUNC_get_current_uid_gid:
|
return &bpf_get_current_uid_gid_proto;
|
case BPF_FUNC_get_current_pid_tgid:
|
return &bpf_get_current_pid_tgid_proto;
|
case BPF_FUNC_sk_storage_get:
|
return &bpf_sk_storage_get_proto;
|
case BPF_FUNC_sk_storage_delete:
|
return &bpf_sk_storage_delete_proto;
|
#ifdef CONFIG_CGROUPS
|
case BPF_FUNC_get_current_cgroup_id:
|
return &bpf_get_current_cgroup_id_proto;
|
case BPF_FUNC_get_current_ancestor_cgroup_id:
|
return &bpf_get_current_ancestor_cgroup_id_proto;
|
#endif
|
#ifdef CONFIG_CGROUP_NET_CLASSID
|
case BPF_FUNC_get_cgroup_classid:
|
return &bpf_get_cgroup_classid_curr_proto;
|
#endif
|
default:
|
return bpf_sk_base_func_proto(func_id);
|
}
|
}
|
|
const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
|
const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
|
|
static const struct bpf_func_proto *
|
sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
{
|
switch (func_id) {
|
case BPF_FUNC_skb_store_bytes:
|
return &bpf_skb_store_bytes_proto;
|
case BPF_FUNC_skb_load_bytes:
|
return &bpf_skb_load_bytes_proto;
|
case BPF_FUNC_skb_pull_data:
|
return &sk_skb_pull_data_proto;
|
case BPF_FUNC_skb_change_tail:
|
return &sk_skb_change_tail_proto;
|
case BPF_FUNC_skb_change_head:
|
return &sk_skb_change_head_proto;
|
case BPF_FUNC_skb_adjust_room:
|
return &sk_skb_adjust_room_proto;
|
case BPF_FUNC_get_socket_cookie:
|
return &bpf_get_socket_cookie_proto;
|
case BPF_FUNC_get_socket_uid:
|
return &bpf_get_socket_uid_proto;
|
case BPF_FUNC_sk_redirect_map:
|
return &bpf_sk_redirect_map_proto;
|
case BPF_FUNC_sk_redirect_hash:
|
return &bpf_sk_redirect_hash_proto;
|
case BPF_FUNC_perf_event_output:
|
return &bpf_skb_event_output_proto;
|
#ifdef CONFIG_INET
|
case BPF_FUNC_sk_lookup_tcp:
|
return &bpf_sk_lookup_tcp_proto;
|
case BPF_FUNC_sk_lookup_udp:
|
return &bpf_sk_lookup_udp_proto;
|
case BPF_FUNC_sk_release:
|
return &bpf_sk_release_proto;
|
case BPF_FUNC_skc_lookup_tcp:
|
return &bpf_skc_lookup_tcp_proto;
|
#endif
|
default:
|
return bpf_sk_base_func_proto(func_id);
|
}
|
}
|
|
static const struct bpf_func_proto *
|
flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
{
|
switch (func_id) {
|
case BPF_FUNC_skb_load_bytes:
|
return &bpf_flow_dissector_load_bytes_proto;
|
default:
|
return bpf_sk_base_func_proto(func_id);
|
}
|
}
|
|
static const struct bpf_func_proto *
|
lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
{
|
switch (func_id) {
|
case BPF_FUNC_skb_load_bytes:
|
return &bpf_skb_load_bytes_proto;
|
case BPF_FUNC_skb_pull_data:
|
return &bpf_skb_pull_data_proto;
|
case BPF_FUNC_csum_diff:
|
return &bpf_csum_diff_proto;
|
case BPF_FUNC_get_cgroup_classid:
|
return &bpf_get_cgroup_classid_proto;
|
case BPF_FUNC_get_route_realm:
|
return &bpf_get_route_realm_proto;
|
case BPF_FUNC_get_hash_recalc:
|
return &bpf_get_hash_recalc_proto;
|
case BPF_FUNC_perf_event_output:
|
return &bpf_skb_event_output_proto;
|
case BPF_FUNC_get_smp_processor_id:
|
return &bpf_get_smp_processor_id_proto;
|
case BPF_FUNC_skb_under_cgroup:
|
return &bpf_skb_under_cgroup_proto;
|
default:
|
return bpf_sk_base_func_proto(func_id);
|
}
|
}
|
|
static const struct bpf_func_proto *
|
lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
{
|
switch (func_id) {
|
case BPF_FUNC_lwt_push_encap:
|
return &bpf_lwt_in_push_encap_proto;
|
default:
|
return lwt_out_func_proto(func_id, prog);
|
}
|
}
|
|
static const struct bpf_func_proto *
|
lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
{
|
switch (func_id) {
|
case BPF_FUNC_skb_get_tunnel_key:
|
return &bpf_skb_get_tunnel_key_proto;
|
case BPF_FUNC_skb_set_tunnel_key:
|
return bpf_get_skb_set_tunnel_proto(func_id);
|
case BPF_FUNC_skb_get_tunnel_opt:
|
return &bpf_skb_get_tunnel_opt_proto;
|
case BPF_FUNC_skb_set_tunnel_opt:
|
return bpf_get_skb_set_tunnel_proto(func_id);
|
case BPF_FUNC_redirect:
|
return &bpf_redirect_proto;
|
case BPF_FUNC_clone_redirect:
|
return &bpf_clone_redirect_proto;
|
case BPF_FUNC_skb_change_tail:
|
return &bpf_skb_change_tail_proto;
|
case BPF_FUNC_skb_change_head:
|
return &bpf_skb_change_head_proto;
|
case BPF_FUNC_skb_store_bytes:
|
return &bpf_skb_store_bytes_proto;
|
case BPF_FUNC_csum_update:
|
return &bpf_csum_update_proto;
|
case BPF_FUNC_csum_level:
|
return &bpf_csum_level_proto;
|
case BPF_FUNC_l3_csum_replace:
|
return &bpf_l3_csum_replace_proto;
|
case BPF_FUNC_l4_csum_replace:
|
return &bpf_l4_csum_replace_proto;
|
case BPF_FUNC_set_hash_invalid:
|
return &bpf_set_hash_invalid_proto;
|
case BPF_FUNC_lwt_push_encap:
|
return &bpf_lwt_xmit_push_encap_proto;
|
default:
|
return lwt_out_func_proto(func_id, prog);
|
}
|
}
|
|
static const struct bpf_func_proto *
|
lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
{
|
switch (func_id) {
|
#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
|
case BPF_FUNC_lwt_seg6_store_bytes:
|
return &bpf_lwt_seg6_store_bytes_proto;
|
case BPF_FUNC_lwt_seg6_action:
|
return &bpf_lwt_seg6_action_proto;
|
case BPF_FUNC_lwt_seg6_adjust_srh:
|
return &bpf_lwt_seg6_adjust_srh_proto;
|
#endif
|
default:
|
return lwt_out_func_proto(func_id, prog);
|
}
|
}
|
|
static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
|
const struct bpf_prog *prog,
|
struct bpf_insn_access_aux *info)
|
{
|
const int size_default = sizeof(__u32);
|
|
if (off < 0 || off >= sizeof(struct __sk_buff))
|
return false;
|
|
/* The verifier guarantees that size > 0. */
|
if (off % size != 0)
|
return false;
|
|
switch (off) {
|
case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
|
if (off + size > offsetofend(struct __sk_buff, cb[4]))
|
return false;
|
break;
|
case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
|
case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
|
case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
|
case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
|
case bpf_ctx_range(struct __sk_buff, data):
|
case bpf_ctx_range(struct __sk_buff, data_meta):
|
case bpf_ctx_range(struct __sk_buff, data_end):
|
if (size != size_default)
|
return false;
|
break;
|
case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
|
return false;
|
case bpf_ctx_range(struct __sk_buff, tstamp):
|
if (size != sizeof(__u64))
|
return false;
|
break;
|
case offsetof(struct __sk_buff, sk):
|
if (type == BPF_WRITE || size != sizeof(__u64))
|
return false;
|
info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
|
break;
|
default:
|
/* Only narrow read access allowed for now. */
|
if (type == BPF_WRITE) {
|
if (size != size_default)
|
return false;
|
} else {
|
bpf_ctx_record_field_size(info, size_default);
|
if (!bpf_ctx_narrow_access_ok(off, size, size_default))
|
return false;
|
}
|
}
|
|
return true;
|
}
|
|
static bool sk_filter_is_valid_access(int off, int size,
|
enum bpf_access_type type,
|
const struct bpf_prog *prog,
|
struct bpf_insn_access_aux *info)
|
{
|
switch (off) {
|
case bpf_ctx_range(struct __sk_buff, tc_classid):
|
case bpf_ctx_range(struct __sk_buff, data):
|
case bpf_ctx_range(struct __sk_buff, data_meta):
|
case bpf_ctx_range(struct __sk_buff, data_end):
|
case bpf_ctx_range_till(struct __sk_buff, family, local_port):
|
case bpf_ctx_range(struct __sk_buff, tstamp):
|
case bpf_ctx_range(struct __sk_buff, wire_len):
|
return false;
|
}
|
|
if (type == BPF_WRITE) {
|
switch (off) {
|
case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
|
break;
|
default:
|
return false;
|
}
|
}
|
|
return bpf_skb_is_valid_access(off, size, type, prog, info);
|
}
|
|
static bool cg_skb_is_valid_access(int off, int size,
|
enum bpf_access_type type,
|
const struct bpf_prog *prog,
|
struct bpf_insn_access_aux *info)
|
{
|
switch (off) {
|
case bpf_ctx_range(struct __sk_buff, tc_classid):
|
case bpf_ctx_range(struct __sk_buff, data_meta):
|
case bpf_ctx_range(struct __sk_buff, wire_len):
|
return false;
|
case bpf_ctx_range(struct __sk_buff, data):
|
case bpf_ctx_range(struct __sk_buff, data_end):
|
if (!bpf_capable())
|
return false;
|
break;
|
}
|
|
if (type == BPF_WRITE) {
|
switch (off) {
|
case bpf_ctx_range(struct __sk_buff, mark):
|
case bpf_ctx_range(struct __sk_buff, priority):
|
case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
|
break;
|
case bpf_ctx_range(struct __sk_buff, tstamp):
|
if (!bpf_capable())
|
return false;
|
break;
|
default:
|
return false;
|
}
|
}
|
|
switch (off) {
|
case bpf_ctx_range(struct __sk_buff, data):
|
info->reg_type = PTR_TO_PACKET;
|
break;
|
case bpf_ctx_range(struct __sk_buff, data_end):
|
info->reg_type = PTR_TO_PACKET_END;
|
break;
|
}
|
|
return bpf_skb_is_valid_access(off, size, type, prog, info);
|
}
|
|
static bool lwt_is_valid_access(int off, int size,
|
enum bpf_access_type type,
|
const struct bpf_prog *prog,
|
struct bpf_insn_access_aux *info)
|
{
|
switch (off) {
|
case bpf_ctx_range(struct __sk_buff, tc_classid):
|
case bpf_ctx_range_till(struct __sk_buff, family, local_port):
|
case bpf_ctx_range(struct __sk_buff, data_meta):
|
case bpf_ctx_range(struct __sk_buff, tstamp):
|
case bpf_ctx_range(struct __sk_buff, wire_len):
|
return false;
|
}
|
|
if (type == BPF_WRITE) {
|
switch (off) {
|
case bpf_ctx_range(struct __sk_buff, mark):
|
case bpf_ctx_range(struct __sk_buff, priority):
|
case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
|
break;
|
default:
|
return false;
|
}
|
}
|
|
switch (off) {
|
case bpf_ctx_range(struct __sk_buff, data):
|
info->reg_type = PTR_TO_PACKET;
|
break;
|
case bpf_ctx_range(struct __sk_buff, data_end):
|
info->reg_type = PTR_TO_PACKET_END;
|
break;
|
}
|
|
return bpf_skb_is_valid_access(off, size, type, prog, info);
|
}
|
|
/* Attach type specific accesses */
|
static bool __sock_filter_check_attach_type(int off,
|
enum bpf_access_type access_type,
|
enum bpf_attach_type attach_type)
|
{
|
switch (off) {
|
case offsetof(struct bpf_sock, bound_dev_if):
|
case offsetof(struct bpf_sock, mark):
|
case offsetof(struct bpf_sock, priority):
|
switch (attach_type) {
|
case BPF_CGROUP_INET_SOCK_CREATE:
|
case BPF_CGROUP_INET_SOCK_RELEASE:
|
goto full_access;
|
default:
|
return false;
|
}
|
case bpf_ctx_range(struct bpf_sock, src_ip4):
|
switch (attach_type) {
|
case BPF_CGROUP_INET4_POST_BIND:
|
goto read_only;
|
default:
|
return false;
|
}
|
case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
|
switch (attach_type) {
|
case BPF_CGROUP_INET6_POST_BIND:
|
goto read_only;
|
default:
|
return false;
|
}
|
case bpf_ctx_range(struct bpf_sock, src_port):
|
switch (attach_type) {
|
case BPF_CGROUP_INET4_POST_BIND:
|
case BPF_CGROUP_INET6_POST_BIND:
|
goto read_only;
|
default:
|
return false;
|
}
|
}
|
read_only:
|
return access_type == BPF_READ;
|
full_access:
|
return true;
|
}
|
|
bool bpf_sock_common_is_valid_access(int off, int size,
|
enum bpf_access_type type,
|
struct bpf_insn_access_aux *info)
|
{
|
switch (off) {
|
case bpf_ctx_range_till(struct bpf_sock, type, priority):
|
return false;
|
default:
|
return bpf_sock_is_valid_access(off, size, type, info);
|
}
|
}
|
|
bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
|
struct bpf_insn_access_aux *info)
|
{
|
const int size_default = sizeof(__u32);
|
int field_size;
|
|
if (off < 0 || off >= sizeof(struct bpf_sock))
|
return false;
|
if (off % size != 0)
|
return false;
|
|
switch (off) {
|
case offsetof(struct bpf_sock, state):
|
case offsetof(struct bpf_sock, family):
|
case offsetof(struct bpf_sock, type):
|
case offsetof(struct bpf_sock, protocol):
|
case offsetof(struct bpf_sock, src_port):
|
case offsetof(struct bpf_sock, rx_queue_mapping):
|
case bpf_ctx_range(struct bpf_sock, src_ip4):
|
case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
|
case bpf_ctx_range(struct bpf_sock, dst_ip4):
|
case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
|
bpf_ctx_record_field_size(info, size_default);
|
return bpf_ctx_narrow_access_ok(off, size, size_default);
|
case bpf_ctx_range(struct bpf_sock, dst_port):
|
field_size = size == size_default ?
