/*
|
* Fast Ethernet Controller (FCC) driver for Motorola MPC8260.
|
* Copyright (c) 2000 MontaVista Software, Inc. Dan Malek (dmalek@jlc.net)
|
*
|
* This version of the driver is a combination of the 8xx fec and
|
* 8260 SCC Ethernet drivers. This version has some additional
|
* configuration options, which should probably be moved out of
|
* here. This driver currently works for the EST SBC8260,
|
* SBS Diablo/BCM, Embedded Planet RPX6, TQM8260, and others.
|
*
|
* Right now, I am very watseful with the buffers. I allocate memory
|
* pages and then divide them into 2K frame buffers. This way I know I
|
* have buffers large enough to hold one frame within one buffer descriptor.
|
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
|
* will be much more memory efficient and will easily handle lots of
|
* small packets. Since this is a cache coherent processor and CPM,
|
* I could also preallocate SKB's and use them directly on the interface.
|
*
|
* Ported to RTnet from "linuxppc_2_4_devel/arch/ppc/8260_io/fcc_enet.c".
|
* Copyright (c) 2003 Wolfgang Grandegger (wg@denx.de)
|
*/
|
|
#include <linux/kernel.h>
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
#include <linux/string.h>
|
#include <linux/ptrace.h>
|
#include <linux/errno.h>
|
#include <linux/ioport.h>
|
#include <linux/slab.h>
|
#include <linux/interrupt.h>
|
#include <linux/pci.h>
|
#include <linux/init.h>
|
#include <linux/delay.h>
|
#include <linux/netdevice.h>
|
#include <linux/etherdevice.h>
|
#include <linux/skbuff.h>
|
#include <linux/spinlock.h>
|
#include <linux/uaccess.h>
|
|
#include <asm/immap_8260.h>
|
#include <asm/pgtable.h>
|
#include <asm/mpc8260.h>
|
#include <asm/irq.h>
|
#include <asm/bitops.h>
|
#include <asm/cpm_8260.h>
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
#error "MDIO for PHY configuration is not yet supported!"
|
#endif
|
|
#include <rtnet_port.h>
|
|
MODULE_AUTHOR("Maintainer: Wolfgang Grandegger <wg@denx.de>");
|
MODULE_DESCRIPTION("RTnet driver for the MPC8260 FCC Ethernet");
|
MODULE_LICENSE("GPL");
|
|
static unsigned int rx_pool_size = 0;
|
MODULE_PARM(rx_pool_size, "i");
|
MODULE_PARM_DESC(rx_pool_size, "Receive buffer pool size");
|
|
static unsigned int rtnet_fcc = 1;
|
MODULE_PARM(rtnet_fcc, "i");
|
MODULE_PARM_DESC(rtnet_fcc, "FCCx port for RTnet (default=1)");
|
|
#define RT_DEBUG(fmt,args...)
|
|
/* The transmitter timeout
|
*/
|
#define TX_TIMEOUT (2*HZ)
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
/* Forward declarations of some structures to support different PHYs */
|
|
typedef struct {
|
uint mii_data;
|
void (*funct)(uint mii_reg, struct net_device *dev);
|
} phy_cmd_t;
|
|
typedef struct {
|
uint id;
|
char *name;
|
|
const phy_cmd_t *config;
|
const phy_cmd_t *startup;
|
const phy_cmd_t *ack_int;
|
const phy_cmd_t *shutdown;
|
} phy_info_t;
|
|
/* Register definitions for the PHY. */
|
|
#define MII_REG_CR 0 /* Control Register */
|
#define MII_REG_SR 1 /* Status Register */
|
#define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
|
#define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
|
#define MII_REG_ANAR 4 /* A-N Advertisement Register */
|
#define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
|
#define MII_REG_ANER 6 /* A-N Expansion Register */
|
#define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
|
#define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
|
|
/* values for phy_status */
|
|
#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
|
#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
|
#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
|
#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
|
#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
|
#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
|
#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
|
|
#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
|
#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
|
#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
|
#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
|
#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
|
#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
|
#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
|
#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
/* The number of Tx and Rx buffers. These are allocated from the page
|
* pool. The code may assume these are power of two, so it is best
|
* to keep them that size.
