/*
|
* BK Id: SCCS/s.fec.c 1.30 09/11/02 14:55:08 paulus
|
*/
|
/*
|
* Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
|
* Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
|
*
|
* This version of the driver is specific to the FADS implementation,
|
* since the board contains control registers external to the processor
|
* for the control of the LevelOne LXT970 transceiver. The MPC860T manual
|
* describes connections using the internal parallel port I/O, which
|
* is basically all of Port D.
|
*
|
* Includes support for the following PHYs: QS6612, LXT970, LXT971/2.
|
*
|
* Right now, I am very wasteful with the buffers. I allocate memory
|
* pages and then divide them into 2K frame buffers. This way I know I
|
* have buffers large enough to hold one frame within one buffer descriptor.
|
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
|
* will be much more memory efficient and will easily handle lots of
|
* small packets.
|
*
|
* Much better multiple PHY support by Magnus Damm.
|
* Copyright (c) 2000 Ericsson Radio Systems AB.
|
*
|
* Make use of MII for PHY control configurable.
|
* Some fixes.
|
* Copyright (c) 2000-2002 Wolfgang Denk, DENX Software Engineering.
|
*
|
* Fixes for tx_full condition and relink when using MII.
|
* Support for AMD AM79C874 added.
|
* Thomas Lange, thomas@corelatus.com
|
*
|
* Added code for Multicast support, Frederic Goddeeris, Paul Geerinckx
|
* Copyright (c) 2002 Siemens Atea
|
*
|
* Ported to RTnet from "linuxppc_2_4_devel/arch/ppc/8xx_io/fec.c".
|
* Copyright (c) 2003 Wolfgang Grandegger (wg@denx.de)
|
*/
|
|
#include <linux/kernel.h>
|
#include <linux/module.h>
|
#include <linux/sched.h>
|
#include <linux/string.h>
|
#include <linux/ptrace.h>
|
#include <linux/errno.h>
|
#include <linux/ioport.h>
|
#include <linux/slab.h>
|
#include <linux/interrupt.h>
|
#include <linux/pci.h>
|
#include <linux/init.h>
|
#include <linux/delay.h>
|
#include <linux/netdevice.h>
|
#include <linux/etherdevice.h>
|
#include <linux/skbuff.h>
|
#include <linux/spinlock.h>
|
#include <linux/mii.h>
|
#include <linux/ethtool.h>
|
#include <linux/uaccess.h>
|
|
#include <asm/8xx_immap.h>
|
#include <asm/pgtable.h>
|
#include <asm/mpc8xx.h>
|
#include <asm/irq.h>
|
#include <asm/bitops.h>
|
#include <asm/commproc.h>
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
#error "MDIO for PHY configuration is not yet supported!"
|
#endif
|
|
#include <rtnet_port.h>
|
|
MODULE_AUTHOR("Maintainer: Wolfgang Grandegger <wg@denx.de>");
|
MODULE_DESCRIPTION("RTnet driver for the MPC8xx FEC Ethernet");
|
MODULE_LICENSE("GPL");
|
|
static unsigned int rx_pool_size = 0;
|
MODULE_PARM(rx_pool_size, "i");
|
MODULE_PARM_DESC(rx_pool_size, "Receive buffer pool size");
|
|
#define RT_DEBUG(fmt,args...)
|
|
/* multicast support
|
*/
|
/* #define DEBUG_MULTICAST */
|
|
/* CRC polynomium used by the FEC for the multicast group filtering
|
*/
|
#define FEC_CRC_POLY 0x04C11DB7
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
/* Forward declarations of some structures to support different PHYs
|
*/
|
|
typedef struct {
|
uint mii_data;
|
void (*funct)(uint mii_reg, struct net_device *dev, uint data);
|
} phy_cmd_t;
|
|
typedef struct {
|
uint id;
|
char *name;
|
|
const phy_cmd_t *config;
|
const phy_cmd_t *startup;
|
const phy_cmd_t *ack_int;
|
const phy_cmd_t *shutdown;
|
} phy_info_t;
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
/* The number of Tx and Rx buffers. These are allocated from the page
|
* pool. The code may assume these are power of two, so it is best
|
* to keep them that size.
|
* We don't need to allocate pages for the transmitter. We just use
|
* the skbuffer directly.
|
*/
|
#define FEC_ENET_RX_PAGES 4
|
#define FEC_ENET_RX_FRSIZE 2048
|
#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
|
#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
|
#define TX_RING_SIZE 8 /* Must be power of two */
|
#define TX_RING_MOD_MASK 7 /* for this to work */
|
|
/* Interrupt events/masks.
|
*/
|
#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
|
#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
|
#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
|
#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
|
#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
|
#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
|
#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
|
#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
|
#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
|
#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
|
|
/*
|
*/
|
#define FEC_ECNTRL_PINMUX 0x00000004
|
#define FEC_ECNTRL_ETHER_EN 0x00000002
|
#define FEC_ECNTRL_RESET 0x00000001
|
|
#define FEC_RCNTRL_BC_REJ 0x00000010
|
#define FEC_RCNTRL_PROM 0x00000008
|
#define FEC_RCNTRL_MII_MODE 0x00000004
|
#define FEC_RCNTRL_DRT 0x00000002
|
#define FEC_RCNTRL_LOOP 0x00000001
|
|
#define FEC_TCNTRL_FDEN 0x00000004
|
#define FEC_TCNTRL_HBC 0x00000002
|
#define FEC_TCNTRL_GTS 0x00000001
|
|
/* Delay to wait for FEC reset command to complete (in us)
|
*/
|
#define FEC_RESET_DELAY 50
|
|
/* The FEC stores dest/src/type, data, and checksum for receive packets.
|
*/
|
#define PKT_MAXBUF_SIZE 1518
|
#define PKT_MINBUF_SIZE 64
|
#define PKT_MAXBLR_SIZE 1520
|
|
/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
|
* tx_bd_base always point to the base of the buffer descriptors. The
|
* cur_rx and cur_tx point to the currently available buffer.
|
* The dirty_tx tracks the current buffer that is being sent by the
|
* controller. The cur_tx and dirty_tx are equal under both completely
|
* empty and completely full conditions. The empty/ready indicator in
|
* the buffer descriptor determines the actual condition.
|
*/
|
struct fec_enet_private {
|
/* The addresses of a Tx/Rx-in-place packets/buffers. */
|
struct rtskb *tx_skbuff[TX_RING_SIZE];
|
ushort skb_cur;
|
ushort skb_dirty;
|
|
/* CPM dual port RAM relative addresses.
|
*/
|
cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
|
cbd_t *tx_bd_base;
|
cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
|
cbd_t *dirty_tx; /* The ring entries to be free()ed. */
|
|
/* Virtual addresses for the receive buffers because we can't
|
* do a __va() on them anymore.
|
*/
|
unsigned char *rx_vaddr[RX_RING_SIZE];
|
|
struct net_device_stats stats;
|
uint tx_full;
|
rtdm_lock_t lock;
|
rtdm_irq_t irq_handle;
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
uint phy_id;
|
uint phy_id_done;
|
uint phy_status;
|
uint phy_speed;
|
phy_info_t *phy;
|
struct tq_struct phy_task;
|
|
uint sequence_done;
|
|
uint phy_addr;
|
|
struct timer_list phy_timer_list;
|
u16 old_status;
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
int link;
|
int old_link;
|
int full_duplex;
|
|
};
|
|
static int fec_enet_open(struct rtnet_device *rtev);
|
static int fec_enet_start_xmit(struct rtskb *skb, struct rtnet_device *rtdev);
|
static void fec_enet_tx(struct rtnet_device *rtdev);
|
static void fec_enet_rx(struct rtnet_device *rtdev, int *packets, nanosecs_abs_t *time_stamp);
|
static int fec_enet_interrupt(rtdm_irq_t *irq_handle);
|
static int fec_enet_close(struct rtnet_device *dev);
|
static void fec_restart(struct rtnet_device *rtdev, int duplex);
|
static void fec_stop(struct rtnet_device *rtdev);
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
static void fec_enet_mii(struct net_device *dev);
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
static struct net_device_stats *fec_enet_get_stats(struct rtnet_device *rtdev);
|
#ifdef ORIGINAL_VERSION
|
static void set_multicast_list(struct net_device *dev);
|
#endif /* ORIGINAL_VERSION */
|
|
static struct rtnet_device *rtdev_root = NULL; /* for cleanup */
|
|
static ushort my_enet_addr[3];
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
static int fec_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
|
static int netdev_ethtool_ioctl(struct net_device *dev, void *useraddr);
|
|
static void mdio_callback(uint regval, struct net_device *dev, uint data);
|
static int mdio_read(struct net_device *dev, int phy_id, int location);
|
|
#if defined(CONFIG_FEC_DP83846A)
|
static void mdio_timer_callback(unsigned long data);
|
#endif /* CONFIG_FEC_DP83846A */
|
|
/* MII processing. We keep this as simple as possible. Requests are
|
* placed on the list (if there is room). When the request is finished
|
* by the MII, an optional function may be called.
