1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
| /* SPDX-License-Identifier: GPL-2.0 */
|
| scale=0
|
| define gcd(a,b) {
| auto t;
| while (b) {
| t = b;
| b = a % b;
| a = t;
| }
| return a;
| }
|
| /* Division by reciprocal multiplication. */
| define fmul(b,n,d) {
| return (2^b*n+d-1)/d;
| }
|
| /* Adjustment factor when a ceiling value is used. Use as:
| (imul * n) + (fmulxx * n + fadjxx) >> xx) */
| define fadj(b,n,d) {
| auto v;
| d = d/gcd(n,d);
| v = 2^b*(d-1)/d;
| return v;
| }
|
| /* Compute the appropriate mul/adj values as well as a shift count,
| which brings the mul value into the range 2^b-1 <= x < 2^b. Such
| a shift value will be correct in the signed integer range and off
| by at most one in the upper half of the unsigned range. */
| define fmuls(b,n,d) {
| auto s, m;
| for (s = 0; 1; s++) {
| m = fmul(s,n,d);
| if (m >= 2^(b-1))
| return s;
| }
| return 0;
| }
|
| define timeconst(hz) {
| print "/* Automatically generated by kernel/time/timeconst.bc */\n"
| print "/* Time conversion constants for HZ == ", hz, " */\n"
| print "\n"
|
| print "#ifndef KERNEL_TIMECONST_H\n"
| print "#define KERNEL_TIMECONST_H\n\n"
|
| print "#include <linux/param.h>\n"
| print "#include <linux/types.h>\n\n"
|
| print "#if HZ != ", hz, "\n"
| print "#error \qinclude/generated/timeconst.h has the wrong HZ value!\q\n"
| print "#endif\n\n"
|
| if (hz < 2) {
| print "#error Totally bogus HZ value!\n"
| } else {
| s=fmuls(32,1000,hz)
| obase=16
| print "#define HZ_TO_MSEC_MUL32\tU64_C(0x", fmul(s,1000,hz), ")\n"
| print "#define HZ_TO_MSEC_ADJ32\tU64_C(0x", fadj(s,1000,hz), ")\n"
| obase=10
| print "#define HZ_TO_MSEC_SHR32\t", s, "\n"
|
| s=fmuls(32,hz,1000)
| obase=16
| print "#define MSEC_TO_HZ_MUL32\tU64_C(0x", fmul(s,hz,1000), ")\n"
| print "#define MSEC_TO_HZ_ADJ32\tU64_C(0x", fadj(s,hz,1000), ")\n"
| obase=10
| print "#define MSEC_TO_HZ_SHR32\t", s, "\n"
|
| obase=10
| cd=gcd(hz,1000)
| print "#define HZ_TO_MSEC_NUM\t\t", 1000/cd, "\n"
| print "#define HZ_TO_MSEC_DEN\t\t", hz/cd, "\n"
| print "#define MSEC_TO_HZ_NUM\t\t", hz/cd, "\n"
| print "#define MSEC_TO_HZ_DEN\t\t", 1000/cd, "\n"
| print "\n"
|
| s=fmuls(32,1000000,hz)
| obase=16
| print "#define HZ_TO_USEC_MUL32\tU64_C(0x", fmul(s,1000000,hz), ")\n"
| print "#define HZ_TO_USEC_ADJ32\tU64_C(0x", fadj(s,1000000,hz), ")\n"
| obase=10
| print "#define HZ_TO_USEC_SHR32\t", s, "\n"
|
| s=fmuls(32,hz,1000000)
| obase=16
| print "#define USEC_TO_HZ_MUL32\tU64_C(0x", fmul(s,hz,1000000), ")\n"
| print "#define USEC_TO_HZ_ADJ32\tU64_C(0x", fadj(s,hz,1000000), ")\n"
| obase=10
| print "#define USEC_TO_HZ_SHR32\t", s, "\n"
|
| obase=10
| cd=gcd(hz,1000000)
| print "#define HZ_TO_USEC_NUM\t\t", 1000000/cd, "\n"
| print "#define HZ_TO_USEC_DEN\t\t", hz/cd, "\n"
| print "#define USEC_TO_HZ_NUM\t\t", hz/cd, "\n"
| print "#define USEC_TO_HZ_DEN\t\t", 1000000/cd, "\n"
|
| cd=gcd(hz,1000000000)
| print "#define HZ_TO_NSEC_NUM\t\t", 1000000000/cd, "\n"
| print "#define HZ_TO_NSEC_DEN\t\t", hz/cd, "\n"
| print "#define NSEC_TO_HZ_NUM\t\t", hz/cd, "\n"
| print "#define NSEC_TO_HZ_DEN\t\t", 1000000000/cd, "\n"
| print "\n"
|
| print "#endif /* KERNEL_TIMECONST_H */\n"
| }
| halt
| }
|
| hz = read();
| timeconst(hz)
|
|