|
size_default : sizeof_field(struct bpf_sock, dst_port);
|
bpf_ctx_record_field_size(info, field_size);
|
return bpf_ctx_narrow_access_ok(off, size, field_size);
|
case offsetofend(struct bpf_sock, dst_port) ...
|
offsetof(struct bpf_sock, dst_ip4) - 1:
|
return false;
|
}
|
|
return size == size_default;
|
}
|
|
static bool sock_filter_is_valid_access(int off, int size,
|
enum bpf_access_type type,
|
const struct bpf_prog *prog,
|
struct bpf_insn_access_aux *info)
|
{
|
if (!bpf_sock_is_valid_access(off, size, type, info))
|
return false;
|
return __sock_filter_check_attach_type(off, type,
|
prog->expected_attach_type);
|
}
|
|
static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
|
const struct bpf_prog *prog)
|
{
|
/* Neither direct read nor direct write requires any preliminary
|
* action.
|
*/
|
return 0;
|
}
|
|
static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
|
const struct bpf_prog *prog, int drop_verdict)
|
{
|
struct bpf_insn *insn = insn_buf;
|
|
if (!direct_write)
|
return 0;
|
|
/* if (!skb->cloned)
|
* goto start;
|
*
|
* (Fast-path, otherwise approximation that we might be
|
* a clone, do the rest in helper.)
|
*/
|
*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
|
*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
|
*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
|
|
/* ret = bpf_skb_pull_data(skb, 0); */
|
*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
|
*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
|
*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
|
BPF_FUNC_skb_pull_data);
|
/* if (!ret)
|
* goto restore;
|
* return TC_ACT_SHOT;
|
*/
|
*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
|
*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
|
*insn++ = BPF_EXIT_INSN();
|
|
/* restore: */
|
*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
|
/* start: */
|
*insn++ = prog->insnsi[0];
|
|
return insn - insn_buf;
|
}
|
|
static int bpf_gen_ld_abs(const struct bpf_insn *orig,
|
struct bpf_insn *insn_buf)
|
{
|
bool indirect = BPF_MODE(orig->code) == BPF_IND;
|
struct bpf_insn *insn = insn_buf;
|
|
if (!indirect) {
|
*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
|
} else {
|
*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
|
if (orig->imm)
|
*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
|
}
|
/* We're guaranteed here that CTX is in R6. */
|
*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
|
|
switch (BPF_SIZE(orig->code)) {
|
case BPF_B:
|
*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
|
break;
|
case BPF_H:
|
*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
|
break;
|
case BPF_W:
|
*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
|
break;
|
}
|
|
*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
|
*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
|
*insn++ = BPF_EXIT_INSN();
|
|
return insn - insn_buf;
|
}
|
|
static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
|
const struct bpf_prog *prog)
|
{
|
return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
|
}
|
|
static bool tc_cls_act_is_valid_access(int off, int size,
|
enum bpf_access_type type,
|
const struct bpf_prog *prog,
|
struct bpf_insn_access_aux *info)
|
{
|
if (type == BPF_WRITE) {
|
switch (off) {
|
case bpf_ctx_range(struct __sk_buff, mark):
|
case bpf_ctx_range(struct __sk_buff, tc_index):
|
case bpf_ctx_range(struct __sk_buff, priority):
|
case bpf_ctx_range(struct __sk_buff, tc_classid):
|
case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
|
case bpf_ctx_range(struct __sk_buff, tstamp):
|
case bpf_ctx_range(struct __sk_buff, queue_mapping):
|
break;
|
default:
|
return false;
|
}
|
}
|
|
switch (off) {
|
case bpf_ctx_range(struct __sk_buff, data):
|
info->reg_type = PTR_TO_PACKET;
|
break;
|
case bpf_ctx_range(struct __sk_buff, data_meta):
|
info->reg_type = PTR_TO_PACKET_META;
|
break;
|
case bpf_ctx_range(struct __sk_buff, data_end):
|
info->reg_type = PTR_TO_PACKET_END;
|
break;
|
case bpf_ctx_range_till(struct __sk_buff, family, local_port):
|
return false;
|
}
|
|
return bpf_skb_is_valid_access(off, size, type, prog, info);
|
}
|
|
static bool __is_valid_xdp_access(int off, int size)
|
{
|
if (off < 0 || off >= sizeof(struct xdp_md))
|
return false;
|
if (off % size != 0)
|
return false;
|
if (size != sizeof(__u32))
|
return false;
|
|
return true;
|
}
|
|
static bool xdp_is_valid_access(int off, int size,
|
enum bpf_access_type type,
|
const struct bpf_prog *prog,
|
struct bpf_insn_access_aux *info)
|
{
|
if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
|
switch (off) {
|
case offsetof(struct xdp_md, egress_ifindex):
|
return false;
|
}
|
}
|
|
if (type == BPF_WRITE) {
|
if (bpf_prog_is_dev_bound(prog->aux)) {
|
switch (off) {
|
case offsetof(struct xdp_md, rx_queue_index):
|
return __is_valid_xdp_access(off, size);
|
}
|
}
|
return false;
|
}
|
|
switch (off) {
|
case offsetof(struct xdp_md, data):
|
info->reg_type = PTR_TO_PACKET;
|
break;
|
case offsetof(struct xdp_md, data_meta):
|
info->reg_type = PTR_TO_PACKET_META;
|
break;
|
case offsetof(struct xdp_md, data_end):
|
info->reg_type = PTR_TO_PACKET_END;
|
break;
|
}
|
|
return __is_valid_xdp_access(off, size);
|
}
|
|
void bpf_warn_invalid_xdp_action(u32 act)
|
{
|
const u32 act_max = XDP_REDIRECT;
|
|
pr_warn_once("%s XDP return value %u, expect packet loss!\n",
|
act > act_max ? "Illegal" : "Driver unsupported",
|
act);
|
}
|
EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
|
|
static bool sock_addr_is_valid_access(int off, int size,
|
enum bpf_access_type type,
|
const struct bpf_prog *prog,
|
struct bpf_insn_access_aux *info)
|
{
|
const int size_default = sizeof(__u32);
|
|
if (off < 0 || off >= sizeof(struct bpf_sock_addr))
|
return false;
|
if (off % size != 0)
|
return false;
|
|
/* Disallow access to IPv6 fields from IPv4 contex and vise
|
* versa.
