// SPDX-License-Identifier: GPL-2.0-only
|
/*
|
* sigreturn.c - tests for x86 sigreturn(2) and exit-to-userspace
|
* Copyright (c) 2014-2015 Andrew Lutomirski
|
*
|
* This is a series of tests that exercises the sigreturn(2) syscall and
|
* the IRET / SYSRET paths in the kernel.
|
*
|
* For now, this focuses on the effects of unusual CS and SS values,
|
* and it has a bunch of tests to make sure that ESP/RSP is restored
|
* properly.
|
*
|
* The basic idea behind these tests is to raise(SIGUSR1) to create a
|
* sigcontext frame, plug in the values to be tested, and then return,
|
* which implicitly invokes sigreturn(2) and programs the user context
|
* as desired.
|
*
|
* For tests for which we expect sigreturn and the subsequent return to
|
* user mode to succeed, we return to a short trampoline that generates
|
* SIGTRAP so that the meat of the tests can be ordinary C code in a
|
* SIGTRAP handler.
|
*
|
* The inner workings of each test is documented below.
|
*
|
* Do not run on outdated, unpatched kernels at risk of nasty crashes.
|
*/
|
|
#define _GNU_SOURCE
|
|
#include <sys/time.h>
|
#include <time.h>
|
#include <stdlib.h>
|
#include <sys/syscall.h>
|
#include <unistd.h>
|
#include <stdio.h>
|
#include <string.h>
|
#include <inttypes.h>
|
#include <sys/mman.h>
|
#include <sys/signal.h>
|
#include <sys/ucontext.h>
|
#include <asm/ldt.h>
|
#include <err.h>
|
#include <setjmp.h>
|
#include <stddef.h>
|
#include <stdbool.h>
|
#include <sys/ptrace.h>
|
#include <sys/user.h>
|
|
/* Pull in AR_xyz defines. */
|
typedef unsigned int u32;
|
typedef unsigned short u16;
|
#include "../../../../arch/x86/include/asm/desc_defs.h"
|
|
/*
|
* Copied from asm/ucontext.h, as asm/ucontext.h conflicts badly with the glibc
|
* headers.
|
*/
|
#ifdef __x86_64__
|
/*
|
* UC_SIGCONTEXT_SS will be set when delivering 64-bit or x32 signals on
|
* kernels that save SS in the sigcontext. All kernels that set
|
* UC_SIGCONTEXT_SS will correctly restore at least the low 32 bits of esp
|
* regardless of SS (i.e. they implement espfix).
|
*
|
* Kernels that set UC_SIGCONTEXT_SS will also set UC_STRICT_RESTORE_SS
|
* when delivering a signal that came from 64-bit code.
|
*
|
* Sigreturn restores SS as follows:
|
*
|
* if (saved SS is valid || UC_STRICT_RESTORE_SS is set ||
|
* saved CS is not 64-bit)
|
* new SS = saved SS (will fail IRET and signal if invalid)
|
* else
|
* new SS = a flat 32-bit data segment
|
*/
|
#define UC_SIGCONTEXT_SS 0x2
|
#define UC_STRICT_RESTORE_SS 0x4
|
#endif
|
|
/*
|
* In principle, this test can run on Linux emulation layers (e.g.
|
* Illumos "LX branded zones"). Solaris-based kernels reserve LDT
|
* entries 0-5 for their own internal purposes, so start our LDT
|
* allocations above that reservation. (The tests don't pass on LX
|
* branded zones, but at least this lets them run.)
|
*/
|
#define LDT_OFFSET 6
|
|
/* An aligned stack accessible through some of our segments. */
|
static unsigned char stack16[65536] __attribute__((aligned(4096)));
|
|
/*
|
* An aligned int3 instruction used as a trampoline. Some of the tests
|
* want to fish out their ss values, so this trampoline copies ss to eax
|
* before the int3.
|
*/
|
asm (".pushsection .text\n\t"
|
".type int3, @function\n\t"
|
".align 4096\n\t"
|
"int3:\n\t"
|
"mov %ss,%ecx\n\t"
|
"int3\n\t"
|
".size int3, . - int3\n\t"
|
".align 4096, 0xcc\n\t"
|
".popsection");
|
extern char int3[4096];
|
|
/*
|
* At startup, we prepapre:
|
*
|
* - ldt_nonexistent_sel: An LDT entry that doesn't exist (all-zero
|
* descriptor or out of bounds).