|
* We don't need to allocate pages for the transmitter. We just use
|
* the skbuffer directly.
|
*/
|
#define FCC_ENET_RX_PAGES 16
|
#define FCC_ENET_RX_FRSIZE 2048
|
#define FCC_ENET_RX_FRPPG (PAGE_SIZE / FCC_ENET_RX_FRSIZE)
|
#define RX_RING_SIZE (FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES)
|
#define TX_RING_SIZE 16 /* Must be power of two */
|
#define TX_RING_MOD_MASK 15 /* for this to work */
|
|
/* The FCC stores dest/src/type, data, and checksum for receive packets.
|
*/
|
#define PKT_MAXBUF_SIZE 1518
|
#define PKT_MINBUF_SIZE 64
|
|
/* Maximum input DMA size. Must be a should(?) be a multiple of 4.
|
*/
|
#define PKT_MAXDMA_SIZE 1520
|
|
/* Maximum input buffer size. Must be a multiple of 32.
|
*/
|
#define PKT_MAXBLR_SIZE 1536
|
|
static int fcc_enet_open(struct rtnet_device *rtev);
|
static int fcc_enet_start_xmit(struct rtskb *skb, struct rtnet_device *rtdev);
|
static int fcc_enet_rx(struct rtnet_device *rtdev, int *packets, nanosecs_abs_t *time_stamp);
|
static int fcc_enet_interrupt(rtdm_irq_t *irq_handle);
|
static int fcc_enet_close(struct rtnet_device *dev);
|
|
static struct net_device_stats *fcc_enet_get_stats(struct rtnet_device *rtdev);
|
#ifdef ORIGINAL_VERSION
|
static void set_multicast_list(struct net_device *dev);
|
static int fcc_enet_set_mac_address(struct net_device *dev, void *addr);
|
#endif /* ORIGINAL_VERSION */
|
|
static void fcc_restart(struct rtnet_device *rtdev, int duplex);
|
|
/* These will be configurable for the FCC choice.
|
* Multiple ports can be configured. There is little choice among the
|
* I/O pins to the PHY, except the clocks. We will need some board
|
* dependent clock selection.
|
* Why in the hell did I put these inside #ifdef's? I dunno, maybe to
|
* help show what pins are used for each device.
|
*/
|
|
/* I/O Pin assignment for FCC1. I don't yet know the best way to do this,
|
* but there is little variation among the choices.
|
*/
|
#define PA1_COL ((uint)0x00000001)
|
#define PA1_CRS ((uint)0x00000002)
|
#define PA1_TXER ((uint)0x00000004)
|
#define PA1_TXEN ((uint)0x00000008)
|
#define PA1_RXDV ((uint)0x00000010)
|
#define PA1_RXER ((uint)0x00000020)
|
#define PA1_TXDAT ((uint)0x00003c00)
|
#define PA1_RXDAT ((uint)0x0003c000)
|
#define PA1_PSORA0 (PA1_RXDAT | PA1_TXDAT)
|
#define PA1_PSORA1 (PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN | \
|
PA1_RXDV | PA1_RXER)
|
#define PA1_DIRA0 (PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV)
|
#define PA1_DIRA1 (PA1_TXDAT | PA1_TXEN | PA1_TXER)
|
|
/* CLK12 is receive, CLK11 is transmit. These are board specific.
