import numpy as np
|
import cv2
|
from rknn.api import RKNN
|
import torchvision.models as models
|
import torch
|
import os
|
|
|
def show_outputs(output):
|
output_sorted = sorted(output, reverse=True)
|
top5_str = '\n-----TOP 5-----\n'
|
for i in range(5):
|
value = output_sorted[i]
|
index = np.where(output == value)
|
for j in range(len(index)):
|
if (i + j) >= 5:
|
break
|
if value > 0:
|
topi = '{}: {}\n'.format(index[j], value)
|
else:
|
topi = '-1: 0.0\n'
|
top5_str += topi
|
print(top5_str)
|
|
|
def show_perfs(perfs):
|
perfs = 'perfs: {}\n'.format(perfs)
|
print(perfs)
|
|
|
def softmax(x):
|
return np.exp(x)/sum(np.exp(x))
|
|
def torch_version():
|
import torch
|
torch_ver = torch.__version__.split('.')
|
torch_ver[2] = torch_ver[2].split('+')[0]
|
return [int(v) for v in torch_ver]
|
|
if __name__ == '__main__':
|
|
if torch_version() < [1, 9, 0]:
|
import torch
|
print("Your torch version is '{}', in order to better support the Quantization Aware Training (QAT) model,\n"
|
"Please update the torch version to '1.9.0' or higher!".format(torch.__version__))
|
exit(0)
|
|
model = './resnet18_i8.pt'
|
|
input_size_list = [[1, 3, 224, 224]]
|
|
# Create RKNN object
|
rknn = RKNN(verbose=True)
|
|
# Pre-process config
|
print('--> Config model')
|
rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.395, 58.395, 58.395])
|
print('done')
|
|
# Load model
|
print('--> Loading model')
|
ret = rknn.load_pytorch(model=model, input_size_list=input_size_list)
|
if ret != 0:
|
print('Load model failed!')
|
exit(ret)
|
print('done')
|
|
# Build model
|
print('--> Building model')
|
ret = rknn.build(do_quantization=False)
|
if ret != 0:
|
print('Build model failed!')
|
exit(ret)
|
print('done')
|
|
# Export rknn model
|
print('--> Export rknn model')
|
ret = rknn.export_rknn('./resnet_18.rknn')
|
if ret != 0:
|
print('Export rknn model failed!')
|
exit(ret)
|
print('done')
|
|
# Set inputs
|
img = cv2.imread('./space_shuttle_224.jpg')
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
# Init runtime environment
|
print('--> Init runtime environment')
|
ret = rknn.init_runtime()
|
if ret != 0:
|
print('Init runtime environment failed!')
|
exit(ret)
|
print('done')
|
|
# Inference
|
print('--> Running model')
|
outputs = rknn.inference(inputs=[img])
|
np.save('./pytorch_resnet18_qat_0.npy', outputs[0])
|
show_outputs(softmax(np.array(outputs[0][0])))
|
print('done')
|
|
rknn.release()
|