|
* - code16_sel: A 16-bit LDT code segment pointing to int3.
|
* - data16_sel: A 16-bit LDT data segment pointing to stack16.
|
* - npcode32_sel: A 32-bit not-present LDT code segment pointing to int3.
|
* - npdata32_sel: A 32-bit not-present LDT data segment pointing to stack16.
|
* - gdt_data16_idx: A 16-bit GDT data segment pointing to stack16.
|
* - gdt_npdata32_idx: A 32-bit not-present GDT data segment pointing to
|
* stack16.
|
*
|
* For no particularly good reason, xyz_sel is a selector value with the
|
* RPL and LDT bits filled in, whereas xyz_idx is just an index into the
|
* descriptor table. These variables will be zero if their respective
|
* segments could not be allocated.
|
*/
|
static unsigned short ldt_nonexistent_sel;
|
static unsigned short code16_sel, data16_sel, npcode32_sel, npdata32_sel;
|
|
static unsigned short gdt_data16_idx, gdt_npdata32_idx;
|
|
static unsigned short GDT3(int idx)
|
{
|
return (idx << 3) | 3;
|
}
|
|
static unsigned short LDT3(int idx)
|
{
|
return (idx << 3) | 7;
|
}
|
|
/* Our sigaltstack scratch space. */
|
static char altstack_data[SIGSTKSZ];
|
|
static void sethandler(int sig, void (*handler)(int, siginfo_t *, void *),
|
int flags)
|
{
|
struct sigaction sa;
|
memset(&sa, 0, sizeof(sa));
|
sa.sa_sigaction = handler;
|
sa.sa_flags = SA_SIGINFO | flags;
|
sigemptyset(&sa.sa_mask);
|
if (sigaction(sig, &sa, 0))
|
err(1, "sigaction");
|
}
|
|
static void clearhandler(int sig)
|
{
|
struct sigaction sa;
|
memset(&sa, 0, sizeof(sa));
|
sa.sa_handler = SIG_DFL;
|
sigemptyset(&sa.sa_mask);
|
if (sigaction(sig, &sa, 0))
|
err(1, "sigaction");
|
}
|
|
static void add_ldt(const struct user_desc *desc, unsigned short *var,
|
const char *name)
|
{
|
if (syscall(SYS_modify_ldt, 1, desc, sizeof(*desc)) == 0) {
|
*var = LDT3(desc->entry_number);
|
} else {
|
printf("[NOTE]\tFailed to create %s segment\n", name);
|
*var = 0;
|
}
|
}
|
|
static void setup_ldt(void)
|
{
|
if ((unsigned long)stack16 > (1ULL << 32) - sizeof(stack16))
|
errx(1, "stack16 is too high\n");
|
if ((unsigned long)int3 > (1ULL << 32) - sizeof(int3))
|
errx(1, "int3 is too high\n");
|
|
ldt_nonexistent_sel = LDT3(LDT_OFFSET + 2);
|
|
const struct user_desc code16_desc = {
|
.entry_number = LDT_OFFSET + 0,
|
.base_addr = (unsigned long)int3,
|
.limit = 4095,
|
.seg_32bit = 0,
|
.contents = 2, /* Code, not conforming */
|
.read_exec_only = 0,
|
.limit_in_pages = 0,
|
.seg_not_present = 0,
|
.useable = 0
|
};
|
add_ldt(&code16_desc, &code16_sel, "code16");
|
|
const struct user_desc data16_desc = {
|
.entry_number = LDT_OFFSET + 1,
|
.base_addr = (unsigned long)stack16,
|
.limit = 0xffff,
|
.seg_32bit = 0,
|
.contents = 0, /* Data, grow-up */
|
.read_exec_only = 0,
|
.limit_in_pages = 0,
|
.seg_not_present = 0,
|
.useable = 0
|
};
|
add_ldt(&data16_desc, &data16_sel, "data16");
|
|
const struct user_desc npcode32_desc = {
|
.entry_number = LDT_OFFSET + 3,
|
.base_addr = (unsigned long)int3,
|
.limit = 4095,
|
.seg_32bit = 1,
|
.contents = 2, /* Code, not conforming */
|
.read_exec_only = 0,
|
.limit_in_pages = 0,