|
*/
|
#define PC_F1RXCLK ((uint)0x00000800)
|
#define PC_F1TXCLK ((uint)0x00000400)
|
#if defined(CONFIG_PM826)
|
#ifndef CONFIG_RTAI_RTNET_DB_CR826_J30x_ON
|
#define CMX1_CLK_ROUTE ((uint)0x35000000)
|
#define CMX1_CLK_MASK ((uint)0x7f000000)
|
#else
|
#define CMX1_CLK_ROUTE ((uint)0x37000000)
|
#define CMX1_CLK_MASK ((uint)0x7f000000)
|
#endif
|
#elif defined(CONFIG_CPU86)
|
#define CMX1_CLK_ROUTE ((uint)0x37000000)
|
#define CMX1_CLK_MASK ((uint)0x7f000000)
|
#else
|
#define CMX1_CLK_ROUTE ((uint)0x3e000000)
|
#define CMX1_CLK_MASK ((uint)0xff000000)
|
#endif /* CONFIG_PM826 */
|
|
/* I/O Pin assignment for FCC2. I don't yet know the best way to do this,
|
* but there is little variation among the choices.
|
*/
|
#define PB2_TXER ((uint)0x00000001)
|
#define PB2_RXDV ((uint)0x00000002)
|
#define PB2_TXEN ((uint)0x00000004)
|
#define PB2_RXER ((uint)0x00000008)
|
#define PB2_COL ((uint)0x00000010)
|
#define PB2_CRS ((uint)0x00000020)
|
#define PB2_TXDAT ((uint)0x000003c0)
|
#define PB2_RXDAT ((uint)0x00003c00)
|
#define PB2_PSORB0 (PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL | \
|
PB2_RXER | PB2_RXDV | PB2_TXER)
|
#define PB2_PSORB1 (PB2_TXEN)
|
#define PB2_DIRB0 (PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV)
|
#define PB2_DIRB1 (PB2_TXDAT | PB2_TXEN | PB2_TXER)
|
|
/* CLK13 is receive, CLK14 is transmit. These are board dependent.
|
*/
|
#define PC_F2RXCLK ((uint)0x00001000)
|
#define PC_F2TXCLK ((uint)0x00002000)
|
#define CMX2_CLK_ROUTE ((uint)0x00250000)
|
#define CMX2_CLK_MASK ((uint)0x00ff0000)
|
|
/* I/O Pin assignment for FCC3. I don't yet know the best way to do this,
|
* but there is little variation among the choices.
|
*/
|
#define PB3_RXDV ((uint)0x00004000)
|
#define PB3_RXER ((uint)0x00008000)
|
#define PB3_TXER ((uint)0x00010000)
|
#define PB3_TXEN ((uint)0x00020000)
|
#define PB3_COL ((uint)0x00040000)
|
#define PB3_CRS ((uint)0x00080000)
|
#define PB3_TXDAT ((uint)0x0f000000)
|
#define PB3_RXDAT ((uint)0x00f00000)
|
#define PB3_PSORB0 (PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL | \
|
PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN)
|
#define PB3_PSORB1 (0)
|
#define PB3_DIRB0 (PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV)
|
#define PB3_DIRB1 (PB3_TXDAT | PB3_TXEN | PB3_TXER)
|
|
/* CLK15 is receive, CLK16 is transmit. These are board dependent.
|
*/
|
#ifdef CONFIG_IPHASE4539
|
#define PC_F3RXCLK ((uint)0x00002000) /* CLK 14 is receive */
|
#define PC_F3TXCLK ((uint)0x00008000) /* CLK 16 is transmit */
|
#define CMX3_CLK_ROUTE ((uint)0x00002f00)
|
#define CMX3_CLK_MASK ((uint)0x00007f00)
|
#else
|
#define PC_F3RXCLK ((uint)0x00004000)
|
#define PC_F3TXCLK ((uint)0x00008000)
|
#define CMX3_CLK_ROUTE ((uint)0x00003700)
|
#define CMX3_CLK_MASK ((uint)0x0000ff00)
|
#endif
|
|
/* MII status/control serial interface.