|
*/
|
switch (off) {
|
case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
|
switch (prog->expected_attach_type) {
|
case BPF_CGROUP_INET4_BIND:
|
case BPF_CGROUP_INET4_CONNECT:
|
case BPF_CGROUP_INET4_GETPEERNAME:
|
case BPF_CGROUP_INET4_GETSOCKNAME:
|
case BPF_CGROUP_UDP4_SENDMSG:
|
case BPF_CGROUP_UDP4_RECVMSG:
|
break;
|
default:
|
return false;
|
}
|
break;
|
case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
|
switch (prog->expected_attach_type) {
|
case BPF_CGROUP_INET6_BIND:
|
case BPF_CGROUP_INET6_CONNECT:
|
case BPF_CGROUP_INET6_GETPEERNAME:
|
case BPF_CGROUP_INET6_GETSOCKNAME:
|
case BPF_CGROUP_UDP6_SENDMSG:
|
case BPF_CGROUP_UDP6_RECVMSG:
|
break;
|
default:
|
return false;
|
}
|
break;
|
case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
|
switch (prog->expected_attach_type) {
|
case BPF_CGROUP_UDP4_SENDMSG:
|
break;
|
default:
|
return false;
|
}
|
break;
|
case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
|
msg_src_ip6[3]):
|
switch (prog->expected_attach_type) {
|
case BPF_CGROUP_UDP6_SENDMSG:
|
break;
|
default:
|
return false;
|
}
|
break;
|
}
|
|
switch (off) {
|
case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
|
case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
|
case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
|
case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
|
msg_src_ip6[3]):
|
case bpf_ctx_range(struct bpf_sock_addr, user_port):
|
if (type == BPF_READ) {
|
bpf_ctx_record_field_size(info, size_default);
|
|
if (bpf_ctx_wide_access_ok(off, size,
|
struct bpf_sock_addr,
|
user_ip6))
|
return true;
|
|
if (bpf_ctx_wide_access_ok(off, size,
|
struct bpf_sock_addr,
|
msg_src_ip6))
|
return true;
|
|
if (!bpf_ctx_narrow_access_ok(off, size, size_default))
|
return false;
|
} else {
|
if (bpf_ctx_wide_access_ok(off, size,
|
struct bpf_sock_addr,
|
user_ip6))
|
return true;
|
|
if (bpf_ctx_wide_access_ok(off, size,
|
struct bpf_sock_addr,
|
msg_src_ip6))
|
return true;
|
|
if (size != size_default)
|
return false;
|
}
|
break;
|
case offsetof(struct bpf_sock_addr, sk):
|
if (type != BPF_READ)
|
return false;
|
if (size != sizeof(__u64))
|
return false;
|
info->reg_type = PTR_TO_SOCKET;
|
break;
|
default:
|
if (type == BPF_READ) {
|
if (size != size_default)
|
return false;
|
} else {
|
return false;
|
}
|
}
|
|
return true;
|
}
|
|
static bool sock_ops_is_valid_access(int off, int size,
|
enum bpf_access_type type,
|
const struct bpf_prog *prog,
|
struct bpf_insn_access_aux *info)
|
{
|
const int size_default = sizeof(__u32);
|
|
if (off < 0 || off >= sizeof(struct bpf_sock_ops))
|
return false;
|
|
/* The verifier guarantees that size > 0. */
|
if (off % size != 0)
|
return false;
|
|
if (type == BPF_WRITE) {
|
switch (off) {
|
case offsetof(struct bpf_sock_ops, reply):
|
case offsetof(struct bpf_sock_ops, sk_txhash):
|
if (size != size_default)
|
return false;
|
break;
|
default:
|
return false;
|
}
|
} else {
|
switch (off) {
|
case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
|
bytes_acked):
|
if (size != sizeof(__u64))
|
return false;
|
break;
|
case offsetof(struct bpf_sock_ops, sk):
|
if (size != sizeof(__u64))
|
return false;
|
info->reg_type = PTR_TO_SOCKET_OR_NULL;
|
break;
|
case offsetof(struct bpf_sock_ops, skb_data):
|
if (size != sizeof(__u64))
|
return false;
|
info->reg_type = PTR_TO_PACKET;
|
break;
|
case offsetof(struct bpf_sock_ops, skb_data_end):
|
if (size != sizeof(__u64))
|
return false;
|
info->reg_type = PTR_TO_PACKET_END;
|
break;
|
case offsetof(struct bpf_sock_ops, skb_tcp_flags):
|
bpf_ctx_record_field_size(info, size_default);
|
return bpf_ctx_narrow_access_ok(off, size,
|
size_default);
|
default:
|
if (size != size_default)
|
return false;
|
break;
|
}
|
}
|
|
return true;
|
}
|
|
static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
|
const struct bpf_prog *prog)
|
{
|
return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
|
}
|
|
static bool sk_skb_is_valid_access(int off, int size,
|
enum bpf_access_type type,
|
const struct bpf_prog *prog,
|
struct bpf_insn_access_aux *info)
|
{
|
switch (off) {
|
case bpf_ctx_range(struct __sk_buff, tc_classid):
|
case bpf_ctx_range(struct __sk_buff, data_meta):
|
case bpf_ctx_range(struct __sk_buff, tstamp):
|
case bpf_ctx_range(struct __sk_buff, wire_len):
|
return false;
|
}
|
|
if (type == BPF_WRITE) {
|
switch (off) {
|
case bpf_ctx_range(struct __sk_buff, tc_index):
|
case bpf_ctx_range(struct __sk_buff, priority):
|
break;
|
default:
|
return false;
|
}
|
}
|
|
switch (off) {
|
case bpf_ctx_range(struct __sk_buff, mark):
|
return false;
|
case bpf_ctx_range(struct __sk_buff, data):
|
info->reg_type = PTR_TO_PACKET;
|
break;
|
case bpf_ctx_range(struct __sk_buff, data_end):
|
info->reg_type = PTR_TO_PACKET_END;
|
break;
|
}
|
|
return bpf_skb_is_valid_access(off, size, type, prog, info);
|
}
|
|
static bool sk_msg_is_valid_access(int off, int size,
|
enum bpf_access_type type,
|
const struct bpf_prog *prog,
|
struct bpf_insn_access_aux *info)
|
{
|
if (type == BPF_WRITE)
|
return false;
|
|
if (off % size != 0)
|
return false;
|
|
switch (off) {
|
case offsetof(struct sk_msg_md, data):
|
info->reg_type = PTR_TO_PACKET;
|
if (size != sizeof(__u64))
|
return false;
|
break;
|
case offsetof(struct sk_msg_md, data_end):
|
info->reg_type = PTR_TO_PACKET_END;
|
if (size != sizeof(__u64))
|
return false;
|
break;
|
case offsetof(struct sk_msg_md, sk):
|
if (size != sizeof(__u64))
|
return false;
|
info->reg_type = PTR_TO_SOCKET;
|
break;
|
case bpf_ctx_range(struct sk_msg_md, family):
|
case bpf_ctx_range(struct sk_msg_md, remote_ip4):
|
case bpf_ctx_range(struct sk_msg_md, local_ip4):
|
case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
|
case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
|
case bpf_ctx_range(struct sk_msg_md, remote_port):
|
case bpf_ctx_range(struct sk_msg_md, local_port):
|
case bpf_ctx_range(struct sk_msg_md, size):
|
if (size != sizeof(__u32))
|
return false;
|
break;
|
default:
|
return false;
|
}
|
return true;
|
}
|
|
static bool flow_dissector_is_valid_access(int off, int size,
|
enum bpf_access_type type,
|
const struct bpf_prog *prog,
|
struct bpf_insn_access_aux *info)
|
{
|
const int size_default = sizeof(__u32);
|
|
if (off < 0 || off >= sizeof(struct __sk_buff))
|
return false;
|
|
if (type == BPF_WRITE)
|
return false;
|
|
switch (off) {
|
case bpf_ctx_range(struct __sk_buff, data):
|
if (size != size_default)
|
return false;
|
info->reg_type = PTR_TO_PACKET;
|
return true;
|
case bpf_ctx_range(struct __sk_buff, data_end):
|
if (size != size_default)
|
return false;
|
info->reg_type = PTR_TO_PACKET_END;
|
return true;
|
case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
|
if (size != sizeof(__u64))
|
return false;
|
info->reg_type = PTR_TO_FLOW_KEYS;
|
return true;
|
default:
|
return false;
|
}
|
}
|
|
static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
|
const struct bpf_insn *si,
|
struct bpf_insn *insn_buf,
|
struct bpf_prog *prog,
|
u32 *target_size)
|
|
{
|
struct bpf_insn *insn = insn_buf;
|
|
switch (si->off) {
|
case offsetof(struct __sk_buff, data):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
|
si->dst_reg, si->src_reg,
|
offsetof(struct bpf_flow_dissector, data));
|
break;
|
|
case offsetof(struct __sk_buff, data_end):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
|
si->dst_reg, si->src_reg,
|
offsetof(struct bpf_flow_dissector, data_end));
|
break;
|
|
case offsetof(struct __sk_buff, flow_keys):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
|
si->dst_reg, si->src_reg,
|
offsetof(struct bpf_flow_dissector, flow_keys));
|
break;
|
}
|
|
return insn - insn_buf;
|
}
|
|
static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
|
struct bpf_insn *insn)
|
{
|
/* si->dst_reg = skb_shinfo(SKB); */
|
#ifdef NET_SKBUFF_DATA_USES_OFFSET
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
|
BPF_REG_AX, si->src_reg,
|
offsetof(struct sk_buff, end));
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_buff, head));
|
*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
|
#else
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_buff, end));
|
#endif
|
|
return insn;
|
}
|
|
static u32 bpf_convert_ctx_access(enum bpf_access_type type,
|
const struct bpf_insn *si,
|
struct bpf_insn *insn_buf,
|
struct bpf_prog *prog, u32 *target_size)
|
{
|
struct bpf_insn *insn = insn_buf;
|
int off;
|
|
switch (si->off) {
|
case offsetof(struct __sk_buff, len):
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
|
bpf_target_off(struct sk_buff, len, 4,
|
target_size));
|
break;
|
|
case offsetof(struct __sk_buff, protocol):
|
*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
|
bpf_target_off(struct sk_buff, protocol, 2,
|
target_size));
|
break;
|
|
case offsetof(struct __sk_buff, vlan_proto):
|
*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
|
bpf_target_off(struct sk_buff, vlan_proto, 2,
|
target_size));
|
break;
|
|
case offsetof(struct __sk_buff, priority):
|
if (type == BPF_WRITE)
|
*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
|
bpf_target_off(struct sk_buff, priority, 4,
|
target_size));
|
else
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
|
bpf_target_off(struct sk_buff, priority, 4,
|
target_size));
|
break;
|
|
case offsetof(struct __sk_buff, ingress_ifindex):
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
|
bpf_target_off(struct sk_buff, skb_iif, 4,
|
target_size));
|
break;
|
|
case offsetof(struct __sk_buff, ifindex):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_buff, dev));
|
*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
|
bpf_target_off(struct net_device, ifindex, 4,
|
target_size));
|
break;
|
|
case offsetof(struct __sk_buff, hash):
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
|
bpf_target_off(struct sk_buff, hash, 4,
|
target_size));
|
break;
|
|
case offsetof(struct __sk_buff, mark):
|
if (type == BPF_WRITE)
|
*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
|
bpf_target_off(struct sk_buff, mark, 4,
|
target_size));
|
else
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
|
bpf_target_off(struct sk_buff, mark, 4,
|
target_size));
|
break;
|
|
case offsetof(struct __sk_buff, pkt_type):
|
*target_size = 1;
|
*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
|
PKT_TYPE_OFFSET());
|
*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
|
#ifdef __BIG_ENDIAN_BITFIELD
|
*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
|
#endif
|
break;
|
|
case offsetof(struct __sk_buff, queue_mapping):
|
if (type == BPF_WRITE) {
|
*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
|
*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
|
bpf_target_off(struct sk_buff,
|
queue_mapping,
|
2, target_size));
|
} else {
|
*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
|
bpf_target_off(struct sk_buff,
|
queue_mapping,
|
2, target_size));
|
}
|
break;
|
|
case offsetof(struct __sk_buff, vlan_present):
|
*target_size = 1;
|
*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
|
PKT_VLAN_PRESENT_OFFSET());
|
if (PKT_VLAN_PRESENT_BIT)
|
*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
|
if (PKT_VLAN_PRESENT_BIT < 7)
|
*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
|
break;
|
|
case offsetof(struct __sk_buff, vlan_tci):
|
*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
|
bpf_target_off(struct sk_buff, vlan_tci, 2,
|
target_size));
|
break;
|
|
case offsetof(struct __sk_buff, cb[0]) ...
