hc
2024-03-22 a0752693d998599af469473b8dc239ef973a012f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#! /usr/bin/env perl
# Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License").  You may not use
# this file except in compliance with the License.  You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
 
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# December 2011
#
# The module implements GCM GHASH function and underlying single
# multiplication operation in GF(2^128). Even though subroutines
# have _4bit suffix, they are not using any tables, but rely on
# hardware Galois Field Multiply support. Streamed GHASH processes
# byte in ~7 cycles, which is >6x faster than "4-bit" table-driven
# code compiled with TI's cl6x 6.0 with -mv6400+ -o2 flags. We are
# comparing apples vs. oranges, but compiler surely could have done
# better, because theoretical [though not necessarily achievable]
# estimate for "4-bit" table-driven implementation is ~12 cycles.
 
while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {}
open STDOUT,">$output";
 
($Xip,$Htable,$inp,$len)=("A4","B4","A6","B6");    # arguments
 
($Z0,$Z1,$Z2,$Z3,    $H0, $H1, $H2, $H3,
           $H0x,$H1x,$H2x,$H3x)=map("A$_",(16..27));
($H01u,$H01y,$H2u,$H3u,    $H0y,$H1y,$H2y,$H3y,
           $H0z,$H1z,$H2z,$H3z)=map("B$_",(16..27));
($FF000000,$E10000)=("B30","B31");
($xip,$x0,$x1,$xib)=map("B$_",(6..9));    # $xip zaps $len
 $xia="A9";
($rem,$res)=("B4","B5");        # $rem zaps $Htable
 
$code.=<<___;
   .text
 
   .if    .ASSEMBLER_VERSION<7000000
   .asg    0,__TI_EABI__
   .endif
   .if    __TI_EABI__
   .asg    gcm_gmult_1bit,_gcm_gmult_1bit
   .asg    gcm_gmult_4bit,_gcm_gmult_4bit
   .asg    gcm_ghash_4bit,_gcm_ghash_4bit
   .endif
 
   .asg    B3,RA
 
   .if    0
   .global    _gcm_gmult_1bit
_gcm_gmult_1bit:
   ADDAD    $Htable,2,$Htable
   .endif
   .global    _gcm_gmult_4bit
_gcm_gmult_4bit:
   .asmfunc
   LDDW    *${Htable}[-1],$H1:$H0    ; H.lo
   LDDW    *${Htable}[-2],$H3:$H2    ; H.hi
||    MV    $Xip,${xip}        ; reassign Xi
||    MVK    15,B1            ; SPLOOPD constant
 
   MVK    0xE1,$E10000
||    LDBU    *++${xip}[15],$x1    ; Xi[15]
   MVK    0xFF,$FF000000
||    LDBU    *--${xip},$x0        ; Xi[14]
   SHL    $E10000,16,$E10000    ; [pre-shifted] reduction polynomial
   SHL    $FF000000,24,$FF000000    ; upper byte mask
||    BNOP    ghash_loop?
||    MVK    1,B0            ; take a single spin
 
   PACKH2    $H0,$H1,$xia        ; pack H0' and H1's upper bytes
   AND    $H2,$FF000000,$H2u    ; H2's upper byte
   AND    $H3,$FF000000,$H3u    ; H3's upper byte
||    SHRU    $H2u,8,$H2u
   SHRU    $H3u,8,$H3u
||    ZERO    $Z1:$Z0
   SHRU2    $xia,8,$H01u
||    ZERO    $Z3:$Z2
   .endasmfunc
 
   .global    _gcm_ghash_4bit
_gcm_ghash_4bit:
   .asmfunc
   LDDW    *${Htable}[-1],$H1:$H0    ; H.lo
||    SHRU    $len,4,B0        ; reassign len
   LDDW    *${Htable}[-2],$H3:$H2    ; H.hi
||    MV    $Xip,${xip}        ; reassign Xi
||    MVK    15,B1            ; SPLOOPD constant
 