|
*/
|
#define IOP_PORT_OFF(f) ((uint)(&((iop8260_t *)0)->iop_p##f))
|
#define IOP_PORT(x) IOP_PORT_OFF(dir##x)
|
|
#define IOP_DIR(b,p) *((uint*)((void*)(b)+(p)+(IOP_PORT_OFF(dira)-IOP_PORT_OFF(dira))))
|
#define IOP_PAR(b,p) *((uint*)((void*)(b)+(p)+(IOP_PORT_OFF(para)-IOP_PORT_OFF(dira))))
|
#define IOP_SOR(b,p) *((uint*)((void*)(b)+(p)+(IOP_PORT_OFF(sora)-IOP_PORT_OFF(dira))))
|
#define IOP_ODR(b,p) *((uint*)((void*)(b)+(p)+(IOP_PORT_OFF(odra)-IOP_PORT_OFF(dira))))
|
#define IOP_DAT(b,p) *((uint*)((void*)(b)+(p)+(IOP_PORT_OFF(data)-IOP_PORT_OFF(dira))))
|
|
#if defined(CONFIG_TQM8260)
|
/* TQM8260 has MDIO and MDCK on PC30 and PC31 respectively */
|
#define MII_MDIO ((uint)0x00000002)
|
#define MII_MDCK ((uint)0x00000001)
|
#elif defined (CONFIG_PM826)
|
#ifndef CONFIG_RTAI_RTNET_DB_CR826_J30x_ON
|
#define MII_MDIO ((uint)0x00000080) /* MDIO on PC24 */
|
#define MII_MDCK ((uint)0x00000100) /* MDCK on PC23 */
|
#else
|
#define MII_MDIO ((uint)0x00000100) /* MDIO on PA23 */
|
#define MII_MDCK ((uint)0x00000200) /* MDCK on PA22 */
|
#define MII_PORT IOP_PORT(a)
|
#endif /* CONFIG_RTAI_RTNET_DB_CR826_J30x_ON */
|
#elif defined (CONFIG_IPHASE4539)
|
#define MII_MDIO ((uint)0x00000080) /* MDIO on PC24 */
|
#define MII_MDCK ((uint)0x00000100) /* MDCK on PC23 */
|
#else
|
#define MII_MDIO ((uint)0x00000004)
|
#define MII_MDCK ((uint)0x00000100)
|
#endif
|
|
# if defined(CONFIG_TQM8260)
|
#define MII_MDIO2 MII_MDIO
|
#define MII_MDCK2 MII_MDCK
|
#elif defined(CONFIG_EST8260) || defined(CONFIG_ADS8260)
|
#define MII_MDIO2 ((uint)0x00400000)
|
#define MII_MDCK2 ((uint)0x00200000)
|
#elif defined(CONFIG_PM826)
|
#define MII_MDIO2 ((uint)0x00000040) /* MDIO on PA25 */
|
#define MII_MDCK2 ((uint)0x00000080) /* MDCK on PA24 */
|
#define MII_PORT2 IOP_PORT(a)
|
#else
|
#define MII_MDIO2 ((uint)0x00000002)
|
#define MII_MDCK2 ((uint)0x00000080)
|
#endif
|
|
# if defined(CONFIG_TQM8260)
|
#define MII_MDIO3 MII_MDIO
|
#define MII_MDCK3 MII_MDCK
|
#else
|
#define MII_MDIO3 ((uint)0x00000001)
|
#define MII_MDCK3 ((uint)0x00000040)
|
#endif
|
|
#ifndef MII_PORT
|
#define MII_PORT IOP_PORT(c)
|
#endif
|
|
#ifndef MII_PORT2
|
#define MII_PORT2 IOP_PORT(c)
|
#endif
|
|
#ifndef MII_PORT3
|
#define MII_PORT3 IOP_PORT(c)
|
#endif
|
|
/* A table of information for supporting FCCs. This does two things.
|
* First, we know how many FCCs we have and they are always externally
|
* numbered from zero. Second, it holds control register and I/O
|
* information that could be different among board designs.