|
*/
|
typedef struct mii_list {
|
uint mii_regval;
|
void (*mii_func)(uint val, struct net_device *dev, uint data);
|
struct mii_list *mii_next;
|
uint mii_data;
|
} mii_list_t;
|
|
#define NMII 20
|
mii_list_t mii_cmds[NMII];
|
mii_list_t *mii_free;
|
mii_list_t *mii_head;
|
mii_list_t *mii_tail;
|
|
typedef struct mdio_read_data {
|
u16 regval;
|
struct task_struct *sleeping_task;
|
} mdio_read_data_t;
|
|
static int mii_queue(struct net_device *dev, int request,
|
void (*func)(uint, struct net_device *, uint), uint data);
|
static void mii_queue_relink(uint mii_reg, struct net_device *dev, uint data);
|
|
/* Make MII read/write commands for the FEC.
|
*/
|
#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
|
#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
|
(VAL & 0xffff))
|
#define mk_mii_end 0
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
/* Transmitter timeout.
|
*/
|
#define TX_TIMEOUT (2*HZ)
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
/* Register definitions for the PHY.
|
*/
|
|
#define MII_REG_CR 0 /* Control Register */
|
#define MII_REG_SR 1 /* Status Register */
|
#define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
|
#define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
|
#define MII_REG_ANAR 4 /* A-N Advertisement Register */
|
#define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
|
#define MII_REG_ANER 6 /* A-N Expansion Register */
|
#define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
|
#define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
|
|
/* values for phy_status */
|
|
#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
|
#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
|
#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
|
#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
|
#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
|
#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
|
#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
|
|
#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
|
#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
|
#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
|
#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
|
#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
|
#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
|
#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
|
#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
|
static int
|
fec_enet_start_xmit(struct rtskb *skb, struct rtnet_device *rtdev)
|
{
|
struct fec_enet_private *fep;
|
volatile fec_t *fecp;
|
volatile cbd_t *bdp;
|
rtdm_lockctx_t context;
|
|
|
RT_DEBUG(__FUNCTION__": ...\n");
|
|
fep = rtdev->priv;
|
fecp = (volatile fec_t*)rtdev->base_addr;
|
|
if (!fep->link) {
|
/* Link is down or autonegotiation is in progress. */
|
return 1;
|
}
|
|
/* Fill in a Tx ring entry */
|
bdp = fep->cur_tx;
|
|
#ifndef final_version
|
if (bdp->cbd_sc & BD_ENET_TX_READY) {
|
/* Ooops. All transmit buffers are full. Bail out.
|
* This should not happen, since dev->tbusy should be set.
|
*/
|
rtdm_printk("%s: tx queue full!.\n", rtdev->name);
|
return 1;
|
}
|
#endif
|
|
/* Clear all of the status flags.
|
*/
|
bdp->cbd_sc &= ~BD_ENET_TX_STATS;
|
|
/* Set buffer length and buffer pointer.
|
*/
|
bdp->cbd_bufaddr = __pa(skb->data);
|
bdp->cbd_datlen = skb->len;
|
|
/* Save skb pointer.
|
*/
|
fep->tx_skbuff[fep->skb_cur] = skb;
|
|
fep->stats.tx_bytes += skb->len;
|
fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
|
|
rtdm_lock_get_irqsave(&fep->lock, context);
|
|
/* Get and patch time stamp just before the transmission */
|
if (skb->xmit_stamp)
|
*skb->xmit_stamp = cpu_to_be64(rtdm_clock_read() + *skb->xmit_stamp);
|
|
/* Push the data cache so the CPM does not get stale memory
|
* data.
|
*/
|
flush_dcache_range((unsigned long)skb->data,
|
(unsigned long)skb->data + skb->len);
|
|
/* Send it on its way. Tell FEC its ready, interrupt when done,
|
* its the last BD of the frame, and to put the CRC on the end.
|
*/
|
|
bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
|
| BD_ENET_TX_LAST | BD_ENET_TX_TC);
|
|
//rtdev->trans_start = jiffies;
|
|
/* Trigger transmission start */
|
fecp->fec_x_des_active = 0x01000000;
|
|
/* If this was the last BD in the ring, start at the beginning again.
|
*/
|
if (bdp->cbd_sc & BD_ENET_TX_WRAP) {
|
bdp = fep->tx_bd_base;
|
} else {
|
bdp++;
|
}
|
|
if (bdp->cbd_sc & BD_ENET_TX_READY) {
|
rtnetif_stop_queue(rtdev);
|
fep->tx_full = 1;
|
}
|
|
fep->cur_tx = (cbd_t *)bdp;
|
|
rtdm_lock_put_irqrestore(&fep->lock, context);
|
|
return 0;
|
}
|
|
#ifdef ORIGINAL_VERSION
|
static void
|
fec_timeout(struct net_device *dev)
|
{
|
struct fec_enet_private *fep = rtdev->priv;
|
|
if (fep->link || fep->old_link) {
|
/* Link status changed - print timeout message */
|
printk("%s: transmit timed out.\n", rtdev->name);
|
}
|
|
fep->stats.tx_errors++;
|
#ifndef final_version
|
if (fep->link) {
|
int i;
|
cbd_t *bdp;
|
|
printk ("Ring data dump: "
|
"cur_tx %p%s dirty_tx %p cur_rx %p\n",
|
fep->cur_tx,
|
fep->tx_full ? " (full)" : "",
|
fep->dirty_tx,
|
fep->cur_rx);
|
|
bdp = fep->tx_bd_base;
|
printk(" tx: %u buffers\n", TX_RING_SIZE);
|
for (i = 0 ; i < TX_RING_SIZE; i++) {
|
printk(" %08x: %04x %04x %08x\n",
|
(uint) bdp,
|
bdp->cbd_sc,
|
bdp->cbd_datlen,
|
bdp->cbd_bufaddr);
|
bdp++;
|
}
|
|
bdp = fep->rx_bd_base;
|
printk(" rx: %lu buffers\n", RX_RING_SIZE);
|
for (i = 0 ; i < RX_RING_SIZE; i++) {
|
printk(" %08x: %04x %04x %08x\n",
|
(uint) bdp,
|
bdp->cbd_sc,
|
bdp->cbd_datlen,
|
bdp->cbd_bufaddr);
|
bdp++;
|
}
|
}
|
#endif
|
if (!fep->tx_full) {
|
netif_wake_queue(dev);
|
}
|
}
|
#endif /* ORIGINAL_VERSION */
|
|
/* The interrupt handler.
|
* This is called from the MPC core interrupt.
|
*/
|
static int fec_enet_interrupt(rtdm_irq_t *irq_handle)
|
{
|
struct rtnet_device *rtdev = rtdm_irq_get_arg(irq_handle, struct rtnet_device);
|
int packets = 0;
|
volatile fec_t *fecp;
|
uint int_events;
|
nanosecs_abs_t time_stamp = rtdm_clock_read();
|
|
|
fecp = (volatile fec_t*)rtdev->base_addr;
|
|
/* Get the interrupt events that caused us to be here.
|
*/
|
while ((int_events = fecp->fec_ievent) != 0) {
|
fecp->fec_ievent = int_events;
|
if ((int_events & (FEC_ENET_HBERR | FEC_ENET_BABR |
|
FEC_ENET_BABT | FEC_ENET_EBERR)) != 0) {
|
rtdm_printk("FEC ERROR %x\n", int_events);
|
}
|
|
/* Handle receive event in its own function.
|
*/
|
if (int_events & FEC_ENET_RXF) {
|
fec_enet_rx(rtdev, &packets, &time_stamp);
|
}
|
|
/* Transmit OK, or non-fatal error. Update the buffer
|
descriptors. FEC handles all errors, we just discover
|
them as part of the transmit process.
|
*/
|
if (int_events & FEC_ENET_TXF) {
|
fec_enet_tx(rtdev);
|
}
|
|
if (int_events & FEC_ENET_MII) {
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
fec_enet_mii(dev);
|
#else
|
rtdm_printk("%s[%d] %s: unexpected FEC_ENET_MII event\n",
|
__FILE__,__LINE__,__FUNCTION__);
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
}
|
|
}
|
|
if (packets > 0)
|
rt_mark_stack_mgr(rtdev);
|
return RTDM_IRQ_HANDLED;
|
}
|
|
|
static void
|
fec_enet_tx(struct rtnet_device *rtdev)
|
{
|
struct rtskb *skb;
|
struct fec_enet_private *fep = rtdev->priv;
|
volatile cbd_t *bdp;
|
rtdm_lock_get(&fep->lock);
|
bdp = fep->dirty_tx;
|
|
while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) {
|
if (bdp == fep->cur_tx && fep->tx_full == 0) break;
|
|
skb = fep->tx_skbuff[fep->skb_dirty];
|
/* Check for errors. */
|
if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
|
BD_ENET_TX_RL | BD_ENET_TX_UN |
|
BD_ENET_TX_CSL)) {
|
fep->stats.tx_errors++;
|
if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
|
fep->stats.tx_heartbeat_errors++;
|
if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
|
fep->stats.tx_window_errors++;
|
if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
|
fep->stats.tx_aborted_errors++;
|
if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
|
fep->stats.tx_fifo_errors++;
|
if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
|
fep->stats.tx_carrier_errors++;
|
} else {
|
fep->stats.tx_packets++;
|
}
|
|
#ifndef final_version
|
if (bdp->cbd_sc & BD_ENET_TX_READY)
|
rtdm_printk("HEY! Enet xmit interrupt and TX_READY.\n");
|
#endif
|
/* Deferred means some collisions occurred during transmit,
|
* but we eventually sent the packet OK.