|
.seg_not_present = 1,
|
.useable = 0
|
};
|
add_ldt(&npcode32_desc, &npcode32_sel, "npcode32");
|
|
const struct user_desc npdata32_desc = {
|
.entry_number = LDT_OFFSET + 4,
|
.base_addr = (unsigned long)stack16,
|
.limit = 0xffff,
|
.seg_32bit = 1,
|
.contents = 0, /* Data, grow-up */
|
.read_exec_only = 0,
|
.limit_in_pages = 0,
|
.seg_not_present = 1,
|
.useable = 0
|
};
|
add_ldt(&npdata32_desc, &npdata32_sel, "npdata32");
|
|
struct user_desc gdt_data16_desc = {
|
.entry_number = -1,
|
.base_addr = (unsigned long)stack16,
|
.limit = 0xffff,
|
.seg_32bit = 0,
|
.contents = 0, /* Data, grow-up */
|
.read_exec_only = 0,
|
.limit_in_pages = 0,
|
.seg_not_present = 0,
|
.useable = 0
|
};
|
|
if (syscall(SYS_set_thread_area, &gdt_data16_desc) == 0) {
|
/*
|
* This probably indicates vulnerability to CVE-2014-8133.
|
* Merely getting here isn't definitive, though, and we'll
|
* diagnose the problem for real later on.
|
*/
|
printf("[WARN]\tset_thread_area allocated data16 at index %d\n",
|
gdt_data16_desc.entry_number);
|
gdt_data16_idx = gdt_data16_desc.entry_number;
|
} else {
|
printf("[OK]\tset_thread_area refused 16-bit data\n");
|
}
|
|
struct user_desc gdt_npdata32_desc = {
|
.entry_number = -1,
|
.base_addr = (unsigned long)stack16,
|
.limit = 0xffff,
|
.seg_32bit = 1,
|
.contents = 0, /* Data, grow-up */
|
.read_exec_only = 0,
|
.limit_in_pages = 0,
|
.seg_not_present = 1,
|
.useable = 0
|
};
|
|
if (syscall(SYS_set_thread_area, &gdt_npdata32_desc) == 0) {
|
/*
|
* As a hardening measure, newer kernels don't allow this.
|
*/
|
printf("[WARN]\tset_thread_area allocated npdata32 at index %d\n",
|
gdt_npdata32_desc.entry_number);
|
gdt_npdata32_idx = gdt_npdata32_desc.entry_number;
|
} else {
|
printf("[OK]\tset_thread_area refused 16-bit data\n");
|
}
|
}
|
|
/* State used by our signal handlers. */
|
static gregset_t initial_regs, requested_regs, resulting_regs;
|
|
/* Instructions for the SIGUSR1 handler. */
|
static volatile unsigned short sig_cs, sig_ss;
|
static volatile sig_atomic_t sig_trapped, sig_err, sig_trapno;
|
#ifdef __x86_64__
|
static volatile sig_atomic_t sig_corrupt_final_ss;
|
#endif
|
|
/* Abstractions for some 32-bit vs 64-bit differences. */
|
#ifdef __x86_64__
|
# define REG_IP REG_RIP
|
# define REG_SP REG_RSP
|
# define REG_CX REG_RCX
|
|
struct selectors {
|
unsigned short cs, gs, fs, ss;
|
};
|
|
static unsigned short *ssptr(ucontext_t *ctx)
|
{
|
struct selectors *sels = (void *)&ctx->uc_mcontext.gregs[REG_CSGSFS];
|
return &sels->ss;
|
}
|
|
static unsigned short *csptr(ucontext_t *ctx)
|
{
|
struct selectors *sels = (void *)&ctx->uc_mcontext.gregs[REG_CSGSFS];
|
return &sels->cs;
|
}
|
#else
|
# define REG_IP REG_EIP
|
# define REG_SP REG_ESP
|
# define REG_CX REG_ECX
|
|
static greg_t *ssptr(ucontext_t *ctx)
|
{
|
return &ctx->uc_mcontext.gregs[REG_SS];
|
}
|
|
static greg_t *csptr(ucontext_t *ctx)
|
{
|
return &ctx->uc_mcontext.gregs[REG_CS];
|
}
|
#endif
|
|
/*
|
* Checks a given selector for its code bitness or returns -1 if it's not
|
* a usable code segment selector.