|
*/
|
typedef struct fcc_info {
|
uint fc_fccnum;
|
uint fc_cpmblock;
|
uint fc_cpmpage;
|
uint fc_proff;
|
uint fc_interrupt;
|
uint fc_trxclocks;
|
uint fc_clockroute;
|
uint fc_clockmask;
|
uint fc_mdio;
|
uint fc_mdck;
|
uint fc_port;
|
struct rtnet_device *rtdev;
|
} fcc_info_t;
|
|
static fcc_info_t fcc_ports[] = {
|
{ 0, CPM_CR_FCC1_SBLOCK, CPM_CR_FCC1_PAGE, PROFF_FCC1, SIU_INT_FCC1,
|
(PC_F1RXCLK | PC_F1TXCLK), CMX1_CLK_ROUTE, CMX1_CLK_MASK,
|
MII_MDIO, MII_MDCK, MII_PORT },
|
{ 1, CPM_CR_FCC2_SBLOCK, CPM_CR_FCC2_PAGE, PROFF_FCC2, SIU_INT_FCC2,
|
(PC_F2RXCLK | PC_F2TXCLK), CMX2_CLK_ROUTE, CMX2_CLK_MASK,
|
MII_MDIO2, MII_MDCK2, MII_PORT2 },
|
{ 2, CPM_CR_FCC3_SBLOCK, CPM_CR_FCC3_PAGE, PROFF_FCC3, SIU_INT_FCC3,
|
(PC_F3RXCLK | PC_F3TXCLK), CMX3_CLK_ROUTE, CMX3_CLK_MASK,
|
MII_MDIO3, MII_MDCK3, MII_PORT3 },
|
};
|
|
/* The FCC buffer descriptors track the ring buffers. The rx_bd_base and
|
* tx_bd_base always point to the base of the buffer descriptors. The
|
* cur_rx and cur_tx point to the currently available buffer.
|
* The dirty_tx tracks the current buffer that is being sent by the
|
* controller. The cur_tx and dirty_tx are equal under both completely
|
* empty and completely full conditions. The empty/ready indicator in
|
* the buffer descriptor determines the actual condition.
|
*/
|
struct fcc_enet_private {
|
/* The addresses of a Tx/Rx-in-place packets/buffers. */
|
struct rtskb *tx_skbuff[TX_RING_SIZE];
|
ushort skb_cur;
|
ushort skb_dirty;
|
|
/* CPM dual port RAM relative addresses.
|
*/
|
cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
|
cbd_t *tx_bd_base;
|
cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
|
cbd_t *dirty_tx; /* The ring entries to be free()ed. */
|
volatile fcc_t *fccp;
|
volatile fcc_enet_t *ep;
|
struct net_device_stats stats;
|
uint tx_full;
|
rtdm_lock_t lock;
|
rtdm_irq_t irq_handle;
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
uint phy_id;
|
uint phy_id_done;
|
uint phy_status;
|
phy_info_t *phy;
|
struct tq_struct phy_task;
|
|
uint sequence_done;
|
|
uint phy_addr;
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
int link;
|
int old_link;
|
int full_duplex;
|
|
fcc_info_t *fip;
|
};
|
|
static void init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
|
volatile immap_t *immap);
|
static void init_fcc_startup(fcc_info_t *fip, struct rtnet_device *rtdev);
|
static void init_fcc_ioports(fcc_info_t *fip, volatile iop8260_t *io,
|
volatile immap_t *immap);
|
static void init_fcc_param(fcc_info_t *fip, struct rtnet_device *rtdev,
|
volatile immap_t *immap);
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
static int mii_queue(struct net_device *dev, int request, void (*func)(uint, struct net_device *));
|
static uint mii_send_receive(fcc_info_t *fip, uint cmd);
|
|
static void fcc_stop(struct net_device *dev);
|
|
/* Make MII read/write commands for the FCC.