|
*/
|
if (bdp->cbd_sc & BD_ENET_TX_DEF)
|
fep->stats.collisions++;
|
|
/* Free the sk buffer associated with this last transmit.
|
*/
|
dev_kfree_rtskb(skb);
|
fep->tx_skbuff[fep->skb_dirty] = NULL;
|
fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
|
|
/* Update pointer to next buffer descriptor to be transmitted.
|
*/
|
if (bdp->cbd_sc & BD_ENET_TX_WRAP)
|
bdp = fep->tx_bd_base;
|
else
|
bdp++;
|
|
/* Since we have freed up a buffer, the ring is no longer
|
* full.
|
*/
|
if (fep->tx_full) {
|
fep->tx_full = 0;
|
if (rtnetif_queue_stopped(rtdev))
|
rtnetif_wake_queue(rtdev);
|
}
|
}
|
fep->dirty_tx = (cbd_t *)bdp;
|
rtdm_lock_put(&fep->lock);
|
}
|
|
|
/* During a receive, the cur_rx points to the current incoming buffer.
|
* When we update through the ring, if the next incoming buffer has
|
* not been given to the system, we just set the empty indicator,
|
* effectively tossing the packet.
|
*/
|
static void
|
fec_enet_rx(struct rtnet_device *rtdev, int *packets, nanosecs_abs_t *time_stamp)
|
{
|
struct fec_enet_private *fep;
|
volatile fec_t *fecp;
|
volatile cbd_t *bdp;
|
struct rtskb *skb;
|
ushort pkt_len;
|
__u8 *data;
|
|
fep = rtdev->priv;
|
fecp = (volatile fec_t*)rtdev->base_addr;
|
|
/* First, grab all of the stats for the incoming packet.
|
* These get messed up if we get called due to a busy condition.
|
*/
|
bdp = fep->cur_rx;
|
|
while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) {
|
|
#ifndef final_version
|
/* Since we have allocated space to hold a complete frame,
|
* the last indicator should be set.
|
*/
|
if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0)
|
rtdm_printk("FEC ENET: rcv is not +last\n");
|
#endif
|
|
/* Check for errors. */
|
if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
|
BD_ENET_RX_CR | BD_ENET_RX_OV)) {
|
fep->stats.rx_errors++;
|
if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
|
/* Frame too long or too short. */
|
fep->stats.rx_length_errors++;
|
}
|
if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
|
fep->stats.rx_frame_errors++;
|
if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
|
fep->stats.rx_crc_errors++;
|
if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
|
fep->stats.rx_crc_errors++;
|
}
|
|
/* Report late collisions as a frame error.
|
* On this error, the BD is closed, but we don't know what we
|
* have in the buffer. So, just drop this frame on the floor.
|
*/
|
if (bdp->cbd_sc & BD_ENET_RX_CL) {
|
fep->stats.rx_errors++;
|
fep->stats.rx_frame_errors++;
|
goto rx_processing_done;
|
}
|
|
/* Process the incoming frame.
|
*/
|
fep->stats.rx_packets++;
|
pkt_len = bdp->cbd_datlen;
|
fep->stats.rx_bytes += pkt_len;
|
data = fep->rx_vaddr[bdp - fep->rx_bd_base];
|
|
/* This does 16 byte alignment, exactly what we need.
|
* The packet length includes FCS, but we don't want to
|
* include that when passing upstream as it messes up
|
* bridging applications.
|
*/
|
skb = rtnetdev_alloc_rtskb(rtdev, pkt_len-4);
|
|
if (skb == NULL) {
|
rtdm_printk("%s: Memory squeeze, dropping packet.\n", rtdev->name);
|
fep->stats.rx_dropped++;
|
} else {
|
rtskb_put(skb,pkt_len-4); /* Make room */
|
memcpy(skb->data, data, pkt_len-4);
|
skb->protocol=rt_eth_type_trans(skb,rtdev);
|
skb->time_stamp = *time_stamp;
|
rtnetif_rx(skb);
|
(*packets)++;
|
}
|
rx_processing_done:
|
|
/* Clear the status flags for this buffer.
|
*/
|
bdp->cbd_sc &= ~BD_ENET_RX_STATS;
|
|
/* Mark the buffer empty.
|
*/
|
bdp->cbd_sc |= BD_ENET_RX_EMPTY;
|
|
/* Update BD pointer to next entry.
|
*/
|
if (bdp->cbd_sc & BD_ENET_RX_WRAP)
|
bdp = fep->rx_bd_base;
|
else
|
bdp++;
|
|
/* Doing this here will keep the FEC running while we process
|
* incoming frames. On a heavily loaded network, we should be
|
* able to keep up at the expense of system resources.
|
*/
|
fecp->fec_r_des_active = 0x01000000;
|
} /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */
|
fep->cur_rx = (cbd_t *)bdp;
|
|
}
|
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
static void
|
fec_enet_mii(struct net_device *dev)
|
{
|
struct fec_enet_private *fep;
|
volatile fec_t *ep;
|
mii_list_t *mip;
|
uint mii_reg;
|
|
fep = (struct fec_enet_private *)dev->priv;
|
ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
|
mii_reg = ep->fec_mii_data;
|
|
if ((mip = mii_head) == NULL) {
|
printk("MII and no head!\n");
|
return;
|
}
|
|
if (mip->mii_func != NULL)
|
(*(mip->mii_func))(mii_reg, dev, mip->mii_data);
|
|
mii_head = mip->mii_next;
|
mip->mii_next = mii_free;
|
mii_free = mip;
|
|
if ((mip = mii_head) != NULL) {
|
ep->fec_mii_data = mip->mii_regval;
|
}
|
}
|
|
static int
|
mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *, uint), uint data)
|
{
|
struct fec_enet_private *fep;
|
unsigned long flags;
|
mii_list_t *mip;
|
int retval;
|
|
/* Add PHY address to register command.
|
*/
|
fep = dev->priv;
|
regval |= fep->phy_addr << 23;
|
|
retval = 0;
|
|
save_flags(flags);
|
cli();
|
|
if ((mip = mii_free) != NULL) {
|
mii_free = mip->mii_next;
|
mip->mii_regval = regval;
|
mip->mii_func = func;
|
mip->mii_next = NULL;
|
mip->mii_data = data;
|
if (mii_head) {
|
mii_tail->mii_next = mip;
|
mii_tail = mip;
|
} else {
|
mii_head = mii_tail = mip;
|
(&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_mii_data = regval;
|
}
|
} else {
|
retval = 1;
|
}
|
|
restore_flags(flags);
|
|
return(retval);
|
}
|
|
static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
|
{
|
int k;
|
|
if(!c)
|
return;
|
|
for(k = 0; (c+k)->mii_data != mk_mii_end; k++)
|
mii_queue(dev, (c+k)->mii_data, (c+k)->funct, 0);
|
}
|
|
static void mii_parse_sr(uint mii_reg, struct net_device *dev, uint data)
|
{
|
volatile struct fec_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
|
|
if (mii_reg & 0x0004)
|
s |= PHY_STAT_LINK;
|
if (mii_reg & 0x0010)
|
s |= PHY_STAT_FAULT;
|
if (mii_reg & 0x0020)
|
s |= PHY_STAT_ANC;
|
|
fep->phy_status = s;
|
fep->link = (s & PHY_STAT_LINK) ? 1 : 0;
|
}
|
|
static void mii_parse_cr(uint mii_reg, struct net_device *dev, uint data)
|
{
|
volatile struct fec_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);
|
|
if (mii_reg & 0x1000)
|
s |= PHY_CONF_ANE;
|
if (mii_reg & 0x4000)
|
s |= PHY_CONF_LOOP;
|
|
fep->phy_status = s;
|
}
|
|
static void mii_parse_anar(uint mii_reg, struct net_device *dev, uint data)
|
{
|
volatile struct fec_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
s &= ~(PHY_CONF_SPMASK);
|
|
if (mii_reg & 0x0020)
|
s |= PHY_CONF_10HDX;
|
if (mii_reg & 0x0040)
|
s |= PHY_CONF_10FDX;
|
if (mii_reg & 0x0080)
|
s |= PHY_CONF_100HDX;
|
if (mii_reg & 0x0100)
|
s |= PHY_CONF_100FDX;
|
|
fep->phy_status = s;
|
}
|
|
/* ------------------------------------------------------------------------- */
|
/* The Level one LXT970 is used by many boards */
|
|
#ifdef CONFIG_FEC_LXT970
|
|
#define MII_LXT970_MIRROR 16 /* Mirror register */
|
#define MII_LXT970_IER 17 /* Interrupt Enable Register */
|
#define MII_LXT970_ISR 18 /* Interrupt Status Register */
|
#define MII_LXT970_CONFIG 19 /* Configuration Register */
|
#define MII_LXT970_CSR 20 /* Chip Status Register */
|
|
static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev, uint data)
|
{
|
volatile struct fec_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
s &= ~(PHY_STAT_SPMASK);
|
|
if (mii_reg & 0x0800) {
|
if (mii_reg & 0x1000)
|
s |= PHY_STAT_100FDX;
|
else
|
s |= PHY_STAT_100HDX;
|
}
|
else {
|
if (mii_reg & 0x1000)
|
s |= PHY_STAT_10FDX;
|
else
|
s |= PHY_STAT_10HDX;
|
}
|
|
fep->phy_status = s;
|
}
|
|
static phy_info_t phy_info_lxt970 = {
|
0x07810000,
|
"LXT970",
|
|
(const phy_cmd_t []) { /* config */
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* startup - enable interrupts */
|
{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
|
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* ack_int */
|
/* read SR and ISR to acknowledge */
|
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
{ mk_mii_read(MII_LXT970_ISR), NULL },
|
|
/* find out the current status */
|
|
{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* shutdown - disable interrupts */
|
{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
|
{ mk_mii_end, }
|
},
|
};
|
|
#endif /* CONFIG_FEC_LXT970 */
|
|
/* ------------------------------------------------------------------------- */
|
/* The Level one LXT971 is used on some of my custom boards */
|
|
#ifdef CONFIG_FEC_LXT971
|
|
/* register definitions for the 971 */
|
|
#define MII_LXT971_PCR 16 /* Port Control Register */
|
#define MII_LXT971_SR2 17 /* Status Register 2 */
|
#define MII_LXT971_IER 18 /* Interrupt Enable Register */
|
#define MII_LXT971_ISR 19 /* Interrupt Status Register */
|
#define MII_LXT971_LCR 20 /* LED Control Register */
|
#define MII_LXT971_TCR 30 /* Transmit Control Register */
|
|
/*
|
* I had some nice ideas of running the MDIO faster...