|
offsetofend(struct __sk_buff, cb[4]) - 1:
|
BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
|
BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
|
offsetof(struct qdisc_skb_cb, data)) %
|
sizeof(__u64));
|
|
prog->cb_access = 1;
|
off = si->off;
|
off -= offsetof(struct __sk_buff, cb[0]);
|
off += offsetof(struct sk_buff, cb);
|
off += offsetof(struct qdisc_skb_cb, data);
|
if (type == BPF_WRITE)
|
*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
|
si->src_reg, off);
|
else
|
*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
|
si->src_reg, off);
|
break;
|
|
case offsetof(struct __sk_buff, tc_classid):
|
BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
|
|
off = si->off;
|
off -= offsetof(struct __sk_buff, tc_classid);
|
off += offsetof(struct sk_buff, cb);
|
off += offsetof(struct qdisc_skb_cb, tc_classid);
|
*target_size = 2;
|
if (type == BPF_WRITE)
|
*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
|
si->src_reg, off);
|
else
|
*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
|
si->src_reg, off);
|
break;
|
|
case offsetof(struct __sk_buff, data):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_buff, data));
|
break;
|
|
case offsetof(struct __sk_buff, data_meta):
|
off = si->off;
|
off -= offsetof(struct __sk_buff, data_meta);
|
off += offsetof(struct sk_buff, cb);
|
off += offsetof(struct bpf_skb_data_end, data_meta);
|
*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
|
si->src_reg, off);
|
break;
|
|
case offsetof(struct __sk_buff, data_end):
|
off = si->off;
|
off -= offsetof(struct __sk_buff, data_end);
|
off += offsetof(struct sk_buff, cb);
|
off += offsetof(struct bpf_skb_data_end, data_end);
|
*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
|
si->src_reg, off);
|
break;
|
|
case offsetof(struct __sk_buff, tc_index):
|
#ifdef CONFIG_NET_SCHED
|
if (type == BPF_WRITE)
|
*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
|
bpf_target_off(struct sk_buff, tc_index, 2,
|
target_size));
|
else
|
*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
|
bpf_target_off(struct sk_buff, tc_index, 2,
|
target_size));
|
#else
|
*target_size = 2;
|
if (type == BPF_WRITE)
|
*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
|
else
|
*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
|
#endif
|
break;
|
|
case offsetof(struct __sk_buff, napi_id):
|
#if defined(CONFIG_NET_RX_BUSY_POLL)
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
|
bpf_target_off(struct sk_buff, napi_id, 4,
|
target_size));
|
*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
|
*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
|
#else
|
*target_size = 4;
|
*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
|
#endif
|
break;
|
case offsetof(struct __sk_buff, family):
|
BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_buff, sk));
|
*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
|
bpf_target_off(struct sock_common,
|
skc_family,
|
2, target_size));
|
break;
|
case offsetof(struct __sk_buff, remote_ip4):
|
BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_buff, sk));
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
|
bpf_target_off(struct sock_common,
|
skc_daddr,
|
4, target_size));
|
break;
|
case offsetof(struct __sk_buff, local_ip4):
|
BUILD_BUG_ON(sizeof_field(struct sock_common,
|
skc_rcv_saddr) != 4);
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_buff, sk));
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
|
bpf_target_off(struct sock_common,
|
skc_rcv_saddr,
|
4, target_size));
|
break;
|
case offsetof(struct __sk_buff, remote_ip6[0]) ...
|
offsetof(struct __sk_buff, remote_ip6[3]):
|
#if IS_ENABLED(CONFIG_IPV6)
|
BUILD_BUG_ON(sizeof_field(struct sock_common,
|
skc_v6_daddr.s6_addr32[0]) != 4);
|
|
off = si->off;
|
off -= offsetof(struct __sk_buff, remote_ip6[0]);
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_buff, sk));
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
|
offsetof(struct sock_common,
|
skc_v6_daddr.s6_addr32[0]) +
|
off);
|
#else
|
*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
|
#endif
|
break;
|
case offsetof(struct __sk_buff, local_ip6[0]) ...
|
offsetof(struct __sk_buff, local_ip6[3]):
|
#if IS_ENABLED(CONFIG_IPV6)
|
BUILD_BUG_ON(sizeof_field(struct sock_common,
|
skc_v6_rcv_saddr.s6_addr32[0]) != 4);
|
|
off = si->off;
|
off -= offsetof(struct __sk_buff, local_ip6[0]);
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_buff, sk));
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
|
offsetof(struct sock_common,
|
skc_v6_rcv_saddr.s6_addr32[0]) +
|
off);
|
#else
|
*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
|
#endif
|
break;
|
|
case offsetof(struct __sk_buff, remote_port):
|
BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_buff, sk));
|
*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
|
bpf_target_off(struct sock_common,
|
skc_dport,
|
2, target_size));
|
#ifndef __BIG_ENDIAN_BITFIELD
|
*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
|
#endif
|
break;
|
|
case offsetof(struct __sk_buff, local_port):
|
BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_buff, sk));
|
*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
|
bpf_target_off(struct sock_common,
|
skc_num, 2, target_size));
|
break;
|
|
case offsetof(struct __sk_buff, tstamp):
|
BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
|
|
if (type == BPF_WRITE)
|
*insn++ = BPF_STX_MEM(BPF_DW,
|
si->dst_reg, si->src_reg,
|
bpf_target_off(struct sk_buff,
|
tstamp, 8,
|
target_size));
|
else
|
*insn++ = BPF_LDX_MEM(BPF_DW,
|
si->dst_reg, si->src_reg,
|
bpf_target_off(struct sk_buff,
|
tstamp, 8,
|
target_size));
|
break;
|
|
case offsetof(struct __sk_buff, gso_segs):
|
insn = bpf_convert_shinfo_access(si, insn);
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
|
si->dst_reg, si->dst_reg,
|
bpf_target_off(struct skb_shared_info,
|
gso_segs, 2,
|
target_size));
|
break;
|
case offsetof(struct __sk_buff, gso_size):
|
insn = bpf_convert_shinfo_access(si, insn);
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
|
si->dst_reg, si->dst_reg,
|
bpf_target_off(struct skb_shared_info,
|
gso_size, 2,
|
target_size));
|
break;
|
case offsetof(struct __sk_buff, wire_len):
|
BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
|
|
off = si->off;
|
off -= offsetof(struct __sk_buff, wire_len);
|
off += offsetof(struct sk_buff, cb);
|
off += offsetof(struct qdisc_skb_cb, pkt_len);
|
*target_size = 4;
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
|
break;
|
|
case offsetof(struct __sk_buff, sk):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_buff, sk));
|
break;
|
}
|
|
return insn - insn_buf;
|
}
|
|
u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
|
const struct bpf_insn *si,
|
struct bpf_insn *insn_buf,
|
struct bpf_prog *prog, u32 *target_size)
|
{
|
struct bpf_insn *insn = insn_buf;
|
int off;
|
|
switch (si->off) {
|
case offsetof(struct bpf_sock, bound_dev_if):
|
BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
|
|
if (type == BPF_WRITE)
|
*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
|
offsetof(struct sock, sk_bound_dev_if));
|
else
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
|
offsetof(struct sock, sk_bound_dev_if));
|
break;
|
|
case offsetof(struct bpf_sock, mark):
|
BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
|
|
if (type == BPF_WRITE)
|
*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
|
offsetof(struct sock, sk_mark));
|
else
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
|
offsetof(struct sock, sk_mark));
|
break;
|
|
case offsetof(struct bpf_sock, priority):
|
BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
|
|
if (type == BPF_WRITE)
|
*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
|
offsetof(struct sock, sk_priority));
|
else
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
|
offsetof(struct sock, sk_priority));
|
break;
|
|
case offsetof(struct bpf_sock, family):
|
*insn++ = BPF_LDX_MEM(
|
BPF_FIELD_SIZEOF(struct sock_common, skc_family),
|
si->dst_reg, si->src_reg,
|
bpf_target_off(struct sock_common,
|
skc_family,
|
sizeof_field(struct sock_common,
|
skc_family),
|
target_size));
|
break;
|
|
case offsetof(struct bpf_sock, type):
|
*insn++ = BPF_LDX_MEM(
|
BPF_FIELD_SIZEOF(struct sock, sk_type),
|
si->dst_reg, si->src_reg,
|
bpf_target_off(struct sock, sk_type,
|
sizeof_field(struct sock, sk_type),
|
target_size));
|
break;
|
|
case offsetof(struct bpf_sock, protocol):
|
*insn++ = BPF_LDX_MEM(
|
BPF_FIELD_SIZEOF(struct sock, sk_protocol),
|
si->dst_reg, si->src_reg,
|
bpf_target_off(struct sock, sk_protocol,
|
sizeof_field(struct sock, sk_protocol),
|
target_size));
|
break;
|
|
case offsetof(struct bpf_sock, src_ip4):
|
*insn++ = BPF_LDX_MEM(
|
BPF_SIZE(si->code), si->dst_reg, si->src_reg,
|
bpf_target_off(struct sock_common, skc_rcv_saddr,
|
sizeof_field(struct sock_common,
|
skc_rcv_saddr),
|
target_size));
|
break;
|
|
case offsetof(struct bpf_sock, dst_ip4):
|
*insn++ = BPF_LDX_MEM(
|
BPF_SIZE(si->code), si->dst_reg, si->src_reg,
|
bpf_target_off(struct sock_common, skc_daddr,
|
sizeof_field(struct sock_common,
|
skc_daddr),
|
target_size));
|
break;
|
|
case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
|
#if IS_ENABLED(CONFIG_IPV6)
|
off = si->off;
|
off -= offsetof(struct bpf_sock, src_ip6[0]);
|
*insn++ = BPF_LDX_MEM(
|
BPF_SIZE(si->code), si->dst_reg, si->src_reg,
|
bpf_target_off(
|
struct sock_common,
|
skc_v6_rcv_saddr.s6_addr32[0],
|
sizeof_field(struct sock_common,
|
skc_v6_rcv_saddr.s6_addr32[0]),
|
target_size) + off);
|
#else
|
(void)off;
|
*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
|
#endif
|
break;
|
|
case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
|
#if IS_ENABLED(CONFIG_IPV6)
|
off = si->off;
|
off -= offsetof(struct bpf_sock, dst_ip6[0]);
|
*insn++ = BPF_LDX_MEM(
|
BPF_SIZE(si->code), si->dst_reg, si->src_reg,
|
bpf_target_off(struct sock_common,
|
skc_v6_daddr.s6_addr32[0],
|
sizeof_field(struct sock_common,
|
skc_v6_daddr.s6_addr32[0]),
|
target_size) + off);
|
#else
|
*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
|
*target_size = 4;
|
#endif
|
break;
|
|
case offsetof(struct bpf_sock, src_port):
|
*insn++ = BPF_LDX_MEM(
|
BPF_FIELD_SIZEOF(struct sock_common, skc_num),
|
si->dst_reg, si->src_reg,
|
bpf_target_off(struct sock_common, skc_num,
|
sizeof_field(struct sock_common,
|
skc_num),
|
target_size));
|
break;
|
|
case offsetof(struct bpf_sock, dst_port):
|
*insn++ = BPF_LDX_MEM(
|
BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
|
si->dst_reg, si->src_reg,
|
bpf_target_off(struct sock_common, skc_dport,
|
sizeof_field(struct sock_common,
|
skc_dport),
|
target_size));
|
break;
|
|
case offsetof(struct bpf_sock, state):
|
*insn++ = BPF_LDX_MEM(
|
BPF_FIELD_SIZEOF(struct sock_common, skc_state),
|
si->dst_reg, si->src_reg,
|
bpf_target_off(struct sock_common, skc_state,
|
sizeof_field(struct sock_common,
|
skc_state),
|
target_size));
|
break;
|
case offsetof(struct bpf_sock, rx_queue_mapping):
|
#ifdef CONFIG_XPS
|
*insn++ = BPF_LDX_MEM(
|
BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
|
si->dst_reg, si->src_reg,
|
bpf_target_off(struct sock, sk_rx_queue_mapping,
|
sizeof_field(struct sock,
|
sk_rx_queue_mapping),
|
target_size));
|
*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
|
1);
|
*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
|
#else
|
*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
|
*target_size = 2;
|
#endif
|
break;
|
}
|
|
return insn - insn_buf;
|
}
|
|
static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
|
const struct bpf_insn *si,
|
struct bpf_insn *insn_buf,
|
struct bpf_prog *prog, u32 *target_size)
|
{
|
struct bpf_insn *insn = insn_buf;
|
|
switch (si->off) {
|
case offsetof(struct __sk_buff, ifindex):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_buff, dev));
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
|
bpf_target_off(struct net_device, ifindex, 4,
|
target_size));
|
break;
|
default:
|
return bpf_convert_ctx_access(type, si, insn_buf, prog,
|
target_size);
|
}
|
|
return insn - insn_buf;
|
}
|
|
static u32 xdp_convert_ctx_access(enum bpf_access_type type,
|
const struct bpf_insn *si,
|
struct bpf_insn *insn_buf,
|
struct bpf_prog *prog, u32 *target_size)
|
{
|
struct bpf_insn *insn = insn_buf;
|
|
switch (si->off) {
|
case offsetof(struct xdp_md, data):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
|
si->dst_reg, si->src_reg,
|
offsetof(struct xdp_buff, data));
|
break;
|
case offsetof(struct xdp_md, data_meta):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
|
si->dst_reg, si->src_reg,
|
offsetof(struct xdp_buff, data_meta));
|
break;
|
case offsetof(struct xdp_md, data_end):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
|
si->dst_reg, si->src_reg,
|
offsetof(struct xdp_buff, data_end));
|
break;
|
case offsetof(struct xdp_md, ingress_ifindex):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
|
si->dst_reg, si->src_reg,
|
offsetof(struct xdp_buff, rxq));
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
|
si->dst_reg, si->dst_reg,
|
offsetof(struct xdp_rxq_info, dev));
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
|
offsetof(struct net_device, ifindex));
|
break;
|
case offsetof(struct xdp_md, rx_queue_index):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
|
si->dst_reg, si->src_reg,
|
offsetof(struct xdp_buff, rxq));
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
|
offsetof(struct xdp_rxq_info,
|
queue_index));
|
break;
|
case offsetof(struct xdp_md, egress_ifindex):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
|
si->dst_reg, si->src_reg,
|
offsetof(struct xdp_buff, txq));
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
|
si->dst_reg, si->dst_reg,
|
offsetof(struct xdp_txq_info, dev));
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
|
offsetof(struct net_device, ifindex));
|
break;
|
}
|
|
return insn - insn_buf;
|
}
|
|
/* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
|
* context Structure, F is Field in context structure that contains a pointer
|
* to Nested Structure of type NS that has the field NF.