|
*/
|
int cs_bitness(unsigned short cs)
|
{
|
uint32_t valid = 0, ar;
|
asm ("lar %[cs], %[ar]\n\t"
|
"jnz 1f\n\t"
|
"mov $1, %[valid]\n\t"
|
"1:"
|
: [ar] "=r" (ar), [valid] "+rm" (valid)
|
: [cs] "r" (cs));
|
|
if (!valid)
|
return -1;
|
|
bool db = (ar & (1 << 22));
|
bool l = (ar & (1 << 21));
|
|
if (!(ar & (1<<11)))
|
return -1; /* Not code. */
|
|
if (l && !db)
|
return 64;
|
else if (!l && db)
|
return 32;
|
else if (!l && !db)
|
return 16;
|
else
|
return -1; /* Unknown bitness. */
|
}
|
|
/*
|
* Checks a given selector for its code bitness or returns -1 if it's not
|
* a usable code segment selector.
|
*/
|
bool is_valid_ss(unsigned short cs)
|
{
|
uint32_t valid = 0, ar;
|
asm ("lar %[cs], %[ar]\n\t"
|
"jnz 1f\n\t"
|
"mov $1, %[valid]\n\t"
|
"1:"
|
: [ar] "=r" (ar), [valid] "+rm" (valid)
|
: [cs] "r" (cs));
|
|
if (!valid)
|
return false;
|
|
if ((ar & AR_TYPE_MASK) != AR_TYPE_RWDATA &&
|
(ar & AR_TYPE_MASK) != AR_TYPE_RWDATA_EXPDOWN)
|
return false;
|
|
return (ar & AR_P);
|
}
|
|
/* Number of errors in the current test case. */
|
static volatile sig_atomic_t nerrs;
|
|
static void validate_signal_ss(int sig, ucontext_t *ctx)
|
{
|
#ifdef __x86_64__
|
bool was_64bit = (cs_bitness(*csptr(ctx)) == 64);
|
|
if (!(ctx->uc_flags & UC_SIGCONTEXT_SS)) {
|
printf("[FAIL]\tUC_SIGCONTEXT_SS was not set\n");
|
nerrs++;
|
|
/*
|
* This happens on Linux 4.1. The rest will fail, too, so
|
* return now to reduce the noise.
|
*/
|
return;
|
}
|
|
/* UC_STRICT_RESTORE_SS is set iff we came from 64-bit mode. */
|
if (!!(ctx->uc_flags & UC_STRICT_RESTORE_SS) != was_64bit) {
|
printf("[FAIL]\tUC_STRICT_RESTORE_SS was wrong in signal %d\n",
|
sig);
|
nerrs++;
|
}
|
|
if (is_valid_ss(*ssptr(ctx))) {
|
/*
|
* DOSEMU was written before 64-bit sigcontext had SS, and
|
* it tries to figure out the signal source SS by looking at
|
* the physical register. Make sure that keeps working.
|
*/
|
unsigned short hw_ss;
|
asm ("mov %%ss, %0" : "=rm" (hw_ss));
|
if (hw_ss != *ssptr(ctx)) {
|
printf("[FAIL]\tHW SS didn't match saved SS\n");
|
nerrs++;
|
}
|
}
|
#endif
|
}
|
|
/*
|
* SIGUSR1 handler. Sets CS and SS as requested and points IP to the
|
* int3 trampoline. Sets SP to a large known value so that we can see
|
* whether the value round-trips back to user mode correctly.
