hc
2024-08-16 a24a44ff9ca902811b99aa9663d697cf452e08ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import cv2
from rknn.api import RKNN
 
 
def show_outputs(outputs):
    output = outputs[0][0]
    output_sorted = sorted(output, reverse=True)
    top5_str = 'mobilenet_v1\n-----TOP 5-----\n'
    for i in range(5):
        value = output_sorted[i]
        index = np.where(output == value)
        for j in range(len(index)):
            if (i + j) >= 5:
                break
            if value > 0:
                topi = '{}: {}\n'.format(index[j], value)
            else:
                topi = '-1: 0.0\n'
            top5_str += topi
    print(top5_str)
 
 
if __name__ == '__main__':
 
    # Create RKNN object
    rknn = RKNN(verbose=True)
 
    # Pre-process config
    print('--> Config model')
    rknn.config(mean_values=[0, 0, 0], std_values=[1, 1, 1])
    print('done')
 
    # Load model
    print('--> Loading model')
    ret = rknn.load_tflite(model='mobilenet_v1_1.0_224_quant.tflite')
    if ret != 0:
        print('Load model failed!')
        exit(ret)
    print('done')
 
    # Build model
    print('--> Building model')
    ret = rknn.build(do_quantization=False)
    if ret != 0:
        print('Build model failed!')
        exit(ret)
    print('done')
 
    # Export rknn model
    print('--> Export rknn model')
    ret = rknn.export_rknn('./mobilenet_v1.rknn')
    if ret != 0:
        print('Export rknn model failed!')
        exit(ret)
    print('done')
 
    # Set inputs
    img = cv2.imread('./dog_224x224.jpg')
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    img = np.expand_dims(img, 0)
 
    # Init runtime environment
    print('--> Init runtime environment')
    ret = rknn.init_runtime()
    if ret != 0:
        print('Init runtime environment failed!')
        exit(ret)
    print('done')
 
    # Inference
    print('--> Running model')
    outputs = rknn.inference(inputs=[img])
    np.save('./tflite_mobilenet_v1_qat_0.npy', outputs[0])
    show_outputs(outputs)
    print('done')
 
    rknn.release()