// Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved.
|
//
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
// you may not use this file except in compliance with the License.
|
// You may obtain a copy of the License at
|
//
|
// http://www.apache.org/licenses/LICENSE-2.0
|
//
|
// Unless required by applicable law or agreed to in writing, software
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
// See the License for the specific language governing permissions and
|
// limitations under the License.
|
|
#include "postprocess.h"
|
|
#include <math.h>
|
#include <stdint.h>
|
#include <stdio.h>
|
#include <stdlib.h>
|
#include <string.h>
|
#include <sys/time.h>
|
|
#include <set>
|
#include <vector>
|
#define LABEL_NALE_TXT_PATH "./model/coco_80_labels_list.txt"
|
|
static char* labels[OBJ_CLASS_NUM];
|
|
const int anchor0[6] = {10, 13, 16, 30, 33, 23};
|
const int anchor1[6] = {30, 61, 62, 45, 59, 119};
|
const int anchor2[6] = {116, 90, 156, 198, 373, 326};
|
|
inline static int clamp(float val, int min, int max) { return val > min ? (val < max ? val : max) : min; }
|
|
char* readLine(FILE* fp, char* buffer, int* len)
|
{
|
int ch;
|
int i = 0;
|
size_t buff_len = 0;
|
|
buffer = (char*)malloc(buff_len + 1);
|
if (!buffer)
|
return NULL; // Out of memory
|
|
while ((ch = fgetc(fp)) != '\n' && ch != EOF) {
|
buff_len++;
|
void* tmp = realloc(buffer, buff_len + 1);
|
if (tmp == NULL) {
|
free(buffer);
|
return NULL; // Out of memory
|
}
|
buffer = (char*)tmp;
|
|
buffer[i] = (char)ch;
|
i++;
|
}
|
buffer[i] = '\0';
|
|
*len = buff_len;
|
|
// Detect end
|
if (ch == EOF && (i == 0 || ferror(fp))) {
|
free(buffer);
|
return NULL;
|
}
|
return buffer;
|
}
|
|
int readLines(const char* fileName, char* lines[], int max_line)
|
{
|
FILE* file = fopen(fileName, "r");
|
char* s;
|
int i = 0;
|
int n = 0;
|
|
if (file == NULL) {
|
printf("Open %s fail!\n", fileName);
|
return -1;
|
}
|
|
while ((s = readLine(file, s, &n)) != NULL) {
|
lines[i++] = s;
|
if (i >= max_line)
|
break;
|
}
|
fclose(file);
|
return i;
|
}
|
|
int loadLabelName(const char* locationFilename, char* label[])
|
{
|
printf("loadLabelName %s\n", locationFilename);
|
readLines(locationFilename, label, OBJ_CLASS_NUM);
|
return 0;
|
}
|
|
static float CalculateOverlap(float xmin0, float ymin0, float xmax0, float ymax0, float xmin1, float ymin1, float xmax1,
|
float ymax1)
|
{
|
float w = fmax(0.f, fmin(xmax0, xmax1) - fmax(xmin0, xmin1) + 1.0);
|
float h = fmax(0.f, fmin(ymax0, ymax1) - fmax(ymin0, ymin1) + 1.0);
|
float i = w * h;
|
float u = (xmax0 - xmin0 + 1.0) * (ymax0 - ymin0 + 1.0) + (xmax1 - xmin1 + 1.0) * (ymax1 - ymin1 + 1.0) - i;
|
return u <= 0.f ? 0.f : (i / u);
|
}
|
|
static int nms(int validCount, std::vector<float>& outputLocations, std::vector<int> classIds, std::vector<int>& order,
|
int filterId, float threshold)
|
{
|
for (int i = 0; i < validCount; ++i) {
|
if (order[i] == -1 || classIds[i] != filterId) {
|
continue;
|
}
|
int n = order[i];
|
for (int j = i + 1; j < validCount; ++j) {
|
int m = order[j];
|
if (m == -1 || classIds[i] != filterId) {
|
continue;
|
}
|
float xmin0 = outputLocations[n * 4 + 0];
|
float ymin0 = outputLocations[n * 4 + 1];
|
float xmax0 = outputLocations[n * 4 + 0] + outputLocations[n * 4 + 2];
|
float ymax0 = outputLocations[n * 4 + 1] + outputLocations[n * 4 + 3];
|
|
float xmin1 = outputLocations[m * 4 + 0];
|