|
* The 971 should support 8MHz and I tried it, but things acted really
|
* weird, so 2.5 MHz ought to be enough for anyone...
|
*/
|
|
static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev, uint data)
|
{
|
volatile struct fec_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
s &= ~(PHY_STAT_SPMASK);
|
|
if (mii_reg & 0x4000) {
|
if (mii_reg & 0x0200)
|
s |= PHY_STAT_100FDX;
|
else
|
s |= PHY_STAT_100HDX;
|
}
|
else {
|
if (mii_reg & 0x0200)
|
s |= PHY_STAT_10FDX;
|
else
|
s |= PHY_STAT_10HDX;
|
}
|
if (mii_reg & 0x0008)
|
s |= PHY_STAT_FAULT;
|
|
fep->phy_status = s;
|
}
|
|
static phy_info_t phy_info_lxt971 = {
|
0x0001378e,
|
"LXT971",
|
|
(const phy_cmd_t []) { /* config */
|
// { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* startup - enable interrupts */
|
{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
|
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
|
|
/* Somehow does the 971 tell me that the link is down
|
* the first read after power-up.
|
* read here to get a valid value in ack_int */
|
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* ack_int */
|
/* find out the current status */
|
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
|
|
/* we only need to read ISR to acknowledge */
|
|
{ mk_mii_read(MII_LXT971_ISR), NULL },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* shutdown - disable interrupts */
|
{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
|
{ mk_mii_end, }
|
},
|
};
|
|
#endif /* CONFIG_FEC_LXT971 */
|
|
|
/* ------------------------------------------------------------------------- */
|
/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
|
|
#ifdef CONFIG_FEC_QS6612
|
|
/* register definitions */
|
|
#define MII_QS6612_MCR 17 /* Mode Control Register */
|
#define MII_QS6612_FTR 27 /* Factory Test Register */
|
#define MII_QS6612_MCO 28 /* Misc. Control Register */
|
#define MII_QS6612_ISR 29 /* Interrupt Source Register */
|
#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
|
#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
|
|
static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev, uint data)
|
{
|
volatile struct fec_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
s &= ~(PHY_STAT_SPMASK);
|
|
switch((mii_reg >> 2) & 7) {
|
case 1: s |= PHY_STAT_10HDX; break;
|
case 2: s |= PHY_STAT_100HDX; break;
|
case 5: s |= PHY_STAT_10FDX; break;
|
case 6: s |= PHY_STAT_100FDX; break;
|
}
|
|
fep->phy_status = s;
|
}
|
|
static phy_info_t phy_info_qs6612 = {
|
0x00181440,
|
"QS6612",
|
|
(const phy_cmd_t []) { /* config */
|
// { mk_mii_write(MII_REG_ANAR, 0x061), NULL }, /* 10 Mbps */
|
|
/* The PHY powers up isolated on the RPX,
|
* so send a command to allow operation.
|
*/
|
|
{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
|
|
/* parse cr and anar to get some info */
|
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* startup - enable interrupts */
|
{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
|
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* ack_int */
|
|
/* we need to read ISR, SR and ANER to acknowledge */
|
|
{ mk_mii_read(MII_QS6612_ISR), NULL },
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
{ mk_mii_read(MII_REG_ANER), NULL },
|
|
/* read pcr to get info */
|
|
{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* shutdown - disable interrupts */
|
{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
|
{ mk_mii_end, }
|
},
|
};
|
|
#endif /* CONFIG_FEC_QS6612 */
|
|
/* ------------------------------------------------------------------------- */
|
/* The Advanced Micro Devices AM79C874 is used on the ICU862 */
|
|
#ifdef CONFIG_FEC_AM79C874
|
|
/* register definitions for the 79C874 */
|
|
#define MII_AM79C874_MFR 16 /* Miscellaneous Features Register */
|
#define MII_AM79C874_ICSR 17 /* Interrupt Control/Status Register */
|
#define MII_AM79C874_DR 18 /* Diagnostic Register */
|
#define MII_AM79C874_PMLR 19 /* Power Management & Loopback Register */
|
#define MII_AM79C874_MCR 21 /* Mode Control Register */
|
#define MII_AM79C874_DC 23 /* Disconnect Counter */
|
#define MII_AM79C874_REC 24 /* Receiver Error Counter */
|
|
static void mii_parse_amd79c874_dr(uint mii_reg, struct net_device *dev, uint data)
|
{
|
volatile struct fec_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
s &= ~(PHY_STAT_SPMASK);
|
|
/* Register 18: Bit 10 is data rate, 11 is Duplex */
|
switch ((mii_reg >> 10) & 3) {
|
case 0: s |= PHY_STAT_10HDX; break;
|
case 1: s |= PHY_STAT_100HDX; break;
|
case 2: s |= PHY_STAT_10FDX; break;
|
case 3: s |= PHY_STAT_100FDX; break;
|
}
|
|
fep->phy_status = s;
|
}
|
|
static phy_info_t phy_info_amd79c874 = {
|
0x00022561,
|
"AM79C874",
|
|
(const phy_cmd_t []) { /* config */
|
// { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* startup - enable interrupts */
|
{ mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
|
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* ack_int */
|
/* find out the current status */
|
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
{ mk_mii_read(MII_AM79C874_DR), mii_parse_amd79c874_dr },
|
|
/* we only need to read ICSR to acknowledge */
|
|
{ mk_mii_read(MII_AM79C874_ICSR), NULL },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* shutdown - disable interrupts */
|
{ mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
|
{ mk_mii_end, }
|
},
|
};
|
|
#endif /* CONFIG_FEC_AM79C874 */
|
|
/* -------------------------------------------------------------------- */
|
/* The National Semiconductor DP83843BVJE is used on a Mediatrix board */
|
/* -------------------------------------------------------------------- */
|
|
#ifdef CONFIG_FEC_DP83843
|
|
/* Register definitions */
|
#define MII_DP83843_PHYSTS 0x10 /* PHY Status Register */
|
#define MII_DP83843_MIPSCR 0x11 /* Specific Status Register */
|
#define MII_DP83843_MIPGSR 0x12 /* Generic Status Register */
|
|
static void mii_parse_dp83843_physts(uint mii_reg, struct net_device *dev, uint data)
|
{
|
volatile struct fec_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
s &= ~(PHY_STAT_SPMASK);
|
|
if (mii_reg & 0x0002)
|
{
|
if (mii_reg & 0x0004)
|
s |= PHY_STAT_10FDX;
|
else
|
s |= PHY_STAT_10HDX;
|
}
|
else
|
{
|
if (mii_reg & 0x0004)
|
s |= PHY_STAT_100FDX;
|
else
|
s |= PHY_STAT_100HDX;
|
}
|
|
fep->phy_status = s;
|
}
|
|
static phy_info_t phy_info_dp83843 = {
|
0x020005c1,
|
"DP83843BVJE",
|
|
(const phy_cmd_t []) { /* config */
|
{ mk_mii_write(MII_REG_ANAR, 0x01E1), NULL }, /* Auto-Negociation Register Control set to */
|
/* auto-negociate 10/100MBps, Half/Full duplex */
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* startup */
|
{ mk_mii_write(MII_DP83843_MIPSCR, 0x0002), NULL }, /* Enable interrupts */
|
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* Enable and Restart Auto-Negotiation */
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
{ mk_mii_read(MII_DP83843_PHYSTS), mii_parse_dp83843_physts },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* ack_int */
|
{ mk_mii_read(MII_DP83843_MIPGSR), NULL }, /* Acknowledge interrupts */
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr }, /* Find out the current status */
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
{ mk_mii_read(MII_DP83843_PHYSTS), mii_parse_dp83843_physts },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* shutdown - disable interrupts */