|
*
|
* SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
|
* sure that SIZE is not greater than actual size of S.F.NF.
|
*
|
* If offset OFF is provided, the load happens from that offset relative to
|
* offset of NF.
|
*/
|
#define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \
|
do { \
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \
|
si->src_reg, offsetof(S, F)); \
|
*insn++ = BPF_LDX_MEM( \
|
SIZE, si->dst_reg, si->dst_reg, \
|
bpf_target_off(NS, NF, sizeof_field(NS, NF), \
|
target_size) \
|
+ OFF); \
|
} while (0)
|
|
#define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \
|
SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \
|
BPF_FIELD_SIZEOF(NS, NF), 0)
|
|
/* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
|
* SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
|
*
|
* In addition it uses Temporary Field TF (member of struct S) as the 3rd
|
* "register" since two registers available in convert_ctx_access are not
|
* enough: we can't override neither SRC, since it contains value to store, nor
|
* DST since it contains pointer to context that may be used by later
|
* instructions. But we need a temporary place to save pointer to nested
|
* structure whose field we want to store to.
|
*/
|
#define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF) \
|
do { \
|
int tmp_reg = BPF_REG_9; \
|
if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
|
--tmp_reg; \
|
if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
|
--tmp_reg; \
|
*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \
|
offsetof(S, TF)); \
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \
|
si->dst_reg, offsetof(S, F)); \
|
*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg, \
|
bpf_target_off(NS, NF, sizeof_field(NS, NF), \
|
target_size) \
|
+ OFF); \
|
*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \
|
offsetof(S, TF)); \
|
} while (0)
|
|
#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
|
TF) \
|
do { \
|
if (type == BPF_WRITE) { \
|
SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, \
|
OFF, TF); \
|
} else { \
|
SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \
|
S, NS, F, NF, SIZE, OFF); \
|
} \
|
} while (0)
|
|
#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF) \
|
SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( \
|
S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
|
|
static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
|
const struct bpf_insn *si,
|
struct bpf_insn *insn_buf,
|
struct bpf_prog *prog, u32 *target_size)
|
{
|
int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
|
struct bpf_insn *insn = insn_buf;
|
|
switch (si->off) {
|
case offsetof(struct bpf_sock_addr, user_family):
|
SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
|
struct sockaddr, uaddr, sa_family);
|
break;
|
|
case offsetof(struct bpf_sock_addr, user_ip4):
|
SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
|
struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
|
sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
|
break;
|
|
case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
|
off = si->off;
|
off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
|
SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
|
struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
|
sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
|
tmp_reg);
|
break;
|
|
case offsetof(struct bpf_sock_addr, user_port):
|
/* To get port we need to know sa_family first and then treat
|
* sockaddr as either sockaddr_in or sockaddr_in6.
|
* Though we can simplify since port field has same offset and
|
* size in both structures.
|
* Here we check this invariant and use just one of the
|
* structures if it's true.
|
*/
|
BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
|
offsetof(struct sockaddr_in6, sin6_port));
|
BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
|
sizeof_field(struct sockaddr_in6, sin6_port));
|
/* Account for sin6_port being smaller than user_port. */
|
port_size = min(port_size, BPF_LDST_BYTES(si));
|
SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
|
struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
|
sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
|
break;
|
|
case offsetof(struct bpf_sock_addr, family):
|
SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
|
struct sock, sk, sk_family);
|
break;
|
|
case offsetof(struct bpf_sock_addr, type):
|
SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
|
struct sock, sk, sk_type);
|
break;
|
|
case offsetof(struct bpf_sock_addr, protocol):
|
SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
|
struct sock, sk, sk_protocol);
|
break;
|
|
case offsetof(struct bpf_sock_addr, msg_src_ip4):
|
/* Treat t_ctx as struct in_addr for msg_src_ip4. */
|
SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
|
struct bpf_sock_addr_kern, struct in_addr, t_ctx,
|
s_addr, BPF_SIZE(si->code), 0, tmp_reg);
|
break;
|
|
case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
|
msg_src_ip6[3]):
|
off = si->off;
|
off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
|
/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
|
SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
|
struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
|
s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
|
break;
|
case offsetof(struct bpf_sock_addr, sk):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct bpf_sock_addr_kern, sk));
|
break;
|
}
|
|
return insn - insn_buf;
|
}
|
|
static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
|
const struct bpf_insn *si,
|
struct bpf_insn *insn_buf,
|
struct bpf_prog *prog,
|
u32 *target_size)
|
{
|
struct bpf_insn *insn = insn_buf;
|
int off;
|
|
/* Helper macro for adding read access to tcp_sock or sock fields. */
|
#define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
|
do { \
|
int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2; \
|
BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
|
sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
|
if (si->dst_reg == reg || si->src_reg == reg) \
|
reg--; \
|
if (si->dst_reg == reg || si->src_reg == reg) \
|
reg--; \
|
if (si->dst_reg == si->src_reg) { \
|
*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
|
offsetof(struct bpf_sock_ops_kern, \
|
temp)); \
|
fullsock_reg = reg; \
|
jmp += 2; \
|
} \
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
|
struct bpf_sock_ops_kern, \
|
is_fullsock), \
|
fullsock_reg, si->src_reg, \
|
offsetof(struct bpf_sock_ops_kern, \
|
is_fullsock)); \
|
*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
|
if (si->dst_reg == si->src_reg) \
|
*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
|
offsetof(struct bpf_sock_ops_kern, \
|
temp)); \
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
|
struct bpf_sock_ops_kern, sk),\
|
si->dst_reg, si->src_reg, \
|
offsetof(struct bpf_sock_ops_kern, sk));\
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \
|
OBJ_FIELD), \
|
si->dst_reg, si->dst_reg, \
|
offsetof(OBJ, OBJ_FIELD)); \
|
if (si->dst_reg == si->src_reg) { \
|
*insn++ = BPF_JMP_A(1); \
|
*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
|
offsetof(struct bpf_sock_ops_kern, \
|
temp)); \
|
} \
|
} while (0)
|
|
#define SOCK_OPS_GET_SK() \
|
do { \
|
int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1; \
|
if (si->dst_reg == reg || si->src_reg == reg) \
|
reg--; \
|
if (si->dst_reg == reg || si->src_reg == reg) \
|
reg--; \
|
if (si->dst_reg == si->src_reg) { \
|
*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
|
offsetof(struct bpf_sock_ops_kern, \
|
temp)); \
|
fullsock_reg = reg; \
|
jmp += 2; \
|
} \
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
|
struct bpf_sock_ops_kern, \
|
is_fullsock), \
|
fullsock_reg, si->src_reg, \
|
offsetof(struct bpf_sock_ops_kern, \
|
is_fullsock)); \
|
*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
|
if (si->dst_reg == si->src_reg) \
|
*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
|
offsetof(struct bpf_sock_ops_kern, \
|
temp)); \
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
|
struct bpf_sock_ops_kern, sk),\
|
si->dst_reg, si->src_reg, \
|
offsetof(struct bpf_sock_ops_kern, sk));\
|
if (si->dst_reg == si->src_reg) { \
|
*insn++ = BPF_JMP_A(1); \
|
*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
|
offsetof(struct bpf_sock_ops_kern, \
|
temp)); \
|
} \
|
} while (0)
|
|
#define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
|
SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
|
|
/* Helper macro for adding write access to tcp_sock or sock fields.
|
* The macro is called with two registers, dst_reg which contains a pointer
|
* to ctx (context) and src_reg which contains the value that should be
|
* stored. However, we need an additional register since we cannot overwrite
|
* dst_reg because it may be used later in the program.
|
* Instead we "borrow" one of the other register. We first save its value
|
* into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
|
* it at the end of the macro.
|
*/
|
#define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
|
do { \
|
int reg = BPF_REG_9; \
|
BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
|
sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
|
if (si->dst_reg == reg || si->src_reg == reg) \
|
reg--; \
|
if (si->dst_reg == reg || si->src_reg == reg) \
|
reg--; \
|
*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \
|
offsetof(struct bpf_sock_ops_kern, \
|
temp)); \
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
|
struct bpf_sock_ops_kern, \
|
is_fullsock), \
|
reg, si->dst_reg, \
|
offsetof(struct bpf_sock_ops_kern, \
|
is_fullsock)); \
|
*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
|
struct bpf_sock_ops_kern, sk),\
|
reg, si->dst_reg, \
|
offsetof(struct bpf_sock_ops_kern, sk));\
|
*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD), \
|
reg, si->src_reg, \
|
offsetof(OBJ, OBJ_FIELD)); \
|
*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \
|
offsetof(struct bpf_sock_ops_kern, \
|
temp)); \
|
} while (0)
|
|
#define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \
|
do { \
|
if (TYPE == BPF_WRITE) \
|
SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
|
else \
|
SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
|
} while (0)
|
|
if (insn > insn_buf)
|
return insn - insn_buf;
|
|
switch (si->off) {
|
case offsetof(struct bpf_sock_ops, op):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
|
op),
|
si->dst_reg, si->src_reg,
|
offsetof(struct bpf_sock_ops_kern, op));
|
break;
|
|
case offsetof(struct bpf_sock_ops, replylong[0]) ...