float ymin1 = outputLocations[m * 4 + 1];
|
float xmax1 = outputLocations[m * 4 + 0] + outputLocations[m * 4 + 2];
|
float ymax1 = outputLocations[m * 4 + 1] + outputLocations[m * 4 + 3];
|
|
float iou = CalculateOverlap(xmin0, ymin0, xmax0, ymax0, xmin1, ymin1, xmax1, ymax1);
|
|
if (iou > threshold) {
|
order[j] = -1;
|
}
|
}
|
}
|
return 0;
|
}
|
|
static int quick_sort_indice_inverse(std::vector<float>& input, int left, int right, std::vector<int>& indices)
|
{
|
float key;
|
int key_index;
|
int low = left;
|
int high = right;
|
if (left < right) {
|
key_index = indices[left];
|
key = input[left];
|
while (low < high) {
|
while (low < high && input[high] <= key) {
|
high--;
|
}
|
input[low] = input[high];
|
indices[low] = indices[high];
|
while (low < high && input[low] >= key) {
|
low++;
|
}
|
input[high] = input[low];
|
indices[high] = indices[low];
|
}
|
input[low] = key;
|
indices[low] = key_index;
|
quick_sort_indice_inverse(input, left, low - 1, indices);
|
quick_sort_indice_inverse(input, low + 1, right, indices);
|
}
|
return low;
|
}
|
|
static float sigmoid(float x) { return 1.0 / (1.0 + expf(-x)); }
|
|
static float unsigmoid(float y) { return -1.0 * logf((1.0 / y) - 1.0); }
|
|
inline static int32_t __clip(float val, float min, float max)
|
{
|
float f = val <= min ? min : (val >= max ? max : val);
|
return f;
|
}
|
|
static int8_t qnt_f32_to_affine(float f32, int32_t zp, float scale)
|
{
|
float dst_val = (f32 / scale) + zp;
|
int8_t res = (int8_t)__clip(dst_val, -128, 127);
|
return res;
|
}
|
|
static float deqnt_affine_to_f32(int8_t qnt, int32_t zp, float scale) { return ((float)qnt - (float)zp) * scale; }
|
|
static int process(int8_t* input, int* anchor, int grid_h, int grid_w, int height, int width, int stride,
|
std::vector<float>& boxes, std::vector<float>& objProbs, std::vector<int>& classId, float threshold,
|
int32_t zp, float scale)
|
{
|
int validCount = 0;
|
int grid_len = grid_h * grid_w;
|
float thres = unsigmoid(threshold);
|
int8_t thres_i8 = qnt_f32_to_affine(thres, zp, scale);
|
for (int a = 0; a < 3; a++) {
|
for (int i = 0; i < grid_h; i++) {
|
for (int j = 0; j < grid_w; j++) {
|
int8_t box_confidence = input[(PROP_BOX_SIZE * a + 4) * grid_len + i * grid_w + j];
|
if (box_confidence >= thres_i8) {
|
int offset = (PROP_BOX_SIZE * a) * grid_len + i * grid_w + j;
|
int8_t* in_ptr = input + offset;
|
float box_x = sigmoid(deqnt_affine_to_f32(*in_ptr, zp, scale)) * 2.0 - 0.5;
|
float box_y = sigmoid(deqnt_affine_to_f32(in_ptr[grid_len], zp, scale)) * 2.0 - 0.5;
|
float box_w = sigmoid(deqnt_affine_to_f32(in_ptr[2 * grid_len], zp, scale)) * 2.0;
|
float box_h = sigmoid(deqnt_affine_to_f32(in_ptr[3 * grid_len], zp, scale)) * 2.0;
|
box_x = (box_x + j) * (float)stride;
|
box_y = (box_y + i) * (float)stride;
|
box_w = box_w * box_w * (float)anchor[a * 2];
|
box_h = box_h * box_h * (float)anchor[a * 2 + 1];
|
box_x -= (box_w / 2.0);
|
box_y -= (box_h / 2.0);
|
boxes.push_back(box_x);
|
boxes.push_back(box_y);
|
boxes.push_back(box_w);
|
boxes.push_back(box_h);
|
|
int8_t maxClassProbs = in_ptr[5 * grid_len];
|
int maxClassId = 0;
|
for (int k = 1; k < OBJ_CLASS_NUM; ++k) {
|
int8_t prob = in_ptr[(5 + k) * grid_len];
|
if (prob > maxClassProbs) {
|
maxClassId = k;
|
maxClassProbs = prob;
|
}
|
}
|
objProbs.push_back(sigmoid(deqnt_affine_to_f32(maxClassProbs, zp, scale)));
|
classId.push_back(maxClassId);
|
validCount++;
|