|
{ mk_mii_end, }
|
}
|
};
|
|
#endif /* CONFIG_FEC_DP83843 */
|
|
|
/* ----------------------------------------------------------------- */
|
/* The National Semiconductor DP83846A is used on a Mediatrix board */
|
/* ----------------------------------------------------------------- */
|
|
#ifdef CONFIG_FEC_DP83846A
|
|
/* Register definitions */
|
#define MII_DP83846A_PHYSTS 0x10 /* PHY Status Register */
|
|
static void mii_parse_dp83846a_physts(uint mii_reg, struct net_device *dev, uint data)
|
{
|
volatile struct fec_enet_private *fep = (struct fec_enet_private *)dev->priv;
|
uint s = fep->phy_status;
|
int link_change_mask;
|
|
s &= ~(PHY_STAT_SPMASK);
|
|
if (mii_reg & 0x0002) {
|
if (mii_reg & 0x0004)
|
s |= PHY_STAT_10FDX;
|
else
|
s |= PHY_STAT_10HDX;
|
}
|
else {
|
if (mii_reg & 0x0004)
|
s |= PHY_STAT_100FDX;
|
else
|
s |= PHY_STAT_100HDX;
|
}
|
|
fep->phy_status = s;
|
|
link_change_mask = PHY_STAT_LINK | PHY_STAT_10FDX | PHY_STAT_10HDX | PHY_STAT_100FDX | PHY_STAT_100HDX;
|
if(fep->old_status != (link_change_mask & s))
|
{
|
fep->old_status = (link_change_mask & s);
|
mii_queue_relink(mii_reg, dev, 0);
|
}
|
}
|
|
static phy_info_t phy_info_dp83846a = {
|
0x020005c2,
|
"DP83846A",
|
|
(const phy_cmd_t []) { /* config */
|
{ mk_mii_write(MII_REG_ANAR, 0x01E1), NULL }, /* Auto-Negociation Register Control set to */
|
/* auto-negociate 10/100MBps, Half/Full duplex */
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* startup */
|
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* Enable and Restart Auto-Negotiation */
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
{ mk_mii_read(MII_DP83846A_PHYSTS), mii_parse_dp83846a_physts },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* ack_int */
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
{ mk_mii_read(MII_DP83846A_PHYSTS), mii_parse_dp83846a_physts },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* shutdown - disable interrupts */
|
{ mk_mii_end, }
|
}
|
};
|
|
#endif /* CONFIG_FEC_DP83846A */
|
|
|
static phy_info_t *phy_info[] = {
|
|
#ifdef CONFIG_FEC_LXT970
|
&phy_info_lxt970,
|
#endif /* CONFIG_FEC_LXT970 */
|
|
#ifdef CONFIG_FEC_LXT971
|
&phy_info_lxt971,
|
#endif /* CONFIG_FEC_LXT971 */
|
|
#ifdef CONFIG_FEC_QS6612
|
&phy_info_qs6612,
|
#endif /* CONFIG_FEC_QS6612 */
|
|
#ifdef CONFIG_FEC_AM79C874
|
&phy_info_amd79c874,
|
#endif /* CONFIG_FEC_AM79C874 */
|
|
#ifdef CONFIG_FEC_DP83843
|
&phy_info_dp83843,
|
#endif /* CONFIG_FEC_DP83843 */
|
|
#ifdef CONFIG_FEC_DP83846A
|
&phy_info_dp83846a,
|
#endif /* CONFIG_FEC_DP83846A */
|
|
NULL
|
};
|
|
static void mii_display_status(struct net_device *dev)
|
{
|
volatile struct fec_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
if (!fep->link && !fep->old_link) {
|
/* Link is still down - don't print anything */
|
return;
|
}
|
|
printk("%s: status: ", dev->name);
|
|
if (!fep->link) {
|
printk("link down");
|
} else {
|
printk("link up");
|
|
switch(s & PHY_STAT_SPMASK) {
|
case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break;
|
case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break;
|
case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break;
|
case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break;
|
default:
|
printk(", Unknown speed/duplex");
|
}
|
|
if (s & PHY_STAT_ANC)
|
printk(", auto-negotiation complete");
|
}
|
|
if (s & PHY_STAT_FAULT)
|
printk(", remote fault");
|
|
printk(".\n");
|
}
|
|
static void mii_display_config(struct net_device *dev)
|
{
|
volatile struct fec_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
printk("%s: config: auto-negotiation ", dev->name);
|
|
if (s & PHY_CONF_ANE)
|
printk("on");
|
else
|
printk("off");
|
|
if (s & PHY_CONF_100FDX)
|
printk(", 100FDX");
|
if (s & PHY_CONF_100HDX)
|
printk(", 100HDX");
|
if (s & PHY_CONF_10FDX)
|
printk(", 10FDX");
|
if (s & PHY_CONF_10HDX)
|
printk(", 10HDX");
|
if (!(s & PHY_CONF_SPMASK))
|
printk(", No speed/duplex selected?");
|
|
if (s & PHY_CONF_LOOP)
|
printk(", loopback enabled");
|
|
printk(".\n");
|
|
fep->sequence_done = 1;
|
}
|
|
static void mii_relink(struct net_device *dev)
|
{
|
struct fec_enet_private *fep = dev->priv;
|
int duplex;
|
|
fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
|
mii_display_status(dev);
|
fep->old_link = fep->link;
|
|
if (fep->link) {
|
duplex = 0;
|
if (fep->phy_status
|
& (PHY_STAT_100FDX | PHY_STAT_10FDX))
|
duplex = 1;
|
fec_restart(dev, duplex);
|
|
if (netif_queue_stopped(dev)) {
|
netif_wake_queue(dev);
|
}
|
} else {
|
netif_stop_queue(dev);
|
fec_stop(dev);
|
}
|
}
|
|
static void mii_queue_relink(uint mii_reg, struct net_device *dev, uint data)
|
{
|
struct fec_enet_private *fep = dev->priv;
|
|
fep->phy_task.routine = (void *)mii_relink;
|
fep->phy_task.data = dev;
|
schedule_task(&fep->phy_task);
|
}
|
|
static void mii_queue_config(uint mii_reg, struct net_device *dev, uint data)
|
{
|
struct fec_enet_private *fep = dev->priv;
|
|
fep->phy_task.routine = (void *)mii_display_config;
|
fep->phy_task.data = dev;
|
schedule_task(&fep->phy_task);
|
}
|
|
|
|
phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_REG_CR), mii_queue_relink },
|
{ mk_mii_end, } };
|
phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_REG_CR), mii_queue_config },
|
{ mk_mii_end, } };
|
|
|
|
/* Read remainder of PHY ID.
|
*/
|
static void
|
mii_discover_phy3(uint mii_reg, struct net_device *dev, uint data)
|
{
|
struct fec_enet_private *fep;
|
int i;
|
|
fep = dev->priv;
|
fep->phy_id |= (mii_reg & 0xffff);
|
|
for(i = 0; phy_info[i]; i++)
|
if(phy_info[i]->id == (fep->phy_id >> 4))
|
break;
|
|
if(!phy_info[i])
|
panic("%s: PHY id 0x%08x is not supported!\n",
|
dev->name, fep->phy_id);
|
|
fep->phy = phy_info[i];
|
fep->phy_id_done = 1;
|
|
printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
|
dev->name, fep->phy_addr, fep->phy->name, fep->phy_id);
|
}
|
|
/* Scan all of the MII PHY addresses looking for someone to respond
|
* with a valid ID. This usually happens quickly.
|
*/
|
static void
|
mii_discover_phy(uint mii_reg, struct net_device *dev, uint data)
|
{
|
struct fec_enet_private *fep;
|
uint phytype;
|
|
fep = dev->priv;
|
|
if ((phytype = (mii_reg & 0xffff)) != 0xffff) {
|
|
/* Got first part of ID, now get remainder.
|
*/
|
fep->phy_id = phytype << 16;
|
mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), mii_discover_phy3, 0);
|
} else {
|
fep->phy_addr++;
|
if (fep->phy_addr < 32) {
|
mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
|
mii_discover_phy, 0);
|
} else {
|
printk("fec: No PHY device found.\n");
|
}
|
}
|
}
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
/* This interrupt occurs when the PHY detects a link change.
|
*/
|
static void
|
#ifdef CONFIG_RPXCLASSIC
|
mii_link_interrupt(void *dev_id)
|
#else
|
mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
|
#endif
|
{
|
struct net_device *dev = dev_id;
|
struct fec_enet_private *fep = dev->priv;
|
volatile immap_t *immap = (immap_t *)IMAP_ADDR;
|
volatile fec_t *fecp = &(immap->im_cpm.cp_fec);
|
unsigned int ecntrl = fecp->fec_ecntrl;
|
|
/*
|
* Acknowledge the interrupt if possible. If we have not
|
* found the PHY yet we can't process or acknowledge the
|
* interrupt now. Instead we ignore this interrupt for now,
|
* which we can do since it is edge triggered. It will be
|
* acknowledged later by fec_enet_open().