|
offsetof(struct bpf_sock_ops, replylong[3]):
|
BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
|
sizeof_field(struct bpf_sock_ops_kern, reply));
|
BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
|
sizeof_field(struct bpf_sock_ops_kern, replylong));
|
off = si->off;
|
off -= offsetof(struct bpf_sock_ops, replylong[0]);
|
off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
|
if (type == BPF_WRITE)
|
*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
|
off);
|
else
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
|
off);
|
break;
|
|
case offsetof(struct bpf_sock_ops, family):
|
BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
|
struct bpf_sock_ops_kern, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct bpf_sock_ops_kern, sk));
|
*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
|
offsetof(struct sock_common, skc_family));
|
break;
|
|
case offsetof(struct bpf_sock_ops, remote_ip4):
|
BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
|
struct bpf_sock_ops_kern, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct bpf_sock_ops_kern, sk));
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
|
offsetof(struct sock_common, skc_daddr));
|
break;
|
|
case offsetof(struct bpf_sock_ops, local_ip4):
|
BUILD_BUG_ON(sizeof_field(struct sock_common,
|
skc_rcv_saddr) != 4);
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
|
struct bpf_sock_ops_kern, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct bpf_sock_ops_kern, sk));
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
|
offsetof(struct sock_common,
|
skc_rcv_saddr));
|
break;
|
|
case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
|
offsetof(struct bpf_sock_ops, remote_ip6[3]):
|
#if IS_ENABLED(CONFIG_IPV6)
|
BUILD_BUG_ON(sizeof_field(struct sock_common,
|
skc_v6_daddr.s6_addr32[0]) != 4);
|
|
off = si->off;
|
off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
|
struct bpf_sock_ops_kern, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct bpf_sock_ops_kern, sk));
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
|
offsetof(struct sock_common,
|
skc_v6_daddr.s6_addr32[0]) +
|
off);
|
#else
|
*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
|
#endif
|
break;
|
|
case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
|
offsetof(struct bpf_sock_ops, local_ip6[3]):
|
#if IS_ENABLED(CONFIG_IPV6)
|
BUILD_BUG_ON(sizeof_field(struct sock_common,
|
skc_v6_rcv_saddr.s6_addr32[0]) != 4);
|
|
off = si->off;
|
off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
|
struct bpf_sock_ops_kern, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct bpf_sock_ops_kern, sk));
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
|
offsetof(struct sock_common,
|
skc_v6_rcv_saddr.s6_addr32[0]) +
|
off);
|
#else
|
*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
|
#endif
|
break;
|
|
case offsetof(struct bpf_sock_ops, remote_port):
|
BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
|
struct bpf_sock_ops_kern, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct bpf_sock_ops_kern, sk));
|
*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
|
offsetof(struct sock_common, skc_dport));
|
#ifndef __BIG_ENDIAN_BITFIELD
|
*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
|
#endif
|
break;
|
|
case offsetof(struct bpf_sock_ops, local_port):
|
BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
|
struct bpf_sock_ops_kern, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct bpf_sock_ops_kern, sk));
|
*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
|
offsetof(struct sock_common, skc_num));
|
break;
|
|
case offsetof(struct bpf_sock_ops, is_fullsock):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
|
struct bpf_sock_ops_kern,
|
is_fullsock),
|
si->dst_reg, si->src_reg,
|
offsetof(struct bpf_sock_ops_kern,
|
is_fullsock));
|
break;
|
|
case offsetof(struct bpf_sock_ops, state):
|
BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
|
struct bpf_sock_ops_kern, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct bpf_sock_ops_kern, sk));
|
*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
|
offsetof(struct sock_common, skc_state));
|
break;
|
|
case offsetof(struct bpf_sock_ops, rtt_min):
|
BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
|
sizeof(struct minmax));
|
BUILD_BUG_ON(sizeof(struct minmax) <
|
sizeof(struct minmax_sample));
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
|
struct bpf_sock_ops_kern, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct bpf_sock_ops_kern, sk));
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
|
offsetof(struct tcp_sock, rtt_min) +
|
sizeof_field(struct minmax_sample, t));
|
break;
|
|
case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
|
SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
|
struct tcp_sock);
|
break;
|
|
case offsetof(struct bpf_sock_ops, sk_txhash):
|
SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
|
struct sock, type);
|
break;
|
case offsetof(struct bpf_sock_ops, snd_cwnd):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
|
break;
|
case offsetof(struct bpf_sock_ops, srtt_us):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
|
break;
|
case offsetof(struct bpf_sock_ops, snd_ssthresh):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
|
break;
|
case offsetof(struct bpf_sock_ops, rcv_nxt):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
|
break;
|
case offsetof(struct bpf_sock_ops, snd_nxt):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
|
break;
|
case offsetof(struct bpf_sock_ops, snd_una):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
|
break;
|
case offsetof(struct bpf_sock_ops, mss_cache):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
|
break;
|
case offsetof(struct bpf_sock_ops, ecn_flags):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
|
break;
|
case offsetof(struct bpf_sock_ops, rate_delivered):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
|
break;
|
case offsetof(struct bpf_sock_ops, rate_interval_us):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
|
break;
|
case offsetof(struct bpf_sock_ops, packets_out):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
|
break;
|
case offsetof(struct bpf_sock_ops, retrans_out):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
|
break;
|
case offsetof(struct bpf_sock_ops, total_retrans):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
|
break;
|
case offsetof(struct bpf_sock_ops, segs_in):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
|
break;
|
case offsetof(struct bpf_sock_ops, data_segs_in):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
|
break;
|
case offsetof(struct bpf_sock_ops, segs_out):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
|
break;
|
case offsetof(struct bpf_sock_ops, data_segs_out):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
|
break;
|
case offsetof(struct bpf_sock_ops, lost_out):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
|
break;
|
case offsetof(struct bpf_sock_ops, sacked_out):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
|
break;
|
case offsetof(struct bpf_sock_ops, bytes_received):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
|
break;
|
case offsetof(struct bpf_sock_ops, bytes_acked):
|
SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
|
break;
|
case offsetof(struct bpf_sock_ops, sk):
|
SOCK_OPS_GET_SK();
|
break;
|
case offsetof(struct bpf_sock_ops, skb_data_end):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
|
skb_data_end),
|
si->dst_reg, si->src_reg,
|
offsetof(struct bpf_sock_ops_kern,
|
skb_data_end));
|
break;
|
case offsetof(struct bpf_sock_ops, skb_data):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
|
skb),
|
si->dst_reg, si->src_reg,
|
offsetof(struct bpf_sock_ops_kern,
|
skb));
|
*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
|
si->dst_reg, si->dst_reg,
|
offsetof(struct sk_buff, data));
|
break;
|
case offsetof(struct bpf_sock_ops, skb_len):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
|
skb),
|
si->dst_reg, si->src_reg,
|
offsetof(struct bpf_sock_ops_kern,
|
skb));
|
*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
|
si->dst_reg, si->dst_reg,
|
offsetof(struct sk_buff, len));
|
break;
|
case offsetof(struct bpf_sock_ops, skb_tcp_flags):
|
off = offsetof(struct sk_buff, cb);
|
off += offsetof(struct tcp_skb_cb, tcp_flags);
|
*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
|
skb),
|
si->dst_reg, si->src_reg,
|
offsetof(struct bpf_sock_ops_kern,
|
skb));
|
*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
|
tcp_flags),
|
si->dst_reg, si->dst_reg, off);
|
break;
|
}
|
return insn - insn_buf;
|
}
|
|
static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
|
const struct bpf_insn *si,
|
struct bpf_insn *insn_buf,
|
struct bpf_prog *prog, u32 *target_size)
|
{
|
struct bpf_insn *insn = insn_buf;
|
int off;
|
|
switch (si->off) {
|
case offsetof(struct __sk_buff, data_end):
|
off = si->off;
|
off -= offsetof(struct __sk_buff, data_end);
|
off += offsetof(struct sk_buff, cb);
|
off += offsetof(struct tcp_skb_cb, bpf.data_end);
|
*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
|
si->src_reg, off);
|
break;
|
case offsetof(struct __sk_buff, cb[0]) ...
|
offsetofend(struct __sk_buff, cb[4]) - 1:
|
BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
|
BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
|
offsetof(struct sk_skb_cb, data)) %
|
sizeof(__u64));
|
|
prog->cb_access = 1;
|
off = si->off;
|
off -= offsetof(struct __sk_buff, cb[0]);
|
off += offsetof(struct sk_buff, cb);
|
off += offsetof(struct sk_skb_cb, data);
|
if (type == BPF_WRITE)
|
*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
|
si->src_reg, off);
|
else
|
*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
|
si->src_reg, off);
|
break;
|
|
|
default:
|
return bpf_convert_ctx_access(type, si, insn_buf, prog,
|
target_size);
|
}
|
|
return insn - insn_buf;
|
}
|
|
static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
|
const struct bpf_insn *si,
|
struct bpf_insn *insn_buf,
|
struct bpf_prog *prog, u32 *target_size)
|
{
|
struct bpf_insn *insn = insn_buf;
|
#if IS_ENABLED(CONFIG_IPV6)
|
int off;
|
#endif
|
|
/* convert ctx uses the fact sg element is first in struct */
|
BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
|
|
switch (si->off) {
|
case offsetof(struct sk_msg_md, data):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_msg, data));
|
break;
|
case offsetof(struct sk_msg_md, data_end):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_msg, data_end));
|
break;
|
case offsetof(struct sk_msg_md, family):
|
BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
|
struct sk_msg, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_msg, sk));
|
*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
|
offsetof(struct sock_common, skc_family));
|
break;
|
|
case offsetof(struct sk_msg_md, remote_ip4):
|
BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
|
struct sk_msg, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_msg, sk));
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
|
offsetof(struct sock_common, skc_daddr));
|
break;
|
|
case offsetof(struct sk_msg_md, local_ip4):
|
BUILD_BUG_ON(sizeof_field(struct sock_common,
|
skc_rcv_saddr) != 4);
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
|
struct sk_msg, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_msg, sk));
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
|
offsetof(struct sock_common,
|
skc_rcv_saddr));
|
break;
|
|
case offsetof(struct sk_msg_md, remote_ip6[0]) ...
|
offsetof(struct sk_msg_md, remote_ip6[3]):
|
#if IS_ENABLED(CONFIG_IPV6)
|
BUILD_BUG_ON(sizeof_field(struct sock_common,
|
skc_v6_daddr.s6_addr32[0]) != 4);
|
|
off = si->off;
|
off -= offsetof(struct sk_msg_md, remote_ip6[0]);
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
|
struct sk_msg, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_msg, sk));
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
|
offsetof(struct sock_common,
|
skc_v6_daddr.s6_addr32[0]) +
|
off);
|
#else
|
*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
|
#endif
|
break;
|
|
case offsetof(struct sk_msg_md, local_ip6[0]) ...