|
*/
|
#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
|
#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
|
(VAL & 0xffff))
|
#define mk_mii_end 0
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
|
static int
|
fcc_enet_start_xmit(struct rtskb *skb, struct rtnet_device *rtdev)
|
{
|
struct fcc_enet_private *cep = (struct fcc_enet_private *)rtdev->priv;
|
volatile cbd_t *bdp;
|
rtdm_lockctx_t context;
|
|
RT_DEBUG(__FUNCTION__": ...\n");
|
|
if (!cep->link) {
|
/* Link is down or autonegotiation is in progress. */
|
return 1;
|
}
|
|
/* Fill in a Tx ring entry */
|
bdp = cep->cur_tx;
|
|
#ifndef final_version
|
if (bdp->cbd_sc & BD_ENET_TX_READY) {
|
/* Ooops. All transmit buffers are full. Bail out.
|
* This should not happen, since cep->tx_full should be set.
|
*/
|
rtdm_printk("%s: tx queue full!.\n", rtdev->name);
|
return 1;
|
}
|
#endif
|
|
/* Clear all of the status flags. */
|
bdp->cbd_sc &= ~BD_ENET_TX_STATS;
|
|
/* If the frame is short, tell CPM to pad it. */
|
if (skb->len <= ETH_ZLEN)
|
bdp->cbd_sc |= BD_ENET_TX_PAD;
|
else
|
bdp->cbd_sc &= ~BD_ENET_TX_PAD;
|
|
/* Set buffer length and buffer pointer. */
|
bdp->cbd_datlen = skb->len;
|
bdp->cbd_bufaddr = __pa(skb->data);
|
|
/* Save skb pointer. */
|
cep->tx_skbuff[cep->skb_cur] = skb;
|
|
cep->stats.tx_bytes += skb->len;
|
cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
|
|
rtdm_lock_get_irqsave(&cep->lock, context);
|
|
/* Get and patch time stamp just before the transmission */
|
if (skb->xmit_stamp)
|
*skb->xmit_stamp = cpu_to_be64(rtdm_clock_read() + *skb->xmit_stamp);
|
|
/* Send it on its way. Tell CPM its ready, interrupt when done,
|
* its the last BD of the frame, and to put the CRC on the end.
|
*/
|
bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
|
|
#ifdef ORIGINAL_VERSION
|
dev->trans_start = jiffies;
|
#endif
|
|
/* If this was the last BD in the ring, start at the beginning again. */
|
if (bdp->cbd_sc & BD_ENET_TX_WRAP)
|
bdp = cep->tx_bd_base;
|
else
|
bdp++;
|
|
if (bdp->cbd_sc & BD_ENET_TX_READY) {
|
rtnetif_stop_queue(rtdev);
|
cep->tx_full = 1;
|
}
|
|
cep->cur_tx = (cbd_t *)bdp;
|
|
rtdm_lock_put_irqrestore(&cep->lock, context);
|
|
return 0;
|
}
|
|
|
#ifdef ORIGINAL_VERSION
|
static void
|
fcc_enet_timeout(struct net_device *dev)
|
{
|
struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
|
|
printk("%s: transmit timed out.\n", dev->name);
|
cep->stats.tx_errors++;
|
#ifndef final_version
|
{
|
int i;
|
cbd_t *bdp;
|
printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n",
|
cep->cur_tx, cep->tx_full ? " (full)" : "",
|
cep->cur_rx);
|
bdp = cep->tx_bd_base;
|
printk(" Tx @base %p :\n", bdp);
|
for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
|
printk("%04x %04x %08x\n",
|
bdp->cbd_sc,
|
bdp->cbd_datlen,
|
bdp->cbd_bufaddr);
|
bdp = cep->rx_bd_base;
|
printk(" Rx @base %p :\n", bdp);
|
for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
|
printk("%04x %04x %08x\n",
|
bdp->cbd_sc,
|
bdp->cbd_datlen,
|
bdp->cbd_bufaddr);
|
}
|
#endif
|
if (!cep->tx_full)
|
netif_wake_queue(dev);
|
}
|
#endif /* ORIGINAL_VERSION */
|
|
/* The interrupt handler. */
|
static int fcc_enet_interrupt(rtdm_irq_t *irq_handle)
|
{
|
struct rtnet_device *rtdev = rtdm_irq_get_arg(irq_handle, struct rtnet_device);
|
int packets = 0;
|
struct fcc_enet_private *cep;
|
volatile cbd_t *bdp;
|
ushort int_events;
|
int must_restart;
|
nanosecs_abs_t time_stamp = rtdm_clock_read();
|
|
|
cep = (struct fcc_enet_private *)rtdev->priv;
|
|
/* Get the interrupt events that caused us to be here.