|
*/
|
if (fep->phy) {
|
/*
|
* We need the FEC enabled to access the MII
|
*/
|
if ((ecntrl & FEC_ECNTRL_ETHER_EN) == 0) {
|
fecp->fec_ecntrl |= FEC_ECNTRL_ETHER_EN;
|
}
|
|
mii_do_cmd(dev, fep->phy->ack_int);
|
mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
|
|
if ((ecntrl & FEC_ECNTRL_ETHER_EN) == 0) {
|
fecp->fec_ecntrl = ecntrl; /* restore old settings */
|
}
|
}
|
|
}
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
static int
|
fec_enet_open(struct rtnet_device *rtdev)
|
{
|
struct fec_enet_private *fep = rtdev->priv;
|
|
/* I should reset the ring buffers here, but I don't yet know
|
* a simple way to do that.
|
*/
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
fep->sequence_done = 0;
|
fep->link = 0;
|
|
if (fep->phy) {
|
mii_do_cmd(dev, fep->phy->config);
|
mii_do_cmd(dev, phy_cmd_config); /* display configuration */
|
while(!fep->sequence_done)
|
schedule();
|
|
mii_do_cmd(dev, fep->phy->startup);
|
|
#if defined(CONFIG_XENO_DRIVERS_NET_USE_MDIO) && defined(CONFIG_FEC_DP83846A)
|
if(fep->phy == &phy_info_dp83846a)
|
{
|
/* Initializing timers
|
*/
|
init_timer( &fep->phy_timer_list );
|
|
/* Starting timer for periodic link status check
|
* After 100 milli-seconds, mdio_timer_callback function is called.
|
*/
|
fep->phy_timer_list.expires = jiffies + (100 * HZ / 1000);
|
fep->phy_timer_list.data = (unsigned long)dev;
|
fep->phy_timer_list.function = mdio_timer_callback;
|
add_timer( &fep->phy_timer_list );
|
}
|
|
#if defined(CONFIG_IP_PNP)
|
rtdm_printk("%s: Waiting for the link to be up...\n", rtdev->name);
|
|
while(fep->link == 0 || ((((volatile fec_t*)rtdev->base_addr)->fec_ecntrl & FEC_ECNTRL_ETHER_EN) == 0))
|
{
|
schedule();
|
}
|
#endif /* CONFIG_IP_PNP */
|
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO && CONFIG_FEC_DP83846A */
|
|
netif_start_queue(dev);
|
return 0; /* Success */
|
}
|
return -ENODEV; /* No PHY we understand */
|
#else /* !CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
fep->link = 1;
|
rtnetif_start_queue(rtdev);
|
|
return 0; /* Success */
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
}
|
|
static int
|
fec_enet_close(struct rtnet_device *rtdev)
|
{
|
/* Don't know what to do yet.
|
*/
|
rtnetif_stop_queue(rtdev);
|
|
fec_stop(rtdev);
|
|
return 0;
|
}
|
|
static struct net_device_stats *fec_enet_get_stats(struct rtnet_device *rtdev)
|
{
|
struct fec_enet_private *fep = (struct fec_enet_private *)rtdev->priv;
|
|
return &fep->stats;
|
}
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
|
#if defined(CONFIG_FEC_DP83846A)
|
/* Execute the ack_int command set and schedules next timer call back. */
|
static void mdio_timer_callback(unsigned long data)
|
{
|
struct net_device *dev = (struct net_device *)data;
|
struct fec_enet_private *fep = (struct fec_enet_private *)(dev->priv);
|
mii_do_cmd(dev, fep->phy->ack_int);
|
|
if(fep->link == 0)
|
{
|
fep->phy_timer_list.expires = jiffies + (100 * HZ / 1000); /* Sleep for 100ms */
|
}
|
else
|
{
|
fep->phy_timer_list.expires = jiffies + (1 * HZ); /* Sleep for 1 sec. */
|
}
|
add_timer( &fep->phy_timer_list );
|
}
|
#endif /* CONFIG_FEC_DP83846A */
|
|
static void mdio_callback(uint regval, struct net_device *dev, uint data)
|
{
|
mdio_read_data_t* mrd = (mdio_read_data_t *)data;
|
mrd->regval = 0xFFFF & regval;
|
wake_up_process(mrd->sleeping_task);
|
}
|
|
static int mdio_read(struct net_device *dev, int phy_id, int location)
|
{
|
uint retval;
|
mdio_read_data_t* mrd = (mdio_read_data_t *)kmalloc(sizeof(*mrd), GFP_KERNEL);
|
|
mrd->sleeping_task = current;
|
set_current_state(TASK_INTERRUPTIBLE);
|
mii_queue(dev, mk_mii_read(location), mdio_callback, (unsigned int) mrd);
|
schedule();
|
|
retval = mrd->regval;
|
|
kfree(mrd);
|
|
return retval;
|
}
|
|
void mdio_write(struct net_device *dev, int phy_id, int location, int value)
|
{
|
mii_queue(dev, mk_mii_write(location, value), NULL, 0);
|
}
|
|
static int fec_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
|
{
|
struct fec_enet_private *cep = (struct fec_enet_private *)dev->priv;
|
struct mii_ioctl_data *data = (struct mii_ioctl_data *)&rq->ifr_data;
|
|
int phy = cep->phy_addr & 0x1f;
|
int retval;
|
|
if (data == NULL)
|
{
|
retval = -EINVAL;
|
}
|
else
|
{
|
switch(cmd)
|
{
|
case SIOCETHTOOL:
|
return netdev_ethtool_ioctl(dev, (void*)rq->ifr_data);
|
break;
|
|
case SIOCGMIIPHY: /* Get address of MII PHY in use. */
|
case SIOCDEVPRIVATE: /* for binary compat, remove in 2.5 */
|
data->phy_id = phy;
|
|
case SIOCGMIIREG: /* Read MII PHY register. */
|
case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */
|
data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
|
retval = 0;
|
break;
|
|
case SIOCSMIIREG: /* Write MII PHY register. */
|
case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */
|
if (!capable(CAP_NET_ADMIN))
|
{
|
retval = -EPERM;
|
}
|
else
|
{
|
mdio_write(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
|
retval = 0;
|
}
|
break;
|
|
default:
|
retval = -EOPNOTSUPP;
|
break;
|
}
|
}
|
return retval;
|
}
|
|
|
static int netdev_ethtool_ioctl (struct net_device *dev, void *useraddr)
|
{
|
u32 ethcmd;
|
|
/* dev_ioctl() in ../../net/core/dev.c has already checked
|
capable(CAP_NET_ADMIN), so don't bother with that here. */
|
|
if (copy_from_user (ðcmd, useraddr, sizeof (ethcmd)))
|
return -EFAULT;
|
|
switch (ethcmd) {
|
case ETHTOOL_GDRVINFO:
|
{
|
struct ethtool_drvinfo info = { ETHTOOL_GDRVINFO };
|
strcpy (info.driver, dev->name);
|
strcpy (info.version, "0.3");
|
strcpy (info.bus_info, "");
|
if (copy_to_user (useraddr, &info, sizeof (info)))
|
return -EFAULT;
|
return 0;
|
}
|
default:
|
break;
|
}
|
|
return -EOPNOTSUPP;
|
}
|
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
|
#ifdef ORIGINAL_VERSION
|
|
/* Returns the CRC needed when filling in the hash table for
|
* multicast group filtering
|
* pAddr must point to a MAC address (6 bytes)
|
*/
|
static u32 fec_mulicast_calc_crc(char *pAddr)
|
{
|
u8 byte;
|
int byte_count;
|
int bit_count;
|
u32 crc = 0xffffffff;
|
u8 msb;
|
|
for (byte_count=0; byte_count<6; byte_count++) {
|
byte = pAddr[byte_count];
|
for (bit_count=0; bit_count<8; bit_count++) {
|
msb = crc >> 31;
|
crc <<= 1;
|
if (msb ^ (byte & 0x1)) {
|
crc ^= FEC_CRC_POLY;
|
}
|
byte >>= 1;
|
}
|
}
|
return (crc);
|
}
|
|
/* Set or clear the multicast filter for this adaptor.
|
* Skeleton taken from sunlance driver.
|
* The CPM Ethernet implementation allows Multicast as well as individual
|
* MAC address filtering. Some of the drivers check to make sure it is
|
* a group multicast address, and discard those that are not. I guess I
|
* will do the same for now, but just remove the test if you want
|
* individual filtering as well (do the upper net layers want or support
|
* this kind of feature?).
|
*/
|
|
static void set_multicast_list(struct net_device *dev)
|
{
|
struct fec_enet_private *fep;
|
volatile fec_t *ep;
|
|
fep = (struct fec_enet_private *)dev->priv;
|
ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
|
|
if (dev->flags&IFF_PROMISC) {
|
|
/* Log any net taps. */
|
printk("%s: Promiscuous mode enabled.\n", dev->name);
|
ep->fec_r_cntrl |= FEC_RCNTRL_PROM;
|
} else {
|
|
ep->fec_r_cntrl &= ~FEC_RCNTRL_PROM;
|
|
if (dev->flags & IFF_ALLMULTI) {
|
/* Catch all multicast addresses, so set the
|
* filter to all 1's.