|
*/
|
static void sigusr1(int sig, siginfo_t *info, void *ctx_void)
|
{
|
ucontext_t *ctx = (ucontext_t*)ctx_void;
|
|
validate_signal_ss(sig, ctx);
|
|
memcpy(&initial_regs, &ctx->uc_mcontext.gregs, sizeof(gregset_t));
|
|
*csptr(ctx) = sig_cs;
|
*ssptr(ctx) = sig_ss;
|
|
ctx->uc_mcontext.gregs[REG_IP] =
|
sig_cs == code16_sel ? 0 : (unsigned long)&int3;
|
ctx->uc_mcontext.gregs[REG_SP] = (unsigned long)0x8badf00d5aadc0deULL;
|
ctx->uc_mcontext.gregs[REG_CX] = 0;
|
|
#ifdef __i386__
|
/*
|
* Make sure the kernel doesn't inadvertently use DS or ES-relative
|
* accesses in a region where user DS or ES is loaded.
|
*
|
* Skip this for 64-bit builds because long mode doesn't care about
|
* DS and ES and skipping it increases test coverage a little bit,
|
* since 64-bit kernels can still run the 32-bit build.
|
*/
|
ctx->uc_mcontext.gregs[REG_DS] = 0;
|
ctx->uc_mcontext.gregs[REG_ES] = 0;
|
#endif
|
|
memcpy(&requested_regs, &ctx->uc_mcontext.gregs, sizeof(gregset_t));
|
requested_regs[REG_CX] = *ssptr(ctx); /* The asm code does this. */
|
|
return;
|
}
|
|
/*
|
* Called after a successful sigreturn (via int3) or from a failed
|
* sigreturn (directly by kernel). Restores our state so that the
|
* original raise(SIGUSR1) returns.
|
*/
|
static void sigtrap(int sig, siginfo_t *info, void *ctx_void)
|
{
|
ucontext_t *ctx = (ucontext_t*)ctx_void;
|
|
validate_signal_ss(sig, ctx);
|
|
sig_err = ctx->uc_mcontext.gregs[REG_ERR];
|
sig_trapno = ctx->uc_mcontext.gregs[REG_TRAPNO];
|
|
unsigned short ss;
|
asm ("mov %%ss,%0" : "=r" (ss));
|
|
greg_t asm_ss = ctx->uc_mcontext.gregs[REG_CX];
|
if (asm_ss != sig_ss && sig == SIGTRAP) {
|
/* Sanity check failure. */
|
printf("[FAIL]\tSIGTRAP: ss = %hx, frame ss = %hx, ax = %llx\n",
|
ss, *ssptr(ctx), (unsigned long long)asm_ss);
|
nerrs++;
|
}
|
|
memcpy(&resulting_regs, &ctx->uc_mcontext.gregs, sizeof(gregset_t));
|
memcpy(&ctx->uc_mcontext.gregs, &initial_regs, sizeof(gregset_t));
|
|
#ifdef __x86_64__
|
if (sig_corrupt_final_ss) {
|
if (ctx->uc_flags & UC_STRICT_RESTORE_SS) {
|
printf("[FAIL]\tUC_STRICT_RESTORE_SS was set inappropriately\n");
|
nerrs++;
|
} else {
|
/*
|
* DOSEMU transitions from 32-bit to 64-bit mode by
|
* adjusting sigcontext, and it requires that this work
|
* even if the saved SS is bogus.
|
*/
|
printf("\tCorrupting SS on return to 64-bit mode\n");
|
*ssptr(ctx) = 0;
|
}
|
}
|
#endif
|
|
sig_trapped = sig;
|
}
|
|
#ifdef __x86_64__
|
/* Tests recovery if !UC_STRICT_RESTORE_SS */
|
static void sigusr2(int sig, siginfo_t *info, void *ctx_void)
|
{
|
ucontext_t *ctx = (ucontext_t*)ctx_void;
|
|
if (!(ctx->uc_flags & UC_STRICT_RESTORE_SS)) {
|
printf("[FAIL]\traise(2) didn't set UC_STRICT_RESTORE_SS\n");