|
offsetof(struct sk_msg_md, local_ip6[3]):
|
#if IS_ENABLED(CONFIG_IPV6)
|
BUILD_BUG_ON(sizeof_field(struct sock_common,
|
skc_v6_rcv_saddr.s6_addr32[0]) != 4);
|
|
off = si->off;
|
off -= offsetof(struct sk_msg_md, local_ip6[0]);
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
|
struct sk_msg, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_msg, sk));
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
|
offsetof(struct sock_common,
|
skc_v6_rcv_saddr.s6_addr32[0]) +
|
off);
|
#else
|
*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
|
#endif
|
break;
|
|
case offsetof(struct sk_msg_md, remote_port):
|
BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
|
struct sk_msg, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_msg, sk));
|
*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
|
offsetof(struct sock_common, skc_dport));
|
#ifndef __BIG_ENDIAN_BITFIELD
|
*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
|
#endif
|
break;
|
|
case offsetof(struct sk_msg_md, local_port):
|
BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
|
struct sk_msg, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_msg, sk));
|
*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
|
offsetof(struct sock_common, skc_num));
|
break;
|
|
case offsetof(struct sk_msg_md, size):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_msg_sg, size));
|
break;
|
|
case offsetof(struct sk_msg_md, sk):
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
|
si->dst_reg, si->src_reg,
|
offsetof(struct sk_msg, sk));
|
break;
|
}
|
|
return insn - insn_buf;
|
}
|
|
const struct bpf_verifier_ops sk_filter_verifier_ops = {
|
.get_func_proto = sk_filter_func_proto,
|
.is_valid_access = sk_filter_is_valid_access,
|
.convert_ctx_access = bpf_convert_ctx_access,
|
.gen_ld_abs = bpf_gen_ld_abs,
|
};
|
|
const struct bpf_prog_ops sk_filter_prog_ops = {
|
.test_run = bpf_prog_test_run_skb,
|
};
|
|
const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
|
.get_func_proto = tc_cls_act_func_proto,
|
.is_valid_access = tc_cls_act_is_valid_access,
|
.convert_ctx_access = tc_cls_act_convert_ctx_access,
|
.gen_prologue = tc_cls_act_prologue,
|
.gen_ld_abs = bpf_gen_ld_abs,
|
};
|
|
const struct bpf_prog_ops tc_cls_act_prog_ops = {
|
.test_run = bpf_prog_test_run_skb,
|
};
|
|
const struct bpf_verifier_ops xdp_verifier_ops = {
|
.get_func_proto = xdp_func_proto,
|
.is_valid_access = xdp_is_valid_access,
|
.convert_ctx_access = xdp_convert_ctx_access,
|
.gen_prologue = bpf_noop_prologue,
|
};
|
|
const struct bpf_prog_ops xdp_prog_ops = {
|
.test_run = bpf_prog_test_run_xdp,
|
};
|
|
const struct bpf_verifier_ops cg_skb_verifier_ops = {
|
.get_func_proto = cg_skb_func_proto,
|
.is_valid_access = cg_skb_is_valid_access,
|
.convert_ctx_access = bpf_convert_ctx_access,
|
};
|
|
const struct bpf_prog_ops cg_skb_prog_ops = {
|
.test_run = bpf_prog_test_run_skb,
|
};
|
|
const struct bpf_verifier_ops lwt_in_verifier_ops = {
|
.get_func_proto = lwt_in_func_proto,
|
.is_valid_access = lwt_is_valid_access,
|
.convert_ctx_access = bpf_convert_ctx_access,
|
};
|
|
const struct bpf_prog_ops lwt_in_prog_ops = {
|
.test_run = bpf_prog_test_run_skb,
|
};
|
|
const struct bpf_verifier_ops lwt_out_verifier_ops = {
|
.get_func_proto = lwt_out_func_proto,
|
.is_valid_access = lwt_is_valid_access,
|
.convert_ctx_access = bpf_convert_ctx_access,
|
};
|
|
const struct bpf_prog_ops lwt_out_prog_ops = {
|
.test_run = bpf_prog_test_run_skb,
|
};
|
|
const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
|
.get_func_proto = lwt_xmit_func_proto,
|
.is_valid_access = lwt_is_valid_access,
|
.convert_ctx_access = bpf_convert_ctx_access,
|
.gen_prologue = tc_cls_act_prologue,
|
};
|
|
const struct bpf_prog_ops lwt_xmit_prog_ops = {
|
.test_run = bpf_prog_test_run_skb,
|
};
|
|
const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
|
.get_func_proto = lwt_seg6local_func_proto,
|
.is_valid_access = lwt_is_valid_access,
|
.convert_ctx_access = bpf_convert_ctx_access,
|
};
|
|
const struct bpf_prog_ops lwt_seg6local_prog_ops = {
|
.test_run = bpf_prog_test_run_skb,
|
};
|
|
const struct bpf_verifier_ops cg_sock_verifier_ops = {
|
.get_func_proto = sock_filter_func_proto,
|
.is_valid_access = sock_filter_is_valid_access,
|
.convert_ctx_access = bpf_sock_convert_ctx_access,
|
};
|
|
const struct bpf_prog_ops cg_sock_prog_ops = {
|
};
|
|
const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
|
.get_func_proto = sock_addr_func_proto,
|
.is_valid_access = sock_addr_is_valid_access,
|
.convert_ctx_access = sock_addr_convert_ctx_access,
|
};
|
|
const struct bpf_prog_ops cg_sock_addr_prog_ops = {
|
};
|
|
const struct bpf_verifier_ops sock_ops_verifier_ops = {
|
.get_func_proto = sock_ops_func_proto,
|
.is_valid_access = sock_ops_is_valid_access,
|
.convert_ctx_access = sock_ops_convert_ctx_access,
|
};
|
|
const struct bpf_prog_ops sock_ops_prog_ops = {
|
};
|
|
const struct bpf_verifier_ops sk_skb_verifier_ops = {
|
.get_func_proto = sk_skb_func_proto,
|
.is_valid_access = sk_skb_is_valid_access,
|
.convert_ctx_access = sk_skb_convert_ctx_access,
|
.gen_prologue = sk_skb_prologue,
|
};
|
|
const struct bpf_prog_ops sk_skb_prog_ops = {
|
};
|
|
const struct bpf_verifier_ops sk_msg_verifier_ops = {
|
.get_func_proto = sk_msg_func_proto,
|
.is_valid_access = sk_msg_is_valid_access,
|
.convert_ctx_access = sk_msg_convert_ctx_access,
|
.gen_prologue = bpf_noop_prologue,
|
};
|
|
const struct bpf_prog_ops sk_msg_prog_ops = {
|
};
|
|
const struct bpf_verifier_ops flow_dissector_verifier_ops = {
|
.get_func_proto = flow_dissector_func_proto,
|
.is_valid_access = flow_dissector_is_valid_access,
|
.convert_ctx_access = flow_dissector_convert_ctx_access,
|
};
|
|
const struct bpf_prog_ops flow_dissector_prog_ops = {
|
.test_run = bpf_prog_test_run_flow_dissector,
|
};
|
|
int sk_detach_filter(struct sock *sk)
|
{
|
int ret = -ENOENT;
|
struct sk_filter *filter;
|
|
if (sock_flag(sk, SOCK_FILTER_LOCKED))
|
return -EPERM;
|
|
filter = rcu_dereference_protected(sk->sk_filter,
|
lockdep_sock_is_held(sk));
|
if (filter) {
|
RCU_INIT_POINTER(sk->sk_filter, NULL);
|
sk_filter_uncharge(sk, filter);
|
ret = 0;
|
}
|
|
return ret;
|
}
|
EXPORT_SYMBOL_GPL(sk_detach_filter);
|
|
int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
|
unsigned int len)
|
{
|
struct sock_fprog_kern *fprog;
|
struct sk_filter *filter;
|
int ret = 0;
|
|
lock_sock(sk);
|
filter = rcu_dereference_protected(sk->sk_filter,
|
lockdep_sock_is_held(sk));
|
if (!filter)
|
goto out;
|
|
/* We're copying the filter that has been originally attached,
|
* so no conversion/decode needed anymore. eBPF programs that
|
* have no original program cannot be dumped through this.
|
*/
|
ret = -EACCES;
|
fprog = filter->prog->orig_prog;
|
if (!fprog)
|
goto out;
|
|
ret = fprog->len;
|
if (!len)
|
/* User space only enquires number of filter blocks. */
|
goto out;
|
|
ret = -EINVAL;
|
if (len < fprog->len)
|
goto out;
|
|
ret = -EFAULT;
|
if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
|
goto out;
|
|
/* Instead of bytes, the API requests to return the number
|
* of filter blocks.
|
*/
|
ret = fprog->len;
|
out:
|
release_sock(sk);
|
return ret;
|
}
|
|
#ifdef CONFIG_INET
|
static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
|
struct sock_reuseport *reuse,
|
struct sock *sk, struct sk_buff *skb,
|
u32 hash)
|
{
|
reuse_kern->skb = skb;
|
reuse_kern->sk = sk;
|
reuse_kern->selected_sk = NULL;
|
reuse_kern->data_end = skb->data + skb_headlen(skb);
|
reuse_kern->hash = hash;
|
reuse_kern->reuseport_id = reuse->reuseport_id;
|
reuse_kern->bind_inany = reuse->bind_inany;
|
}
|
|
struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
|
struct bpf_prog *prog, struct sk_buff *skb,
|
u32 hash)
|
{
|
struct sk_reuseport_kern reuse_kern;
|
enum sk_action action;
|
|
bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
|
action = BPF_PROG_RUN(prog, &reuse_kern);
|
|
if (action == SK_PASS)
|
return reuse_kern.selected_sk;
|
else
|
return ERR_PTR(-ECONNREFUSED);
|
}
|
|
BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
|
struct bpf_map *, map, void *, key, u32, flags)
|
{
|
bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
|
struct sock_reuseport *reuse;
|
struct sock *selected_sk;
|
|
selected_sk = map->ops->map_lookup_elem(map, key);
|
if (!selected_sk)
|
return -ENOENT;
|
|
reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
|
if (!reuse) {
|
/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
|
if (sk_is_refcounted(selected_sk))
|
sock_put(selected_sk);
|
|
/* reuseport_array has only sk with non NULL sk_reuseport_cb.
|
* The only (!reuse) case here is - the sk has already been
|
* unhashed (e.g. by close()), so treat it as -ENOENT.
|
*
|
* Other maps (e.g. sock_map) do not provide this guarantee and
|
* the sk may never be in the reuseport group to begin with.
