// Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved.
|
//
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
// you may not use this file except in compliance with the License.
|
// You may obtain a copy of the License at
|
//
|
// http://www.apache.org/licenses/LICENSE-2.0
|
//
|
// Unless required by applicable law or agreed to in writing, software
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
// See the License for the specific language governing permissions and
|
// limitations under the License.
|
|
/*-------------------------------------------
|
Includes
|
-------------------------------------------*/
|
#include <dlfcn.h>
|
#include <stdio.h>
|
#include <stdlib.h>
|
#include <string.h>
|
#include <sys/time.h>
|
|
#define _BASETSD_H
|
|
#include "RgaUtils.h"
|
#include "im2d.h"
|
#include "opencv2/core/core.hpp"
|
#include "opencv2/imgcodecs.hpp"
|
#include "opencv2/imgproc.hpp"
|
#include "postprocess.h"
|
#include "rga.h"
|
#include "rknn_api.h"
|
|
#define PERF_WITH_POST 1
|
/*-------------------------------------------
|
Functions
|
-------------------------------------------*/
|
|
static void dump_tensor_attr(rknn_tensor_attr* attr)
|
{
|
printf(" index=%d, name=%s, n_dims=%d, dims=[%d, %d, %d, %d], n_elems=%d, size=%d, fmt=%s, type=%s, qnt_type=%s, "
|
"zp=%d, scale=%f\n",
|
attr->index, attr->name, attr->n_dims, attr->dims[0], attr->dims[1], attr->dims[2], attr->dims[3],
|
attr->n_elems, attr->size, get_format_string(attr->fmt), get_type_string(attr->type),
|
get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale);
|
}
|
|
double __get_us(struct timeval t) { return (t.tv_sec * 1000000 + t.tv_usec); }
|
|
static unsigned char* load_data(FILE* fp, size_t ofst, size_t sz)
|
{
|
unsigned char* data;
|
int ret;
|
|
data = NULL;
|
|
if (NULL == fp) {
|
return NULL;
|
}
|
|
ret = fseek(fp, ofst, SEEK_SET);
|
if (ret != 0) {
|
printf("blob seek failure.\n");
|
return NULL;
|
}
|
|
data = (unsigned char*)malloc(sz);
|
if (data == NULL) {
|
printf("buffer malloc failure.\n");
|
return NULL;
|
}
|
ret = fread(data, 1, sz, fp);
|
return data;
|
}
|
|
static unsigned char* load_model(const char* filename, int* model_size)
|
{
|
FILE* fp;
|
unsigned char* data;
|
|
fp = fopen(filename, "rb");
|
if (NULL == fp) {
|
printf("Open file %s failed.\n", filename);
|
return NULL;
|
}
|
|
fseek(fp, 0, SEEK_END);
|
int size = ftell(fp);
|
|
data = load_data(fp, 0, size);
|
|
fclose(fp);
|
|
*model_size = size;
|
return data;
|
}
|
|
static int saveFloat(const char* file_name, float* output, int element_size)
|
{
|
FILE* fp;
|
fp = fopen(file_name, "w");
|
for (int i = 0; i < element_size; i++) {
|
fprintf(fp, "%.6f\n", output[i]);
|
}
|
fclose(fp);
|
return 0;
|
}
|
|
/*-------------------------------------------
|
Main Functions
|
-------------------------------------------*/
|
int main(int argc, char** argv)
|
{
|
int status = 0;
|
char* model_name = NULL;
|
rknn_context ctx;
|
size_t actual_size = 0;
|
int img_width = 0;
|
int img_height = 0;
|
int img_channel = 0;
|
const float nms_threshold = NMS_THRESH;
|
const float box_conf_threshold = BOX_THRESH;
|
struct timeval start_time, stop_time;
|
int ret;
|
|
// init rga context
|
rga_buffer_t src;
|
rga_buffer_t dst;
|
im_rect src_rect;
|
im_rect dst_rect;
|