|
nerrs++;
|
return; /* We can't do the rest. */
|
}
|
|
ctx->uc_flags &= ~UC_STRICT_RESTORE_SS;
|
*ssptr(ctx) = 0;
|
|
/* Return. The kernel should recover without sending another signal. */
|
}
|
|
static int test_nonstrict_ss(void)
|
{
|
clearhandler(SIGUSR1);
|
clearhandler(SIGTRAP);
|
clearhandler(SIGSEGV);
|
clearhandler(SIGILL);
|
sethandler(SIGUSR2, sigusr2, 0);
|
|
nerrs = 0;
|
|
printf("[RUN]\tClear UC_STRICT_RESTORE_SS and corrupt SS\n");
|
raise(SIGUSR2);
|
if (!nerrs)
|
printf("[OK]\tIt worked\n");
|
|
return nerrs;
|
}
|
#endif
|
|
/* Finds a usable code segment of the requested bitness. */
|
int find_cs(int bitness)
|
{
|
unsigned short my_cs;
|
|
asm ("mov %%cs,%0" : "=r" (my_cs));
|
|
if (cs_bitness(my_cs) == bitness)
|
return my_cs;
|
if (cs_bitness(my_cs + (2 << 3)) == bitness)
|
return my_cs + (2 << 3);
|
if (my_cs > (2<<3) && cs_bitness(my_cs - (2 << 3)) == bitness)
|
return my_cs - (2 << 3);
|
if (cs_bitness(code16_sel) == bitness)
|
return code16_sel;
|
|
printf("[WARN]\tCould not find %d-bit CS\n", bitness);
|
return -1;
|
}
|
|
static int test_valid_sigreturn(int cs_bits, bool use_16bit_ss, int force_ss)
|
{
|
int cs = find_cs(cs_bits);
|
if (cs == -1) {
|
printf("[SKIP]\tCode segment unavailable for %d-bit CS, %d-bit SS\n",
|
cs_bits, use_16bit_ss ? 16 : 32);
|
return 0;
|
}
|
|
if (force_ss != -1) {
|
sig_ss = force_ss;
|
} else {
|
if (use_16bit_ss) {
|
if (!data16_sel) {
|
printf("[SKIP]\tData segment unavailable for %d-bit CS, 16-bit SS\n",
|
cs_bits);
|
return 0;
|
}
|
sig_ss = data16_sel;
|
} else {
|
asm volatile ("mov %%ss,%0" : "=r" (sig_ss));
|
}
|
}
|
|
sig_cs = cs;
|
|
printf("[RUN]\tValid sigreturn: %d-bit CS (%hx), %d-bit SS (%hx%s)\n",
|
cs_bits, sig_cs, use_16bit_ss ? 16 : 32, sig_ss,
|
(sig_ss & 4) ? "" : ", GDT");
|
|
raise(SIGUSR1);
|
|
nerrs = 0;
|
|
/*
|
* Check that each register had an acceptable value when the
|
* int3 trampoline was invoked.
|
*/
|
for (int i = 0; i < NGREG; i++) {
|
greg_t req = requested_regs[i], res = resulting_regs[i];
|
|
if (i == REG_TRAPNO || i == REG_IP)
|
continue; /* don't care */
|
|
if (i == REG_SP) {
|
/*
|
* If we were using a 16-bit stack segment, then
|
* the kernel is a bit stuck: IRET only restores
|
* the low 16 bits of ESP/RSP if SS is 16-bit.
|
* The kernel uses a hack to restore bits 31:16,
|
* but that hack doesn't help with bits 63:32.
|
* On Intel CPUs, bits 63:32 end up zeroed, and, on
|
* AMD CPUs, they leak the high bits of the kernel
|
* espfix64 stack pointer. There's very little that
|
* the kernel can do about it.
|
*
|
* Similarly, if we are returning to a 32-bit context,
|
* the CPU will often lose the high 32 bits of RSP.