|
*/
|
int_events = cep->fccp->fcc_fcce;
|
cep->fccp->fcc_fcce = int_events;
|
must_restart = 0;
|
|
/* Handle receive event in its own function.
|
*/
|
if (int_events & FCC_ENET_RXF) {
|
fcc_enet_rx(rtdev, &packets, &time_stamp);
|
}
|
|
/* Check for a transmit error. The manual is a little unclear
|
* about this, so the debug code until I get it figured out. It
|
* appears that if TXE is set, then TXB is not set. However,
|
* if carrier sense is lost during frame transmission, the TXE
|
* bit is set, "and continues the buffer transmission normally."
|
* I don't know if "normally" implies TXB is set when the buffer
|
* descriptor is closed.....trial and error :-).
|
*/
|
|
/* Transmit OK, or non-fatal error. Update the buffer descriptors.
|
*/
|
if (int_events & (FCC_ENET_TXE | FCC_ENET_TXB)) {
|
rtdm_lock_get(&cep->lock);
|
bdp = cep->dirty_tx;
|
while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
|
if ((bdp==cep->cur_tx) && (cep->tx_full == 0))
|
break;
|
|
if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
|
cep->stats.tx_heartbeat_errors++;
|
if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
|
cep->stats.tx_window_errors++;
|
if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
|
cep->stats.tx_aborted_errors++;
|
if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
|
cep->stats.tx_fifo_errors++;
|
if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
|
cep->stats.tx_carrier_errors++;
|
|
|
/* No heartbeat or Lost carrier are not really bad errors.
|
* The others require a restart transmit command.
|
*/
|
if (bdp->cbd_sc &
|
(BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
|
must_restart = 1;
|
cep->stats.tx_errors++;
|
}
|
|
cep->stats.tx_packets++;
|
|
/* Deferred means some collisions occurred during transmit,
|
* but we eventually sent the packet OK.
|
*/
|
if (bdp->cbd_sc & BD_ENET_TX_DEF)
|
cep->stats.collisions++;
|
|
/* Free the sk buffer associated with this last transmit. */
|
dev_kfree_rtskb(cep->tx_skbuff[cep->skb_dirty]);
|
cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
|
|
/* Update pointer to next buffer descriptor to be transmitted. */
|
if (bdp->cbd_sc & BD_ENET_TX_WRAP)
|
bdp = cep->tx_bd_base;
|
else
|
bdp++;
|
|
/* I don't know if we can be held off from processing these
|
* interrupts for more than one frame time. I really hope
|
* not. In such a case, we would now want to check the
|
* currently available BD (cur_tx) and determine if any
|
* buffers between the dirty_tx and cur_tx have also been
|
* sent. We would want to process anything in between that
|
* does not have BD_ENET_TX_READY set.
|
*/
|
|
/* Since we have freed up a buffer, the ring is no longer
|
* full.
|
*/
|
if (cep->tx_full) {
|
cep->tx_full = 0;
|
if (rtnetif_queue_stopped(rtdev))
|
rtnetif_wake_queue(rtdev);
|
}
|
|
cep->dirty_tx = (cbd_t *)bdp;
|
}
|
|
if (must_restart) {
|
volatile cpm8260_t *cp;
|
|
/* Some transmit errors cause the transmitter to shut
|
* down. We now issue a restart transmit. Since the
|
* errors close the BD and update the pointers, the restart
|
* _should_ pick up without having to reset any of our
|
* pointers either. Also, To workaround 8260 device erratum
|
* CPM37, we must disable and then re-enable the transmitter
|
* following a Late Collision, Underrun, or Retry Limit error.