memset(&src_rect, 0, sizeof(src_rect));
|
memset(&dst_rect, 0, sizeof(dst_rect));
|
memset(&src, 0, sizeof(src));
|
memset(&dst, 0, sizeof(dst));
|
|
if (argc != 3) {
|
printf("Usage: %s <rknn model> <jpg> \n", argv[0]);
|
return -1;
|
}
|
|
printf("post process config: box_conf_threshold = %.2f, nms_threshold = %.2f\n", box_conf_threshold, nms_threshold);
|
|
model_name = (char*)argv[1];
|
char* image_name = argv[2];
|
|
printf("Read %s ...\n", image_name);
|
cv::Mat orig_img = cv::imread(image_name, 1);
|
if (!orig_img.data) {
|
printf("cv::imread %s fail!\n", image_name);
|
return -1;
|
}
|
cv::Mat img;
|
cv::cvtColor(orig_img, img, cv::COLOR_BGR2RGB);
|
img_width = img.cols;
|
img_height = img.rows;
|
printf("img width = %d, img height = %d\n", img_width, img_height);
|
|
/* Create the neural network */
|
printf("Loading mode...\n");
|
int model_data_size = 0;
|
unsigned char* model_data = load_model(model_name, &model_data_size);
|
ret = rknn_init(&ctx, model_data, model_data_size, 0, NULL);
|
if (ret < 0) {
|
printf("rknn_init error ret=%d\n", ret);
|
return -1;
|
}
|
|
rknn_sdk_version version;
|
ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &version, sizeof(rknn_sdk_version));
|
if (ret < 0) {
|
printf("rknn_init error ret=%d\n", ret);
|
return -1;
|
}
|
printf("sdk version: %s driver version: %s\n", version.api_version, version.drv_version);
|
|
rknn_input_output_num io_num;
|
ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
|
if (ret < 0) {
|
printf("rknn_init error ret=%d\n", ret);
|
return -1;
|
}
|
printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output);
|
|
rknn_tensor_attr input_attrs[io_num.n_input];
|
memset(input_attrs, 0, sizeof(input_attrs));
|
for (int i = 0; i < io_num.n_input; i++) {
|
input_attrs[i].index = i;
|
ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
|
if (ret < 0) {
|
printf("rknn_init error ret=%d\n", ret);
|
return -1;
|
}
|
dump_tensor_attr(&(input_attrs[i]));
|
}
|
|
rknn_tensor_attr output_attrs[io_num.n_output];
|
memset(output_attrs, 0, sizeof(output_attrs));
|
for (int i = 0; i < io_num.n_output; i++) {
|
output_attrs[i].index = i;
|
ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
|
dump_tensor_attr(&(output_attrs[i]));
|
}
|
|
int channel = 3;
|
int width = 0;
|
int height = 0;
|
if (input_attrs[0].fmt == RKNN_TENSOR_NCHW) {
|
printf("model is NCHW input fmt\n");
|
channel = input_attrs[0].dims[1];
|
width = input_attrs[0].dims[2];
|
height = input_attrs[0].dims[3];
|
} else {
|
printf("model is NHWC input fmt\n");
|
width = input_attrs[0].dims[1];
|
height = input_attrs[0].dims[2];
|
channel = input_attrs[0].dims[3];
|
}
|
|
printf("model input height=%d, width=%d, channel=%d\n", height, width, channel);
|
|
rknn_input inputs[1];
|
memset(inputs, 0, sizeof(inputs));
|
inputs[0].index = 0;
|
inputs[0].type = RKNN_TENSOR_UINT8;
|
inputs[0].size = width * height * channel;
|
inputs[0].fmt = RKNN_TENSOR_NHWC;
|
inputs[0].pass_through = 0;
|
|
// You may not need resize when src resulotion equals to dst resulotion
|
void* resize_buf = nullptr;
|
|
if (img_width != width || img_height != height) {
|
printf("resize with RGA!\n");
|
resize_buf = malloc(height * width * channel);
|
memset(resize_buf, 0x00, height * width * channel);
|
|
