1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
| import numpy as np
| import cv2
| import os
| import urllib.request
|
| NUM_CLS = 80
| MAX_BOXES = 500
| OBJ_THRESH = 0.5
| NMS_THRESH = 0.6
|
| CLASSES = ("person", "bicycle", "car","motorbike ","aeroplane ","bus ","train","truck ","boat","traffic light",
| "fire hydrant","stop sign ","parking meter","bench","bird","cat","dog ","horse ","sheep","cow","elephant",
| "bear","zebra ","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite",
| "baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife ",
| "spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza ","donut","cake","chair","sofa",
| "pottedplant","bed","diningtable","toilet ","tvmonitor","laptop ","mouse ","remote ","keyboard ","cell phone","microwave ",
| "oven ","toaster","sink","refrigerator ","book","clock","vase","scissors ","teddy bear ","hair drier", "toothbrush ")
|
| def sigmoid(x):
| return 1 / (1 + np.exp(-x))
|
| def process(input, mask, anchors):
|
| anchors = [anchors[i] for i in mask]
| grid_h, grid_w = map(int, input.shape[0:2])
|
| box_confidence = sigmoid(input[..., 4])
| box_confidence = np.expand_dims(box_confidence, axis=-1)
|
| box_class_probs = sigmoid(input[..., 5:])
|
| box_xy = sigmoid(input[..., :2])
| box_wh = np.exp(input[..., 2:4])
| box_wh = box_wh * anchors
|
| col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
| row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
|
| col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
| row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
| grid = np.concatenate((col, row), axis=-1)
|
| box_xy += grid
| box_xy /= (grid_w, grid_h)
| box_wh /= (416, 416)
| box_xy -= (box_wh / 2.)
| box = np.concatenate((box_xy, box_wh), axis=-1)
|
| return box, box_confidence, box_class_probs
|
| def filter_boxes(boxes, box_confidences, box_class_probs):
| """Filter boxes with object threshold.
|
| # Arguments
| boxes: ndarray, boxes of objects.
| box_confidences: ndarray, confidences of objects.
| box_class_probs: ndarray, class_probs of objects.
|
| # Returns
| boxes: ndarray, filtered boxes.
| classes: ndarray, classes for boxes.
| scores: ndarray, scores for boxes.
| """
| box_scores = box_confidences * box_class_probs
| box_classes = np.argmax(box_scores, axis=-1)
| box_class_scores = np.max(box_scores, axis=-1)
| pos = np.where(box_class_scores >= OBJ_THRESH)
|
| boxes = boxes[pos]
| classes = box_classes[pos]
| scores = box_class_scores[pos]
|
| return boxes, classes, scores
|
| def nms_boxes(boxes, scores):
| """Suppress non-maximal boxes.
|
| # Arguments
| boxes: ndarray, boxes of objects.
| scores: ndarray, scores of objects.
|
| # Returns
| keep: ndarray, index of effective boxes.
| """
| x = boxes[:, 0]
| y = boxes[:, 1]
| w = boxes[:, 2]
| h = boxes[:, 3]
|
| areas = w * h
| order = scores.argsort()[::-1]
|
| keep = []
| while order.size > 0:
| i = order[0]
| keep.append(i)
|
| xx1 = np.maximum(x[i], x[order[1:]])
| yy1 = np.maximum(y[i], y[order[1:]])
| xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
| yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
|
| w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
| h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
| inter = w1 * h1
|
| ovr = inter / (areas[i] + areas[order[1:]] - inter)
| inds = np.where(ovr <= NMS_THRESH)[0]
| order = order[inds + 1]
| keep = np.array(keep)
| return keep
|
| def yolov3_post_process(input_data):
| # yolov3
| masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
| anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
| [59, 119], [116, 90], [156, 198], [373, 326]]
| # yolov3-tiny
| # masks = [[3, 4, 5], [0, 1, 2]]
| # anchors = [[10, 14], [23, 27], [37, 58], [81, 82], [135, 169], [344, 319]]
|
| boxes, classes, scores = [], [], []
| for input,mask in zip(input_data, masks):
| b, c, s = process(input, mask, anchors)
| b, c, s = filter_boxes(b, c, s)
| boxes.append(b)
| classes.append(c)
| scores.append(s)
|
| boxes = np.concatenate(boxes)
| classes = np.concatenate(classes)
| scores = np.concatenate(scores)
|
| nboxes, nclasses, nscores = [], [], []
| for c in set(classes):
| inds = np.where(classes == c)
| b = boxes[inds]
| c = classes[inds]
| s = scores[inds]
|
| keep = nms_boxes(b, s)
|
| nboxes.append(b[keep])
| nclasses.append(c[keep])
| nscores.append(s[keep])
|
| if not nclasses and not nscores:
| return None, None, None
|
| boxes = np.concatenate(nboxes)
| classes = np.concatenate(nclasses)
| scores = np.concatenate(nscores)
|
| return boxes, classes, scores
|
| def draw(image, boxes, scores, classes):
| """Draw the boxes on the image.
|
| # Argument:
| image: original image.
| boxes: ndarray, boxes of objects.
| classes: ndarray, classes of objects.
| scores: ndarray, scores of objects.
| all_classes: all classes name.
| """
| for box, score, cl in zip(boxes, scores, classes):
| x, y, w, h = box
| print('class: {}, score: {}'.format(CLASSES[cl], score))
| print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(x, y, x+w, y+h))
| x *= image.shape[1]
| y *= image.shape[0]
| w *= image.shape[1]
| h *= image.shape[0]
| top = max(0, np.floor(x + 0.5).astype(int))
| left = max(0, np.floor(y + 0.5).astype(int))
| right = min(image.shape[1], np.floor(x + w + 0.5).astype(int))
| bottom = min(image.shape[0], np.floor(y + h + 0.5).astype(int))
|
| cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
| cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
| (top, left - 6),
| cv2.FONT_HERSHEY_SIMPLEX,
| 0.6, (0, 0, 255), 2)
|
|
| def download_yolov3_weight(dst_path):
| if os.path.exists(dst_path):
| print('yolov3.weight exist.')
| return
| print('Downloading yolov3.weights...')
| url = 'https://pjreddie.com/media/files/yolov3.weights'
| try:
| urllib.request.urlretrieve(url, dst_path)
| except urllib.error.HTTPError as e:
| print('HTTPError code: ', e.code)
| print('HTTPError reason: ', e.reason)
| exit(-1)
| except urllib.error.URLError as e:
| print('URLError reason: ', e.reason)
| else:
| print('Download yolov3.weight success.')
|
|