   MVK    0xE1,$E10000
|| [B0]    LDNDW    *${inp}[1],$H1x:$H0x
   MVK    0xFF,$FF000000
|| [B0]    LDNDW    *${inp}++[2],$H3x:$H2x
   SHL    $E10000,16,$E10000    ; [pre-shifted] reduction polynomial
||    LDDW    *${xip}[1],$Z1:$Z0
   SHL    $FF000000,24,$FF000000    ; upper byte mask
||    LDDW    *${xip}[0],$Z3:$Z2
 
   PACKH2    $H0,$H1,$xia        ; pack H0' and H1's upper bytes
   AND    $H2,$FF000000,$H2u    ; H2's upper byte
   AND    $H3,$FF000000,$H3u    ; H3's upper byte
||    SHRU    $H2u,8,$H2u
   SHRU    $H3u,8,$H3u
   SHRU2    $xia,8,$H01u
 
|| [B0]    XOR    $H0x,$Z0,$Z0        ; Xi^=inp
|| [B0]    XOR    $H1x,$Z1,$Z1
   .if    .LITTLE_ENDIAN
   [B0]    XOR    $H2x,$Z2,$Z2
|| [B0]    XOR    $H3x,$Z3,$Z3
|| [B0]    SHRU    $Z1,24,$xia        ; Xi[15], avoid cross-path stall
   STDW    $Z1:$Z0,*${xip}[1]
|| [B0]    SHRU    $Z1,16,$x0        ; Xi[14]
|| [B0]    ZERO    $Z1:$Z0
   .else
   [B0]    XOR    $H2x,$Z2,$Z2
|| [B0]    XOR    $H3x,$Z3,$Z3
|| [B0]    MV    $Z0,$xia        ; Xi[15], avoid cross-path stall
   STDW    $Z1:$Z0,*${xip}[1]
|| [B0] SHRU    $Z0,8,$x0        ; Xi[14]
|| [B0]    ZERO    $Z1:$Z0
   .endif
   STDW    $Z3:$Z2,*${xip}[0]
|| [B0]    ZERO    $Z3:$Z2
|| [B0]    MV    $xia,$x1
   [B0]    ADDK    14,${xip}
 
ghash_loop?:
   SPLOOPD    6            ; 6*16+7
||    MVC    B1,ILC
|| [B0]    SUB    B0,1,B0
||    ZERO    A0
||    ADD    $x1,$x1,$xib        ; SHL    $x1,1,$xib
||    SHL    $x1,1,$xia
___
 
########____________________________
#  0    D2.     M1          M2      |
#  1            M1                  |
#  2            M1          M2      |
#  3        D1. M1          M2      |
#  4        S1. L1                  |
#  5    S2  S1x L1          D2  L2  |____________________________
#  6/0          L1  S1      L2  S2x |D2.     M1          M2      |
#  7/1          L1  S1  D1x S2  M2  |        M1                  |
#  8/2              S1  L1x S2      |        M1          M2      |
#  9/3              S1  L1x         |    D1. M1          M2      |
# 10/4                  D1x         |    S1. L1                  |
# 11/5                              |S2  S1x L1          D2  L2  |____________
# 12/6/0                D1x       __|        L1  S1      L2  S2x |D2.     ....
#    7/1                                     L1  S1  D1x S2  M2  |        ....
#    8/2                                         S1  L1x S2      |        ....
#####...                                         ................|............
$code.=<<___;
   XORMPY    $H0,$xia,$H0x        ; 0    ; H·(Xi[i]<<1)
||    XORMPY    $H01u,$xib,$H01y
|| [A0]    LDBU    *--${xip},$x0
   XORMPY    $H1,$xia,$H1x        ; 1
   XORMPY    $H2,$xia,$H2x        ; 2
||    XORMPY    $H2u,$xib,$H2y
   XORMPY    $H3,$xia,$H3x        ; 3
||    XORMPY    $H3u,$xib,$H3y
||[!A0]    MVK.D    15,A0                ; *--${xip} counter
   XOR.L    $H0x,$Z0,$Z0        ; 4    ; Z^=H·(Xi[i]<<1)
|| [A0]    SUB.S    A0,1,A0
   XOR.L    $H1x,$Z1,$Z1        ; 5
||    AND.D    $H01y,$FF000000,$H0z
||    SWAP2.L    $H01y,$H1y        ;    ; SHL    $H01y,16,$H1y
||    SHL    $x0,1,$xib
||    SHL    $x0,1,$xia
 