|
*/
|
ep->fec_hash_table_high = 0xffffffff;
|
ep->fec_hash_table_low = 0xffffffff;
|
} else {
|
struct dev_mc_list *pmc = dev->mc_list;
|
|
/* Clear Hash-Table
|
*/
|
ep->fec_hash_table_high = 0;
|
ep->fec_hash_table_low = 0;
|
|
/* Now populate the hash table
|
*/
|
#ifdef DEBUG_MULTICAST
|
if (pmc) {
|
printk ("%s: Recalculating hash-table:\n",
|
dev->name);
|
printk (" MAC Address high low\n");
|
}
|
#endif
|
|
while (pmc) {
|
u32 crc;
|
int temp;
|
u32 csrVal;
|
int hash_index;
|
|
crc = fec_mulicast_calc_crc(pmc->dmi_addr);
|
temp = (crc & 0x3f) >> 1;
|
hash_index = ((temp & 0x01) << 4) |
|
((temp & 0x02) << 2) |
|
((temp & 0x04)) |
|
((temp & 0x08) >> 2) |
|
((temp & 0x10) >> 4);
|
csrVal = (1 << hash_index);
|
if (crc & 1) {
|
ep->fec_hash_table_high |= csrVal;
|
}
|
else {
|
ep->fec_hash_table_low |= csrVal;
|
}
|
#ifdef DEBUG_MULTICAST
|
printk (" %02x:%02x:%02x:%02x:%02x:%02x %08x %08x\n",
|
(int)pmc->dmi_addr[0],
|
(int)pmc->dmi_addr[1],
|
(int)pmc->dmi_addr[2],
|
(int)pmc->dmi_addr[3],
|
(int)pmc->dmi_addr[4],
|
(int)pmc->dmi_addr[5],
|
ep->fec_hash_table_high,
|
ep->fec_hash_table_low
|
);
|
#endif
|
pmc = pmc->next;
|
}
|
}
|
}
|
}
|
#endif /* ORIGINAL_VERSION */
|
|
/* Initialize the FEC Ethernet on 860T.
|
*/
|
int __init fec_enet_init(void)
|
{
|
struct rtnet_device *rtdev = NULL;
|
struct fec_enet_private *fep;
|
int i, j, k;
|
unsigned char *eap, *iap, *ba;
|
unsigned long mem_addr;
|
volatile cbd_t *bdp;
|
cbd_t *cbd_base;
|
volatile immap_t *immap;
|
volatile fec_t *fecp;
|
bd_t *bd;
|
|
immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
|
|
bd = (bd_t *)__res;
|
|
if (!rx_pool_size)
|
rx_pool_size = RX_RING_SIZE * 2;
|
|
rtdev = rtdev_root = rt_alloc_etherdev(sizeof(struct fec_enet_private),
|
rx_pool_size + TX_RING_SIZE);
|
if (rtdev == NULL) {
|
printk(KERN_ERR "enet: Could not allocate ethernet device.\n");
|
return -1;
|
}
|
rtdev_alloc_name(rtdev, "rteth%d");
|
rt_rtdev_connect(rtdev, &RTDEV_manager);
|
rtdev->vers = RTDEV_VERS_2_0;
|
|
fep = (struct fec_enet_private *)rtdev->priv;
|
fecp = &(immap->im_cpm.cp_fec);
|
|
/* Whack a reset. We should wait for this.
|
*/
|
fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET;
|
for (i = 0;
|
(fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY);
|
++i) {
|
udelay(1);
|
}
|
if (i == FEC_RESET_DELAY) {
|
printk ("FEC Reset timeout!\n");
|
}
|
|
/* Set the Ethernet address. If using multiple Enets on the 8xx,
|
* this needs some work to get unique addresses.
|
*/
|
eap = (unsigned char *)my_enet_addr;
|
iap = bd->bi_enetaddr;
|
|
#if defined(CONFIG_SCC_ENET) && !defined(ORIGINAL_VERSION)
|
/*
|
* If a board has Ethernet configured both on a SCC and the
|
* FEC, it needs (at least) 2 MAC addresses (we know that Sun
|
* disagrees, but anyway). For the FEC port, we create
|
* another address by setting one of the address bits above
|
* something that would have (up to now) been allocated.
|
*/
|
{
|
unsigned char tmpaddr[6];
|
for (i=0; i<6; i++)
|
tmpaddr[i] = *iap++;
|
tmpaddr[3] |= 0x80;
|
iap = tmpaddr;
|
}
|
#endif
|
|
for (i=0; i<6; i++) {
|
rtdev->dev_addr[i] = *eap++ = *iap++;
|
}
|
|
/* Allocate memory for buffer descriptors.
|
*/
|
if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) {
|
printk("FEC init error. Need more space.\n");
|
printk("FEC initialization failed.\n");
|
return 1;
|
}
|
cbd_base = (cbd_t *)consistent_alloc(GFP_KERNEL, PAGE_SIZE, (void *)&mem_addr);
|
|
/* Set receive and transmit descriptor base.
|
*/
|
fep->rx_bd_base = cbd_base;
|
fep->tx_bd_base = cbd_base + RX_RING_SIZE;
|
|
fep->skb_cur = fep->skb_dirty = 0;
|
|
/* Initialize the receive buffer descriptors.
|
*/
|
bdp = fep->rx_bd_base;
|
k = 0;
|
for (i=0; i<FEC_ENET_RX_PAGES; i++) {
|
|
/* Allocate a page.
|
*/
|
ba = (unsigned char *)consistent_alloc(GFP_KERNEL, PAGE_SIZE, (void *)&mem_addr);
|
|
/* Initialize the BD for every fragment in the page.
|
*/
|
for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
|
bdp->cbd_sc = BD_ENET_RX_EMPTY;
|
bdp->cbd_bufaddr = mem_addr;
|
fep->rx_vaddr[k++] = ba;
|
mem_addr += FEC_ENET_RX_FRSIZE;
|
ba += FEC_ENET_RX_FRSIZE;
|
bdp++;
|
}
|
}
|
|
rtdm_lock_init(&fep->lock);
|
|
/* Set the last buffer to wrap.
|
*/
|
bdp--;
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
/* Install our interrupt handler.
|
*/
|
rt_stack_connect(rtdev, &STACK_manager);
|
if ((i = rtdm_irq_request(&fep->irq_handle, FEC_INTERRUPT,
|
fec_enet_interrupt, 0, "rt_mpc8xx_fec", rtdev))) {
|
printk(KERN_ERR "Couldn't request IRQ %d\n", rtdev->irq);
|
rtdev_free(rtdev);
|
return i;
|
}
|
|
rtdev->base_addr = (unsigned long)fecp;
|
|
#ifdef CONFIG_RPXCLASSIC
|
/* If MDIO is disabled the PHY should not be allowed to
|
* generate interrupts telling us to read the PHY.
|
*/
|
# ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
/* Make Port C, bit 15 an input that causes interrupts.
|
*/
|
immap->im_ioport.iop_pcpar &= ~0x0001;
|
immap->im_ioport.iop_pcdir &= ~0x0001;
|
immap->im_ioport.iop_pcso &= ~0x0001;
|
immap->im_ioport.iop_pcint |= 0x0001;
|
cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
|
# endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
/* Make LEDS reflect Link status.
|
*/
|
*((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
|
#endif /* CONFIG_RPXCLASSIC */
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
# ifndef PHY_INTERRUPT
|
# error Want to use MII, but PHY_INTERRUPT not defined!
|
# endif
|
((immap_t *)IMAP_ADDR)->im_siu_conf.sc_siel |=
|
(0x80000000 >> PHY_INTERRUPT);
|
|
if (request_8xxirq(PHY_INTERRUPT, mii_link_interrupt, 0, "mii", dev) != 0)
|
panic("Could not allocate MII IRQ!");
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
rtdev->base_addr = (unsigned long)fecp;
|
|
/* The FEC Ethernet specific entries in the device structure. */
|
rtdev->open = fec_enet_open;
|
rtdev->hard_start_xmit = fec_enet_start_xmit;
|
rtdev->stop = fec_enet_close;
|
rtdev->hard_header = &rt_eth_header;
|
rtdev->get_stats = fec_enet_get_stats;
|
|
if ((i = rt_register_rtnetdev(rtdev))) {
|
rtdm_irq_disable(&fep->irq_handle);
|
rtdm_irq_free(&fep->irq_handle);
|
rtdev_free(rtdev);
|
return i;
|
}
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
dev->do_ioctl = fec_enet_ioctl;
|
|
for (i=0; i<NMII-1; i++)
|
mii_cmds[i].mii_next = &mii_cmds[i+1];
|
mii_free = mii_cmds;
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
#ifndef CONFIG_ICU862
|
/* Configure all of port D for MII.
|
*/
|
immap->im_ioport.iop_pdpar = 0x1fff;
|
|
#else /* CONFIG_ICU862 */
|
/* Configure port A for MII.