}
|
}
|
}
|
}
|
return validCount;
|
}
|
|
int post_process(int8_t* input0, int8_t* input1, int8_t* input2, int model_in_h, int model_in_w, float conf_threshold,
|
float nms_threshold, float scale_w, float scale_h, std::vector<int32_t>& qnt_zps,
|
std::vector<float>& qnt_scales, detect_result_group_t* group)
|
{
|
static int init = -1;
|
if (init == -1) {
|
int ret = 0;
|
ret = loadLabelName(LABEL_NALE_TXT_PATH, labels);
|
if (ret < 0) {
|
return -1;
|
}
|
|
init = 0;
|
}
|
memset(group, 0, sizeof(detect_result_group_t));
|
|
std::vector<float> filterBoxes;
|
std::vector<float> objProbs;
|
std::vector<int> classId;
|
|
// stride 8
|
int stride0 = 8;
|
int grid_h0 = model_in_h / stride0;
|
int grid_w0 = model_in_w / stride0;
|
int validCount0 = 0;
|
validCount0 = process(input0, (int*)anchor0, grid_h0, grid_w0, model_in_h, model_in_w, stride0, filterBoxes, objProbs,
|
classId, conf_threshold, qnt_zps[0], qnt_scales[0]);
|
|
// stride 16
|
int stride1 = 16;
|
int grid_h1 = model_in_h / stride1;
|
int grid_w1 = model_in_w / stride1;
|
int validCount1 = 0;
|
validCount1 = process(input1, (int*)anchor1, grid_h1, grid_w1, model_in_h, model_in_w, stride1, filterBoxes, objProbs,
|
classId, conf_threshold, qnt_zps[1], qnt_scales[1]);
|
|
// stride 32
|
int stride2 = 32;
|
int grid_h2 = model_in_h / stride2;
|
int grid_w2 = model_in_w / stride2;
|
int validCount2 = 0;
|
validCount2 = process(input2, (int*)anchor2, grid_h2, grid_w2, model_in_h, model_in_w, stride2, filterBoxes, objProbs,
|
classId, conf_threshold, qnt_zps[2], qnt_scales[2]);
|
|
int validCount = validCount0 + validCount1 + validCount2;
|
// no object detect
|
if (validCount <= 0) {
|
return 0;
|
}
|
|
std::vector<int> indexArray;
|
for (int i = 0; i < validCount; ++i) {
|
indexArray.push_back(i);
|
}
|
|
quick_sort_indice_inverse(objProbs, 0, validCount - 1, indexArray);
|
|
std::set<int> class_set(std::begin(classId), std::end(classId));
|
|
for (auto c : class_set) {
|
nms(validCount, filterBoxes, classId, indexArray, c, nms_threshold);
|
}
|
|
int last_count = 0;
|
group->count = 0;
|
/* box valid detect target */
|
for (int i = 0; i < validCount; ++i) {
|
if (indexArray[i] == -1 || last_count >= OBJ_NUMB_MAX_SIZE) {
|
continue;
|
}
|
int n = indexArray[i];
|
|
float x1 = filterBoxes[n * 4 + 0];
|
float y1 = filterBoxes[n * 4 + 1];
|
float x2 = x1 + filterBoxes[n * 4 + 2];
|
float y2 = y1 + filterBoxes[n * 4 + 3];
|
int id = classId[n];
|
float obj_conf = objProbs[i];
|
|
group->results[last_count].box.left = (int)(clamp(x1, 0, model_in_w) / scale_w);
|
group->results[last_count].box.top = (int)(clamp(y1, 0, model_in_h) / scale_h);
|
group->results[last_count].box.right = (int)(clamp(x2, 0, model_in_w) / scale_w);
|
group->results[last_count].box.bottom = (int)(clamp(y2, 0, model_in_h) / scale_h);
|
group->results[last_count].prop = obj_conf;
|
char* label = labels[id];
|
strncpy(group->results[last_count].name, label, OBJ_NAME_MAX_SIZE);
|
|
// printf("result %2d: (%4d, %4d, %4d, %4d), %s\n", i, group->results[last_count].box.left,
|
// group->results[last_count].box.top,
|
// group->results[last_count].box.right, group->results[last_count].box.bottom, label);
|
last_count++;
|
}
|
group->count = last_count;
|
|
return 0;
|
}
|
|
void deinitPostProcess()
|
{
|
for (int i = 0; i < OBJ_CLASS_NUM; i++) {
|
if (labels[i] != nullptr) {
|
free(labels[i]);
|
labels[i] = nullptr;
|
}
|
}
|
}
|