src = wrapbuffer_virtualaddr((void*)img.data, img_width, img_height, RK_FORMAT_RGB_888);
|
dst = wrapbuffer_virtualaddr((void*)resize_buf, width, height, RK_FORMAT_RGB_888);
|
ret = imcheck(src, dst, src_rect, dst_rect);
|
if (IM_STATUS_NOERROR != ret) {
|
printf("%d, check error! %s", __LINE__, imStrError((IM_STATUS)ret));
|
return -1;
|
}
|
IM_STATUS STATUS = imresize(src, dst);
|
|
// for debug
|
cv::Mat resize_img(cv::Size(width, height), CV_8UC3, resize_buf);
|
cv::imwrite("resize_input.jpg", resize_img);
|
|
inputs[0].buf = resize_buf;
|
} else {
|
inputs[0].buf = (void*)img.data;
|
}
|
|
gettimeofday(&start_time, NULL);
|
rknn_inputs_set(ctx, io_num.n_input, inputs);
|
|
rknn_output outputs[io_num.n_output];
|
memset(outputs, 0, sizeof(outputs));
|
for (int i = 0; i < io_num.n_output; i++) {
|
outputs[i].want_float = 0;
|
}
|
|
ret = rknn_run(ctx, NULL);
|
ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
|
gettimeofday(&stop_time, NULL);
|
printf("once run use %f ms\n", (__get_us(stop_time) - __get_us(start_time)) / 1000);
|
|
// post process
|
float scale_w = (float)width / img_width;
|
float scale_h = (float)height / img_height;
|
|
detect_result_group_t detect_result_group;
|
std::vector<float> out_scales;
|
std::vector<int32_t> out_zps;
|
for (int i = 0; i < io_num.n_output; ++i) {
|
out_scales.push_back(output_attrs[i].scale);
|
out_zps.push_back(output_attrs[i].zp);
|
}
|
post_process((int8_t*)outputs[0].buf, (int8_t*)outputs[1].buf, (int8_t*)outputs[2].buf, height, width,
|
box_conf_threshold, nms_threshold, scale_w, scale_h, out_zps, out_scales, &detect_result_group);
|
|
// Draw Objects
|
char text[256];
|
for (int i = 0; i < detect_result_group.count; i++) {
|
detect_result_t* det_result = &(detect_result_group.results[i]);
|
sprintf(text, "%s %.1f%%", det_result->name, det_result->prop * 100);
|
printf("%s @ (%d %d %d %d) %f\n", det_result->name, det_result->box.left, det_result->box.top,
|
det_result->box.right, det_result->box.bottom, det_result->prop);
|
int x1 = det_result->box.left;
|
int y1 = det_result->box.top;
|
int x2 = det_result->box.right;
|
int y2 = det_result->box.bottom;
|
rectangle(orig_img, cv::Point(x1, y1), cv::Point(x2, y2), cv::Scalar(255, 0, 0, 255), 3);
|
putText(orig_img, text, cv::Point(x1, y1 + 12), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
|
}
|
|
imwrite("./out.jpg", orig_img);
|
ret = rknn_outputs_release(ctx, io_num.n_output, outputs);
|
|
// loop test
|
int test_count = 10;
|
gettimeofday(&start_time, NULL);
|
for (int i = 0; i < test_count; ++i) {
|
rknn_inputs_set(ctx, io_num.n_input, inputs);
|
ret = rknn_run(ctx, NULL);
|
ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
|
#if PERF_WITH_POST
|
post_process((int8_t*)outputs[0].buf, (int8_t*)outputs[1].buf, (int8_t*)outputs[2].buf, height, width,
|
box_conf_threshold, nms_threshold, scale_w, scale_h, out_zps, out_scales, &detect_result_group);
|
#endif
|
ret = rknn_outputs_release(ctx, io_num.n_output, outputs);
|
}
|
gettimeofday(&stop_time, NULL);
|
printf("loop count = %d , average run %f ms\n", test_count,
|
(__get_us(stop_time) - __get_us(start_time)) / 1000.0 / test_count);
|
|
deinitPostProcess();
|
|
// release
|
ret = rknn_destroy(ctx);
|
|
if (model_data) {
|
free(model_data);
|
}
|
|
if (resize_buf) {
|
free(resize_buf);
|
}
|
|
return 0;
|
}
|