|
*/
|
|
/* Has Utopia been configured? */
|
if (immap->im_ioport.iop_pdpar & (0x8000 >> 1)) {
|
/*
|
* YES - Use MUXED mode for UTOPIA bus.
|
* This frees Port A for use by MII (see 862UM table 41-6).
|
*/
|
immap->im_ioport.utmode &= ~0x80;
|
} else {
|
/*
|
* NO - set SPLIT mode for UTOPIA bus.
|
*
|
* This doesn't really effect UTOPIA (which isn't
|
* enabled anyway) but just tells the 862
|
* to use port A for MII (see 862UM table 41-6).
|
*/
|
immap->im_ioport.utmode |= 0x80;
|
}
|
|
# ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
/* Now configure MII_MDC pin */
|
immap->im_ioport.iop_pdpar |= (0x8000 >> 8);
|
# endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
#endif /* CONFIG_ICU862 */
|
|
/* Bits moved from Rev. D onward.
|
*/
|
if ((mfspr(IMMR) & 0xffff) < 0x0501)
|
immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
|
else
|
immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
/* Set MII speed to 2.5 MHz
|
*/
|
fecp->fec_mii_speed = fep->phy_speed =
|
((((bd->bi_intfreq + 4999999) / 2500000) / 2 ) & 0x3F ) << 1;
|
#else
|
fecp->fec_mii_speed = 0; /* turn off MDIO */
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
#ifndef ORIGINAL_VERSION
|
printk("%s: FEC ENET Version 0.3, irq %d, addr %02x:%02x:%02x:%02x:%02x:%02x\n",
|
rtdev->name, FEC_INTERRUPT,
|
rtdev->dev_addr[0], rtdev->dev_addr[1], rtdev->dev_addr[2],
|
rtdev->dev_addr[3], rtdev->dev_addr[4], rtdev->dev_addr[5]);
|
#else
|
printk ("%s: FEC ENET Version 0.3, FEC irq %d"
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
", with MDIO"
|
#endif
|
#ifdef PHY_INTERRUPT
|
", MII irq %d"
|
#endif
|
", addr ",
|
dev->name, FEC_INTERRUPT
|
#ifdef PHY_INTERRUPT
|
, PHY_INTERRUPT
|
#endif
|
);
|
for (i=0; i<6; i++)
|
printk("%02x%c", rtdev->dev_addr[i], (i==5) ? '\n' : ':');
|
#endif /* ORIGINAL_VERSION */
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO /* start in full duplex mode, and negotiate speed */
|
fec_restart (dev, 1);
|
#else /* always use half duplex mode only */
|
fec_restart (rtdev, 0);
|
#endif
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
/* Queue up command to detect the PHY and initialize the
|
* remainder of the interface.
|
*/
|
fep->phy_id_done = 0;
|
fep->phy_addr = 0;
|
mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy, 0);
|
|
fep->old_status = 0;
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
return 0;
|
}
|
|
/* This function is called to start or restart the FEC during a link
|
* change. This only happens when switching between half and full
|
* duplex.
|
*/
|
static void
|
fec_restart(struct rtnet_device *rtdev, int duplex)
|
{
|
struct fec_enet_private *fep;
|
int i;
|
volatile cbd_t *bdp;
|
volatile immap_t *immap;
|
volatile fec_t *fecp;
|
|
immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
|
|
fecp = &(immap->im_cpm.cp_fec);
|
|
fep = rtdev->priv;
|
|
/* Whack a reset. We should wait for this.
|
*/
|
fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET;
|
for (i = 0;
|
(fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY);
|
++i) {
|
udelay(1);
|
}
|
if (i == FEC_RESET_DELAY) {
|
printk ("FEC Reset timeout!\n");
|
}
|
|
/* Set station address.
|
*/
|
fecp->fec_addr_low = (my_enet_addr[0] << 16) | my_enet_addr[1];
|
fecp->fec_addr_high = my_enet_addr[2];
|
|
/* Reset all multicast.
|
*/
|
fecp->fec_hash_table_high = 0;
|
fecp->fec_hash_table_low = 0;
|
|
/* Set maximum receive buffer size.
|
*/
|
fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
|
fecp->fec_r_hash = PKT_MAXBUF_SIZE;
|
|
/* Set receive and transmit descriptor base.
|
*/
|
fecp->fec_r_des_start = iopa((uint)(fep->rx_bd_base));
|
fecp->fec_x_des_start = iopa((uint)(fep->tx_bd_base));
|
|
fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
|
fep->cur_rx = fep->rx_bd_base;
|
|
/* Reset SKB transmit buffers.
|
*/
|
fep->skb_cur = fep->skb_dirty = 0;
|
for (i=0; i<=TX_RING_MOD_MASK; i++) {
|
if (fep->tx_skbuff[i] != NULL) {
|
dev_kfree_rtskb(fep->tx_skbuff[i]);
|
fep->tx_skbuff[i] = NULL;
|
}
|
}
|
|
/* Initialize the receive buffer descriptors.
|
*/
|
bdp = fep->rx_bd_base;
|
for (i=0; i<RX_RING_SIZE; i++) {
|
|
/* Initialize the BD for every fragment in the page.
|
*/
|
bdp->cbd_sc = BD_ENET_RX_EMPTY;
|
bdp++;
|
}
|
|
/* Set the last buffer to wrap.
|
*/
|
bdp--;
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
/* ...and the same for transmmit.
|
*/
|
bdp = fep->tx_bd_base;
|
for (i=0; i<TX_RING_SIZE; i++) {
|
|
/* Initialize the BD for every fragment in the page.
|
*/
|
bdp->cbd_sc = 0;
|
bdp->cbd_bufaddr = 0;
|
bdp++;
|
}
|
|
/* Set the last buffer to wrap.
|
*/
|
bdp--;
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
/* Enable MII mode.
|
*/
|
if (duplex) {
|
fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE; /* MII enable */
|
fecp->fec_x_cntrl = FEC_TCNTRL_FDEN; /* FD enable */
|
}
|
else {
|
fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE | FEC_RCNTRL_DRT;
|
fecp->fec_x_cntrl = 0;
|
}
|
|
fep->full_duplex = duplex;
|
|
/* Enable big endian and don't care about SDMA FC.
|
*/
|
fecp->fec_fun_code = 0x78000000;
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
/* Set MII speed.
|
*/
|
fecp->fec_mii_speed = fep->phy_speed;
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
/* Clear any outstanding interrupt.
|
*/
|
fecp->fec_ievent = 0xffc0;
|
|
fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
|
|
/* Enable interrupts we wish to service.
|
*/
|
fecp->fec_imask = ( FEC_ENET_TXF | FEC_ENET_TXB |
|
FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII );
|
|
/* And last, enable the transmit and receive processing.
|
*/
|
fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN;
|
fecp->fec_r_des_active = 0x01000000;
|
|
/* The tx ring is no longer full. */
|
if(fep->tx_full)
|
{
|
fep->tx_full = 0;
|
rtnetif_wake_queue(rtdev);
|
}
|
}
|
|
static void
|
fec_stop(struct rtnet_device *rtdev)
|
{
|
volatile immap_t *immap;
|
volatile fec_t *fecp;
|
int i;
|
struct fec_enet_private *fep;
|
|
immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
|
|
fecp = &(immap->im_cpm.cp_fec);
|
|
if ((fecp->fec_ecntrl & FEC_ECNTRL_ETHER_EN) == 0)
|
return; /* already down */
|
|
fep = rtdev->priv;
|
|
|
fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
|
|
for (i = 0;
|
((fecp->fec_ievent & 0x10000000) == 0) && (i < FEC_RESET_DELAY);
|
++i) {
|
udelay(1);
|
}
|
if (i == FEC_RESET_DELAY) {
|
printk ("FEC timeout on graceful transmit stop\n");
|
}
|
|
/* Clear outstanding MII command interrupts.
|
*/
|
fecp->fec_ievent = FEC_ENET_MII;
|
|
/* Enable MII command finished interrupt
|
*/
|
fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
|
fecp->fec_imask = FEC_ENET_MII;
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
/* Set MII speed.
|
*/
|
fecp->fec_mii_speed = fep->phy_speed;
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
/* Disable FEC
|
*/
|
fecp->fec_ecntrl &= ~(FEC_ECNTRL_ETHER_EN);
|
}
|
|
static void __exit fec_enet_cleanup(void)
|
{
|
struct rtnet_device *rtdev = rtdev_root;
|
struct fec_enet_private *fep = rtdev->priv;
|
|
if (rtdev) {
|
rtdm_irq_disable(&fep->irq_handle);
|
rtdm_irq_free(&fep->irq_handle);
|
|
consistent_free(fep->rx_bd_base);
|
|
rt_stack_disconnect(rtdev);
|
rt_unregister_rtnetdev(rtdev);
|
rt_rtdev_disconnect(rtdev);
|
|
printk("%s: unloaded\n", rtdev->name);
|
rtdev_free(rtdev);
|
rtdev_root = NULL;
|
}
|
}
|
|
module_init(fec_enet_init);
|
module_exit(fec_enet_cleanup);
|