   XOR.L    $H2x,$Z2,$Z2        ; 6/0    ; [0,0] in epilogue
||    SHL    $Z0,1,$rem        ;    ; rem=Z<<1
||    SHRMB.S    $Z1,$Z0,$Z0        ;    ; Z>>=8
||    AND.L    $H1y,$FF000000,$H1z
   XOR.L    $H3x,$Z3,$Z3        ; 7/1
||    SHRMB.S    $Z2,$Z1,$Z1
||    XOR.D    $H0z,$Z0,$Z0            ; merge upper byte products
||    AND.S    $H2y,$FF000000,$H2z
||    XORMPY    $E10000,$rem,$res    ;    ; implicit rem&0x1FE
   XOR.L    $H1z,$Z1,$Z1        ; 8/2
||    SHRMB.S    $Z3,$Z2,$Z2
||    AND.S    $H3y,$FF000000,$H3z
   XOR.L    $H2z,$Z2,$Z2        ; 9/3
||    SHRU    $Z3,8,$Z3
   XOR.D    $H3z,$Z3,$Z3        ; 10/4
   NOP                ; 11/5
 
   SPKERNEL 0,2
||    XOR.D    $res,$Z3,$Z3        ; 12/6/0; Z^=res
 
   ; input pre-fetch is possible where D1 slot is available...
   [B0]    LDNDW    *${inp}[1],$H1x:$H0x    ; 8/-
   [B0]    LDNDW    *${inp}++[2],$H3x:$H2x    ; 9/-
   NOP                ; 10/-
   .if    .LITTLE_ENDIAN
   SWAP2    $Z0,$Z1            ; 11/-
||    SWAP4    $Z1,$Z0
   SWAP4    $Z1,$Z1            ; 12/-
||    SWAP2    $Z0,$Z0
   SWAP2    $Z2,$Z3
||    SWAP4    $Z3,$Z2
||[!B0]    BNOP    RA
   SWAP4    $Z3,$Z3
||    SWAP2    $Z2,$Z2
|| [B0]    BNOP    ghash_loop?
   [B0]    XOR    $H0x,$Z0,$Z0        ; Xi^=inp
|| [B0]    XOR    $H1x,$Z1,$Z1
   [B0]    XOR    $H2x,$Z2,$Z2
|| [B0]    XOR    $H3x,$Z3,$Z3
|| [B0]    SHRU    $Z1,24,$xia        ; Xi[15], avoid cross-path stall
   STDW    $Z1:$Z0,*${xip}[1]
|| [B0]    SHRU    $Z1,16,$x0        ; Xi[14]
|| [B0]    ZERO    $Z1:$Z0
   .else
  [!B0]    BNOP    RA            ; 11/-
   [B0]    BNOP    ghash_loop?        ; 12/-
   [B0]    XOR    $H0x,$Z0,$Z0        ; Xi^=inp
|| [B0]    XOR    $H1x,$Z1,$Z1
   [B0]    XOR    $H2x,$Z2,$Z2
|| [B0]    XOR    $H3x,$Z3,$Z3
|| [B0]    MV    $Z0,$xia        ; Xi[15], avoid cross-path stall
   STDW    $Z1:$Z0,*${xip}[1]
|| [B0] SHRU    $Z0,8,$x0        ; Xi[14]
|| [B0]    ZERO    $Z1:$Z0
   .endif
   STDW    $Z3:$Z2,*${xip}[0]
|| [B0]    ZERO    $Z3:$Z2
|| [B0]    MV    $xia,$x1
   [B0]    ADDK    14,${xip}
   .endasmfunc
 
   .sect    .const
   .cstring "GHASH for C64x+, CRYPTOGAMS by <appro\@openssl.org>"
   .align    4
___
 
print $code;
close STDOUT or die "error closing STDOUT: $!";