|
*/
|
|
if (res == req)
|
continue;
|
|
if (cs_bits != 64 && ((res ^ req) & 0xFFFFFFFF) == 0) {
|
printf("[NOTE]\tSP: %llx -> %llx\n",
|
(unsigned long long)req,
|
(unsigned long long)res);
|
continue;
|
}
|
|
printf("[FAIL]\tSP mismatch: requested 0x%llx; got 0x%llx\n",
|
(unsigned long long)requested_regs[i],
|
(unsigned long long)resulting_regs[i]);
|
nerrs++;
|
continue;
|
}
|
|
bool ignore_reg = false;
|
#if __i386__
|
if (i == REG_UESP)
|
ignore_reg = true;
|
#else
|
if (i == REG_CSGSFS) {
|
struct selectors *req_sels =
|
(void *)&requested_regs[REG_CSGSFS];
|
struct selectors *res_sels =
|
(void *)&resulting_regs[REG_CSGSFS];
|
if (req_sels->cs != res_sels->cs) {
|
printf("[FAIL]\tCS mismatch: requested 0x%hx; got 0x%hx\n",
|
req_sels->cs, res_sels->cs);
|
nerrs++;
|
}
|
|
if (req_sels->ss != res_sels->ss) {
|
printf("[FAIL]\tSS mismatch: requested 0x%hx; got 0x%hx\n",
|
req_sels->ss, res_sels->ss);
|
nerrs++;
|
}
|
|
continue;
|
}
|
#endif
|
|
/* Sanity check on the kernel */
|
if (i == REG_CX && req != res) {
|
printf("[FAIL]\tCX (saved SP) mismatch: requested 0x%llx; got 0x%llx\n",
|
(unsigned long long)req,
|
(unsigned long long)res);
|
nerrs++;
|
continue;
|
}
|
|
if (req != res && !ignore_reg) {
|
printf("[FAIL]\tReg %d mismatch: requested 0x%llx; got 0x%llx\n",
|
i, (unsigned long long)req,
|
(unsigned long long)res);
|
nerrs++;
|
}
|
}
|
|
if (nerrs == 0)
|
printf("[OK]\tall registers okay\n");
|
|
return nerrs;
|
}
|
|
static int test_bad_iret(int cs_bits, unsigned short ss, int force_cs)
|
{
|
int cs = force_cs == -1 ? find_cs(cs_bits) : force_cs;
|
if (cs == -1)
|
return 0;
|
|
sig_cs = cs;
|
sig_ss = ss;
|
|
printf("[RUN]\t%d-bit CS (%hx), bogus SS (%hx)\n",
|
cs_bits, sig_cs, sig_ss);
|
|
sig_trapped = 0;
|
raise(SIGUSR1);
|
if (sig_trapped) {
|
char errdesc[32] = "";
|
if (sig_err) {
|
const char *src = (sig_err & 1) ? " EXT" : "";
|
const char *table;
|
if ((sig_err & 0x6) == 0x0)
|
table = "GDT";
|
else if ((sig_err & 0x6) == 0x4)
|
table = "LDT";
|
else if ((sig_err & 0x6) == 0x2)
|
table = "IDT";
|
else
|
table = "???";
|
|
sprintf(errdesc, "%s%s index %d, ",
|
table, src, sig_err >> 3);
|
}
|
|
char trapname[32];
|
if (sig_trapno == 13)
|
strcpy(trapname, "GP");
|
else if (sig_trapno == 11)
|
strcpy(trapname, "NP");
|
else if (sig_trapno == 12)
|
strcpy(trapname, "SS");
|
else if (sig_trapno == 32)
|
strcpy(trapname, "IRET"); /* X86_TRAP_IRET */
|
else
|
sprintf(trapname, "%d", sig_trapno);
|
|
printf("[OK]\tGot #%s(0x%lx) (i.e. %s%s)\n",
|
trapname, (unsigned long)sig_err,
|
errdesc, strsignal(sig_trapped));
|
return 0;
|
} else {
|
/*
|
* This also implicitly tests UC_STRICT_RESTORE_SS:
|
* We check that these signals set UC_STRICT_RESTORE_SS and,
|
* if UC_STRICT_RESTORE_SS doesn't cause strict behavior,
|
* then we won't get SIGSEGV.
|
*/
|
printf("[FAIL]\tDid not get SIGSEGV\n");
|
return 1;
|
}
|
}
|
|
int main()
|
{
|
int total_nerrs = 0;
|
unsigned short my_cs, my_ss;
|
|
asm volatile ("mov %%cs,%0" : "=r" (my_cs));
|
asm volatile ("mov %%ss,%0" : "=r" (my_ss));
|
setup_ldt();
|
|
stack_t stack = {
|
.ss_sp = altstack_data,
|
.ss_size = SIGSTKSZ,
|
};
|
if (sigaltstack(&stack, NULL) != 0)
|
err(1, "sigaltstack");
|
|
sethandler(SIGUSR1, sigusr1, 0);
|
sethandler(SIGTRAP, sigtrap, SA_ONSTACK);
|
|
/* Easy cases: return to a 32-bit SS in each possible CS bitness. */
|
total_nerrs += test_valid_sigreturn(64, false, -1);
|
total_nerrs += test_valid_sigreturn(32, false, -1);
|
total_nerrs += test_valid_sigreturn(16, false, -1);
|
|
/*
|
* Test easy espfix cases: return to a 16-bit LDT SS in each possible
|
* CS bitness. NB: with a long mode CS, the SS bitness is irrelevant.