|
*/
|
return is_sockarray ? -ENOENT : -EINVAL;
|
}
|
|
if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
|
struct sock *sk = reuse_kern->sk;
|
|
if (sk->sk_protocol != selected_sk->sk_protocol)
|
return -EPROTOTYPE;
|
else if (sk->sk_family != selected_sk->sk_family)
|
return -EAFNOSUPPORT;
|
|
/* Catch all. Likely bound to a different sockaddr. */
|
return -EBADFD;
|
}
|
|
reuse_kern->selected_sk = selected_sk;
|
|
return 0;
|
}
|
|
static const struct bpf_func_proto sk_select_reuseport_proto = {
|
.func = sk_select_reuseport,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_CONST_MAP_PTR,
|
.arg3_type = ARG_PTR_TO_MAP_KEY,
|
.arg4_type = ARG_ANYTHING,
|
};
|
|
BPF_CALL_4(sk_reuseport_load_bytes,
|
const struct sk_reuseport_kern *, reuse_kern, u32, offset,
|
void *, to, u32, len)
|
{
|
return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
|
}
|
|
static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
|
.func = sk_reuseport_load_bytes,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_PTR_TO_UNINIT_MEM,
|
.arg4_type = ARG_CONST_SIZE,
|
};
|
|
BPF_CALL_5(sk_reuseport_load_bytes_relative,
|
const struct sk_reuseport_kern *, reuse_kern, u32, offset,
|
void *, to, u32, len, u32, start_header)
|
{
|
return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
|
len, start_header);
|
}
|
|
static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
|
.func = sk_reuseport_load_bytes_relative,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_ANYTHING,
|
.arg3_type = ARG_PTR_TO_UNINIT_MEM,
|
.arg4_type = ARG_CONST_SIZE,
|
.arg5_type = ARG_ANYTHING,
|
};
|
|
static const struct bpf_func_proto *
|
sk_reuseport_func_proto(enum bpf_func_id func_id,
|
const struct bpf_prog *prog)
|
{
|
switch (func_id) {
|
case BPF_FUNC_sk_select_reuseport:
|
return &sk_select_reuseport_proto;
|
case BPF_FUNC_skb_load_bytes:
|
return &sk_reuseport_load_bytes_proto;
|
case BPF_FUNC_skb_load_bytes_relative:
|
return &sk_reuseport_load_bytes_relative_proto;
|
default:
|
return bpf_base_func_proto(func_id);
|
}
|
}
|
|
static bool
|
sk_reuseport_is_valid_access(int off, int size,
|
enum bpf_access_type type,
|
const struct bpf_prog *prog,
|
struct bpf_insn_access_aux *info)
|
{
|
const u32 size_default = sizeof(__u32);
|
|
if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
|
off % size || type != BPF_READ)
|
return false;
|
|
switch (off) {
|
case offsetof(struct sk_reuseport_md, data):
|
info->reg_type = PTR_TO_PACKET;
|
return size == sizeof(__u64);
|
|
case offsetof(struct sk_reuseport_md, data_end):
|
info->reg_type = PTR_TO_PACKET_END;
|
return size == sizeof(__u64);
|
|
case offsetof(struct sk_reuseport_md, hash):
|
return size == size_default;
|
|
/* Fields that allow narrowing */
|
case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
|
if (size < sizeof_field(struct sk_buff, protocol))
|
return false;
|
fallthrough;
|
case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
|
case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
|
case bpf_ctx_range(struct sk_reuseport_md, len):
|
bpf_ctx_record_field_size(info, size_default);
|
return bpf_ctx_narrow_access_ok(off, size, size_default);
|
|
default:
|
return false;
|
}
|
}
|
|
#define SK_REUSEPORT_LOAD_FIELD(F) ({ \
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
|
si->dst_reg, si->src_reg, \
|
bpf_target_off(struct sk_reuseport_kern, F, \
|
sizeof_field(struct sk_reuseport_kern, F), \
|
target_size)); \
|
})
|
|
#define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \
|
SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
|
struct sk_buff, \
|
skb, \
|
SKB_FIELD)
|
|
#define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD) \
|
SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
|
struct sock, \
|
sk, \
|
SK_FIELD)
|
|
static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
|
const struct bpf_insn *si,
|
struct bpf_insn *insn_buf,
|
struct bpf_prog *prog,
|
u32 *target_size)
|
{
|
struct bpf_insn *insn = insn_buf;
|
|
switch (si->off) {
|
case offsetof(struct sk_reuseport_md, data):
|
SK_REUSEPORT_LOAD_SKB_FIELD(data);
|
break;
|
|
case offsetof(struct sk_reuseport_md, len):
|
SK_REUSEPORT_LOAD_SKB_FIELD(len);
|
break;
|
|
case offsetof(struct sk_reuseport_md, eth_protocol):
|
SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
|
break;
|
|
case offsetof(struct sk_reuseport_md, ip_protocol):
|
SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
|
break;
|
|
case offsetof(struct sk_reuseport_md, data_end):
|
SK_REUSEPORT_LOAD_FIELD(data_end);
|
break;
|
|
case offsetof(struct sk_reuseport_md, hash):
|
SK_REUSEPORT_LOAD_FIELD(hash);
|
break;
|
|
case offsetof(struct sk_reuseport_md, bind_inany):
|
SK_REUSEPORT_LOAD_FIELD(bind_inany);
|
break;
|
}
|
|
return insn - insn_buf;
|
}
|
|
const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
|
.get_func_proto = sk_reuseport_func_proto,
|
.is_valid_access = sk_reuseport_is_valid_access,
|
.convert_ctx_access = sk_reuseport_convert_ctx_access,
|
};
|
|
const struct bpf_prog_ops sk_reuseport_prog_ops = {
|
};
|
|
DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
|
EXPORT_SYMBOL(bpf_sk_lookup_enabled);
|
|
BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
|
struct sock *, sk, u64, flags)
|
{
|
if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
|
BPF_SK_LOOKUP_F_NO_REUSEPORT)))
|
return -EINVAL;
|
if (unlikely(sk && sk_is_refcounted(sk)))
|
return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
|
if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
|
return -ESOCKTNOSUPPORT; /* reject connected sockets */
|
|
/* Check if socket is suitable for packet L3/L4 protocol */
|
if (sk && sk->sk_protocol != ctx->protocol)
|
return -EPROTOTYPE;
|
if (sk && sk->sk_family != ctx->family &&
|
(sk->sk_family == AF_INET || ipv6_only_sock(sk)))
|
return -EAFNOSUPPORT;
|
|
if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
|
return -EEXIST;
|
|
/* Select socket as lookup result */
|
ctx->selected_sk = sk;
|
ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
|
return 0;
|
}
|
|
static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
|
.func = bpf_sk_lookup_assign,
|
.gpl_only = false,
|
.ret_type = RET_INTEGER,
|
.arg1_type = ARG_PTR_TO_CTX,
|
.arg2_type = ARG_PTR_TO_SOCKET_OR_NULL,
|
.arg3_type = ARG_ANYTHING,
|
};
|
|
static const struct bpf_func_proto *
|
sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
{
|
switch (func_id) {
|
case BPF_FUNC_perf_event_output:
|
return &bpf_event_output_data_proto;
|
case BPF_FUNC_sk_assign:
|
return &bpf_sk_lookup_assign_proto;
|
case BPF_FUNC_sk_release:
|
return &bpf_sk_release_proto;
|
default:
|
return bpf_sk_base_func_proto(func_id);
|
}
|
}
|
|
static bool sk_lookup_is_valid_access(int off, int size,
|
enum bpf_access_type type,
|
const struct bpf_prog *prog,
|
struct bpf_insn_access_aux *info)
|
{
|
if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
|
return false;
|
if (off % size != 0)
|
return false;
|
if (type != BPF_READ)
|
return false;
|
|
switch (off) {
|
case offsetof(struct bpf_sk_lookup, sk):
|
info->reg_type = PTR_TO_SOCKET_OR_NULL;
|
return size == sizeof(__u64);
|
|
case bpf_ctx_range(struct bpf_sk_lookup, family):
|
case bpf_ctx_range(struct bpf_sk_lookup, protocol):
|
case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
|
case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
|
case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
|
case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
|
case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
|
case bpf_ctx_range(struct bpf_sk_lookup, local_port):
|
bpf_ctx_record_field_size(info, sizeof(__u32));
|
return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
|
|
default:
|
return false;
|
}
|
}
|
|
static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
|
const struct bpf_insn *si,
|
struct bpf_insn *insn_buf,
|
struct bpf_prog *prog,
|
u32 *target_size)
|
{
|
struct bpf_insn *insn = insn_buf;
|
|
switch (si->off) {
|
case offsetof(struct bpf_sk_lookup, sk):
|
*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
|
offsetof(struct bpf_sk_lookup_kern, selected_sk));
|
break;
|
|
case offsetof(struct bpf_sk_lookup, family):
|
*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
|
bpf_target_off(struct bpf_sk_lookup_kern,
|
family, 2, target_size));
|
break;
|
|
case offsetof(struct bpf_sk_lookup, protocol):
|
*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
|
bpf_target_off(struct bpf_sk_lookup_kern,
|
protocol, 2, target_size));
|
break;
|
|
case offsetof(struct bpf_sk_lookup, remote_ip4):
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
|
bpf_target_off(struct bpf_sk_lookup_kern,
|
v4.saddr, 4, target_size));
|
break;
|
|
case offsetof(struct bpf_sk_lookup, local_ip4):
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
|
bpf_target_off(struct bpf_sk_lookup_kern,
|
v4.daddr, 4, target_size));
|
break;
|
|
case bpf_ctx_range_till(struct bpf_sk_lookup,
|
remote_ip6[0], remote_ip6[3]): {
|
#if IS_ENABLED(CONFIG_IPV6)
|
int off = si->off;
|
|
off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
|
off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
|
*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
|
offsetof(struct bpf_sk_lookup_kern, v6.saddr));
|
*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
|
#else
|
*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
|
#endif
|
break;
|
}
|
case bpf_ctx_range_till(struct bpf_sk_lookup,
|
local_ip6[0], local_ip6[3]): {
|
#if IS_ENABLED(CONFIG_IPV6)
|
int off = si->off;
|
|
off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
|
off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
|
*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
|
offsetof(struct bpf_sk_lookup_kern, v6.daddr));
|
*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
|
*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
|
#else
|
*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
|
#endif
|
break;
|
}
|
case offsetof(struct bpf_sk_lookup, remote_port):
|
*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
|
bpf_target_off(struct bpf_sk_lookup_kern,
|
sport, 2, target_size));
|
break;
|
|
case offsetof(struct bpf_sk_lookup, local_port):
|
*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
|
bpf_target_off(struct bpf_sk_lookup_kern,
|
dport, 2, target_size));
|
break;
|
}
|
|
return insn - insn_buf;
|
}
|
|
const struct bpf_prog_ops sk_lookup_prog_ops = {
|
.test_run = bpf_prog_test_run_sk_lookup,
|
};
|
|
const struct bpf_verifier_ops sk_lookup_verifier_ops = {
|
.get_func_proto = sk_lookup_func_proto,
|
.is_valid_access = sk_lookup_is_valid_access,
|
.convert_ctx_access = sk_lookup_convert_ctx_access,
|
};
|
|
#endif /* CONFIG_INET */
|
|
DEFINE_BPF_DISPATCHER(xdp)
|
|
void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
|
{
|
bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
|
}
|
|
#ifdef CONFIG_DEBUG_INFO_BTF
|
BTF_ID_LIST_GLOBAL(btf_sock_ids)
|
#define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
|
BTF_SOCK_TYPE_xxx
|
#undef BTF_SOCK_TYPE
|
#else
|
u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
|
#endif
|
|
BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
|
{
|
/* tcp6_sock type is not generated in dwarf and hence btf,
|
* trigger an explicit type generation here.
|
*/
|
BTF_TYPE_EMIT(struct tcp6_sock);
|
if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
|
sk->sk_family == AF_INET6)
|
return (unsigned long)sk;
|
|
return (unsigned long)NULL;
|
}
|
|
const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
|
.func = bpf_skc_to_tcp6_sock,
|
.gpl_only = false,
|
.ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
|
.arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
|
.ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
|
};
|
|
BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
|
{
|
if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
|
return (unsigned long)sk;
|
|
return (unsigned long)NULL;
|
}
|
|
const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
|
.func = bpf_skc_to_tcp_sock,
|
.gpl_only = false,
|
.ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
|
.arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
|
.ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
|
};
|
|
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
|
{
|
/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
|
* generated if CONFIG_INET=n. Trigger an explicit generation here.
|
*/
|
BTF_TYPE_EMIT(struct inet_timewait_sock);
|
BTF_TYPE_EMIT(struct tcp_timewait_sock);
|
|
#ifdef CONFIG_INET
|
if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
|
return (unsigned long)sk;
|
#endif
|
|
#if IS_BUILTIN(CONFIG_IPV6)
|
if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
|
return (unsigned long)sk;
|
#endif
|
|
return (unsigned long)NULL;
|
}
|
|
const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
|
.func = bpf_skc_to_tcp_timewait_sock,
|
.gpl_only = false,
|
.ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
|
.arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
|
.ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
|
};
|
|
BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
|
{
|
#ifdef CONFIG_INET
|
if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
|
return (unsigned long)sk;
|
#endif
|
|
#if IS_BUILTIN(CONFIG_IPV6)
|
if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
|
return (unsigned long)sk;
|
#endif
|
|
return (unsigned long)NULL;
|
}
|
|
const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
|
.func = bpf_skc_to_tcp_request_sock,
|
.gpl_only = false,
|
.ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
|
.arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
|
.ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
|
};
|
|
BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
|
{
|
/* udp6_sock type is not generated in dwarf and hence btf,
|
* trigger an explicit type generation here.
|
*/
|
BTF_TYPE_EMIT(struct udp6_sock);
|
if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
|
sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
|
return (unsigned long)sk;
|
|
return (unsigned long)NULL;
|
}
|
|
const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
|
.func = bpf_skc_to_udp6_sock,
|
.gpl_only = false,
|
.ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
|
.arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
|
.ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
|
};
|
|
static const struct bpf_func_proto *
|
bpf_sk_base_func_proto(enum bpf_func_id func_id)
|
{
|
const struct bpf_func_proto *func;
|
|
switch (func_id) {
|
case BPF_FUNC_skc_to_tcp6_sock:
|
func = &bpf_skc_to_tcp6_sock_proto;
|
break;
|
case BPF_FUNC_skc_to_tcp_sock:
|
func = &bpf_skc_to_tcp_sock_proto;
|
break;
|
case BPF_FUNC_skc_to_tcp_timewait_sock:
|
func = &bpf_skc_to_tcp_timewait_sock_proto;
|
break;
|
case BPF_FUNC_skc_to_tcp_request_sock:
|
func = &bpf_skc_to_tcp_request_sock_proto;
|
break;
|
case BPF_FUNC_skc_to_udp6_sock:
|
func = &bpf_skc_to_udp6_sock_proto;
|
break;
|
default:
|
return bpf_base_func_proto(func_id);
|
}
|
|
if (!perfmon_capable())
|
return NULL;
|
|
return func;
|
}
|