hc
2024-08-16 a24a44ff9ca902811b99aa9663d697cf452e08ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import numpy as np
import cv2
import os
import urllib.request
 
NUM_CLS = 80
MAX_BOXES = 500
OBJ_THRESH = 0.5
NMS_THRESH = 0.6
 
CLASSES = ("person", "bicycle", "car","motorbike ","aeroplane ","bus ","train","truck ","boat","traffic light",
           "fire hydrant","stop sign ","parking meter","bench","bird","cat","dog ","horse ","sheep","cow","elephant",
           "bear","zebra ","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite",
           "baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife ",
           "spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza ","donut","cake","chair","sofa",
           "pottedplant","bed","diningtable","toilet ","tvmonitor","laptop    ","mouse    ","remote ","keyboard ","cell phone","microwave ",
           "oven ","toaster","sink","refrigerator ","book","clock","vase","scissors ","teddy bear ","hair drier", "toothbrush ")
 
def sigmoid(x):
    return 1 / (1 + np.exp(-x))
 
def process(input, mask, anchors):
 
    anchors = [anchors[i] for i in mask]
    grid_h, grid_w = map(int, input.shape[0:2])
 
    box_confidence = sigmoid(input[..., 4])
    box_confidence = np.expand_dims(box_confidence, axis=-1)
 
    box_class_probs = sigmoid(input[..., 5:])
 
    box_xy = sigmoid(input[..., :2])
    box_wh = np.exp(input[..., 2:4])
    box_wh = box_wh * anchors
 
    col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
    row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
 
    col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
    row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
    grid = np.concatenate((col, row), axis=-1)
 
    box_xy += grid
    box_xy /= (grid_w, grid_h)
    box_wh /= (416, 416)
    box_xy -= (box_wh / 2.)
    box = np.concatenate((box_xy, box_wh), axis=-1)
 
    return box, box_confidence, box_class_probs
 
def filter_boxes(boxes, box_confidences, box_class_probs):
    """Filter boxes with object threshold.
 
    # Arguments
        boxes: ndarray, boxes of objects.
        box_confidences: ndarray, confidences of objects.
        box_class_probs: ndarray, class_probs of objects.
 
    # Returns
        boxes: ndarray, filtered boxes.
        classes: ndarray, classes for boxes.
        scores: ndarray, scores for boxes.
    """
    box_scores = box_confidences * box_class_probs
    box_classes = np.argmax(box_scores, axis=-1)
    box_class_scores = np.max(box_scores, axis=-1)
    pos = np.where(box_class_scores >= OBJ_THRESH)
 
    boxes = boxes[pos]
    classes = box_classes[pos]
    scores = box_class_scores[pos]
 
    return boxes, classes, scores
 
def nms_boxes(boxes, scores):
    """Suppress non-maximal boxes.
 
    # Arguments
        boxes: ndarray, boxes of objects.
        scores: ndarray, scores of objects.
 
    # Returns
        keep: ndarray, index of effective boxes.
    """
    x = boxes[:, 0]
    y = boxes[:, 1]
    w = boxes[:, 2]
    h = boxes[:, 3]
 
    areas = w * h
    order = scores.argsort()[::-1]
 
    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
 
        xx1 = np.maximum(x[i], x[order[1:]])
        yy1 = np.maximum(y[i], y[order[1:]])
        xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
        yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
 
        w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
        h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
        inter = w1 * h1
 
        ovr = inter / (areas[i] + areas[order[1:]] - inter)
        inds = np.where(ovr <= NMS_THRESH)[0]
        order = order[inds + 1]
    keep = np.array(keep)
    return keep
 
def yolov3_post_process(input_data):
    # yolov3
    masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
    anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
              [59, 119], [116, 90], [156, 198], [373, 326]]
    # yolov3-tiny
    # masks = [[3, 4, 5], [0, 1, 2]]
    # anchors = [[10, 14], [23, 27], [37, 58], [81, 82], [135, 169], [344, 319]]
 
    boxes, classes, scores = [], [], []
    for input,mask in zip(input_data, masks):
        b, c, s = process(input, mask, anchors)
        b, c, s = filter_boxes(b, c, s)
        boxes.append(b)
        classes.append(c)
        scores.append(s)
 
    boxes = np.concatenate(boxes)
    classes = np.concatenate(classes)
    scores = np.concatenate(scores)
 
    nboxes, nclasses, nscores = [], [], []
    for c in set(classes):
        inds = np.where(classes == c)
        b = boxes[inds]
        c = classes[inds]
        s = scores[inds]
 
        keep = nms_boxes(b, s)
 
        nboxes.append(b[keep])
        nclasses.append(c[keep])
        nscores.append(s[keep])
 
    if not nclasses and not nscores:
        return None, None, None
 
    boxes = np.concatenate(nboxes)
    classes = np.concatenate(nclasses)
    scores = np.concatenate(nscores)
 
    return boxes, classes, scores
 
def draw(image, boxes, scores, classes):
    """Draw the boxes on the image.
 
    # Argument:
        image: original image.
        boxes: ndarray, boxes of objects.
        classes: ndarray, classes of objects.
        scores: ndarray, scores of objects.
        all_classes: all classes name.
    """
    for box, score, cl in zip(boxes, scores, classes):
        x, y, w, h = box
        print('class: {}, score: {}'.format(CLASSES[cl], score))
        print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(x, y, x+w, y+h))
        x *= image.shape[1]
        y *= image.shape[0]
        w *= image.shape[1]
        h *= image.shape[0]
        top = max(0, np.floor(x + 0.5).astype(int))
        left = max(0, np.floor(y + 0.5).astype(int))
        right = min(image.shape[1], np.floor(x + w + 0.5).astype(int))
        bottom = min(image.shape[0], np.floor(y + h + 0.5).astype(int))
 
        cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
        cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
                    (top, left - 6),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    0.6, (0, 0, 255), 2)
 
 
def download_yolov3_weight(dst_path):
    if os.path.exists(dst_path):
        print('yolov3.weight exist.')
        return
    print('Downloading yolov3.weights...')
    url = 'https://pjreddie.com/media/files/yolov3.weights'
    try:
        urllib.request.urlretrieve(url, dst_path)
    except urllib.error.HTTPError as e:
        print('HTTPError code: ', e.code)
        print('HTTPError reason: ', e.reason)
        exit(-1)
    except urllib.error.URLError as e:
        print('URLError reason: ', e.reason)
    else:
        print('Download yolov3.weight success.')