|
*
|
* This catches the original missing-espfix-on-64-bit-kernels issue
|
* as well as CVE-2014-8134.
|
*/
|
total_nerrs += test_valid_sigreturn(64, true, -1);
|
total_nerrs += test_valid_sigreturn(32, true, -1);
|
total_nerrs += test_valid_sigreturn(16, true, -1);
|
|
if (gdt_data16_idx) {
|
/*
|
* For performance reasons, Linux skips espfix if SS points
|
* to the GDT. If we were able to allocate a 16-bit SS in
|
* the GDT, see if it leaks parts of the kernel stack pointer.
|
*
|
* This tests for CVE-2014-8133.
|
*/
|
total_nerrs += test_valid_sigreturn(64, true,
|
GDT3(gdt_data16_idx));
|
total_nerrs += test_valid_sigreturn(32, true,
|
GDT3(gdt_data16_idx));
|
total_nerrs += test_valid_sigreturn(16, true,
|
GDT3(gdt_data16_idx));
|
}
|
|
#ifdef __x86_64__
|
/* Nasty ABI case: check SS corruption handling. */
|
sig_corrupt_final_ss = 1;
|
total_nerrs += test_valid_sigreturn(32, false, -1);
|
total_nerrs += test_valid_sigreturn(32, true, -1);
|
sig_corrupt_final_ss = 0;
|
#endif
|
|
/*
|
* We're done testing valid sigreturn cases. Now we test states
|
* for which sigreturn itself will succeed but the subsequent
|
* entry to user mode will fail.
|
*
|
* Depending on the failure mode and the kernel bitness, these
|
* entry failures can generate SIGSEGV, SIGBUS, or SIGILL.
|
*/
|
clearhandler(SIGTRAP);
|
sethandler(SIGSEGV, sigtrap, SA_ONSTACK);
|
sethandler(SIGBUS, sigtrap, SA_ONSTACK);
|
sethandler(SIGILL, sigtrap, SA_ONSTACK); /* 32-bit kernels do this */
|
|
/* Easy failures: invalid SS, resulting in #GP(0) */
|
test_bad_iret(64, ldt_nonexistent_sel, -1);
|
test_bad_iret(32, ldt_nonexistent_sel, -1);
|
test_bad_iret(16, ldt_nonexistent_sel, -1);
|
|
/* These fail because SS isn't a data segment, resulting in #GP(SS) */
|
test_bad_iret(64, my_cs, -1);
|
test_bad_iret(32, my_cs, -1);
|
test_bad_iret(16, my_cs, -1);
|
|
/* Try to return to a not-present code segment, triggering #NP(SS). */
|
test_bad_iret(32, my_ss, npcode32_sel);
|
|
/*
|
* Try to return to a not-present but otherwise valid data segment.
|
* This will cause IRET to fail with #SS on the espfix stack. This
|
* exercises CVE-2014-9322.
|
*
|
* Note that, if espfix is enabled, 64-bit Linux will lose track
|
* of the actual cause of failure and report #GP(0) instead.
|
* This would be very difficult for Linux to avoid, because
|
* espfix64 causes IRET failures to be promoted to #DF, so the
|
* original exception frame is never pushed onto the stack.
|
*/
|
test_bad_iret(32, npdata32_sel, -1);
|
|
/*
|
* Try to return to a not-present but otherwise valid data
|
* segment without invoking espfix. Newer kernels don't allow
|
* this to happen in the first place. On older kernels, though,
|
* this can trigger CVE-2014-9322.
|
*/
|
if (gdt_npdata32_idx)
|
test_bad_iret(32, GDT3(gdt_npdata32_idx), -1);
|
|
#ifdef __x86_64__
|
total_nerrs += test_nonstrict_ss();
|
#endif
|
|
return total_nerrs ? 1 : 0;
|
}
|