import numpy as np
|
import cv2
|
from rknn.api import RKNN
|
|
from yolov3_utils import yolov3_post_process, draw, download_yolov3_weight
|
|
GRID0 = 13
|
GRID1 = 26
|
GRID2 = 52
|
LISTSIZE = 85
|
SPAN = 3
|
|
if __name__ == '__main__':
|
|
MODEL_PATH = './yolov3.cfg'
|
WEIGHT_PATH = './yolov3.weights'
|
RKNN_MODEL_PATH = './yolov3_416.rknn'
|
im_file = './dog_bike_car_416x416.jpg'
|
DATASET = './dataset.txt'
|
|
# Download yolov3.weight
|
download_yolov3_weight(WEIGHT_PATH)
|
|
# Create RKNN object
|
rknn = RKNN(verbose=True)
|
|
# Pre-process config
|
print('--> Config model')
|
rknn.config(mean_values=[0, 0, 0], std_values=[255, 255, 255])
|
print('done')
|
|
# Load model
|
print('--> Loading model')
|
ret = rknn.load_darknet(model=MODEL_PATH, weight=WEIGHT_PATH)
|
if ret != 0:
|
print('Load model failed!')
|
exit(ret)
|
print('done')
|
|
# Build model
|
print('--> Building model')
|
ret = rknn.build(do_quantization=True, dataset=DATASET)
|
if ret != 0:
|
print('Build model failed!')
|
exit(ret)
|
print('done')
|
|
# Export rknn model
|
print('--> Export rknn model')
|
ret = rknn.export_rknn(RKNN_MODEL_PATH)
|
if ret != 0:
|
print('Export rknn model failed!')
|
exit(ret)
|
print('done')
|
|
# Set inputs
|
img = cv2.imread(im_file)
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
# Init runtime environment
|
print('--> Init runtime environment')
|
ret = rknn.init_runtime()
|
if ret != 0:
|
print('Init runtime environment failed!')
|
exit(ret)
|
print('done')
|
|
# Inference
|
print('--> Running model')
|
outputs = rknn.inference(inputs=[img])
|
print('done')
|
|
input0_data = outputs[0]
|
np.save('./darknet_yolov3_416x416_0.npy', input0_data)
|
input1_data = outputs[1]
|
np.save('./darknet_yolov3_416x416_1.npy', input1_data)
|
input2_data = outputs[2]
|
np.save('./darknet_yolov3_416x416_2.npy', input1_data)
|
|
input0_data = input0_data.reshape(SPAN, LISTSIZE, GRID0, GRID0)
|
input1_data = input1_data.reshape(SPAN, LISTSIZE, GRID1, GRID1)
|
input2_data = input2_data.reshape(SPAN, LISTSIZE, GRID2, GRID2)
|
|
input_data = []
|
input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))
|
input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))
|
input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))
|
|
boxes, classes, scores = yolov3_post_process(input_data)
|
|
image = cv2.imread(im_file)
|
if boxes is not None:
|
draw(image, boxes, scores, classes)
|
|
print('Save results to results.jpg!')
|
cv2.imwrite('result.jpg', image)
|
|
rknn.release()
|