|
*/
|
cep->fccp->fcc_gfmr &= ~FCC_GFMR_ENT;
|
#ifdef ORIGINAL_VERSION
|
udelay(10); /* wait a few microseconds just on principle */
|
#endif
|
cep->fccp->fcc_gfmr |= FCC_GFMR_ENT;
|
|
cp = cpmp;
|
cp->cp_cpcr =
|
mk_cr_cmd(cep->fip->fc_cpmpage, cep->fip->fc_cpmblock,
|
0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
|
while (cp->cp_cpcr & CPM_CR_FLG); // looks suspicious - how long may it take?
|
}
|
rtdm_lock_put(&cep->lock);
|
}
|
|
/* Check for receive busy, i.e. packets coming but no place to
|
* put them.
|
*/
|
if (int_events & FCC_ENET_BSY) {
|
cep->stats.rx_dropped++;
|
}
|
|
if (packets > 0)
|
rt_mark_stack_mgr(rtdev);
|
return RTDM_IRQ_HANDLED;
|
}
|
|
/* During a receive, the cur_rx points to the current incoming buffer.
|
* When we update through the ring, if the next incoming buffer has
|
* not been given to the system, we just set the empty indicator,
|
* effectively tossing the packet.
|
*/
|
static int
|
fcc_enet_rx(struct rtnet_device *rtdev, int* packets, nanosecs_abs_t *time_stamp)
|
{
|
struct fcc_enet_private *cep;
|
volatile cbd_t *bdp;
|
struct rtskb *skb;
|
ushort pkt_len;
|
|
RT_DEBUG(__FUNCTION__": ...\n");
|
|
cep = (struct fcc_enet_private *)rtdev->priv;
|
|
/* First, grab all of the stats for the incoming packet.
|
* These get messed up if we get called due to a busy condition.
|
*/
|
bdp = cep->cur_rx;
|
|
for (;;) {
|
if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
|
break;
|
|
#ifndef final_version
|
/* Since we have allocated space to hold a complete frame, both
|
* the first and last indicators should be set.
|
*/
|
if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
|
(BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
|
rtdm_printk("CPM ENET: rcv is not first+last\n");
|
#endif
|
|
/* Frame too long or too short. */
|
if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
|
cep->stats.rx_length_errors++;
|
if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
|
cep->stats.rx_frame_errors++;
|
if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
|
cep->stats.rx_crc_errors++;
|
if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
|
cep->stats.rx_crc_errors++;
|
if (bdp->cbd_sc & BD_ENET_RX_CL) /* Late Collision */
|
cep->stats.rx_frame_errors++;
|
|
if (!(bdp->cbd_sc &
|
(BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR
|
| BD_ENET_RX_OV | BD_ENET_RX_CL)))
|
{
|
/* Process the incoming frame. */
|
cep->stats.rx_packets++;
|
|
/* Remove the FCS from the packet length. */
|
pkt_len = bdp->cbd_datlen - 4;
|
cep->stats.rx_bytes += pkt_len;
|
|
/* This does 16 byte alignment, much more than we need. */
|
skb = rtnetdev_alloc_rtskb(rtdev, pkt_len);
|
|
if (skb == NULL) {
|
rtdm_printk("%s: Memory squeeze, dropping packet.\n", rtdev->name);
|
cep->stats.rx_dropped++;
|
}
|
else {
|
rtskb_put(skb,pkt_len); /* Make room */
|
memcpy(skb->data,
|
(unsigned char *)__va(bdp->cbd_bufaddr),
|
pkt_len);
|
skb->protocol=rt_eth_type_trans(skb,rtdev);
|
skb->time_stamp = *time_stamp;
|
rtnetif_rx(skb);
|
(*packets)++;
|
}
|
}
|
|
/* Clear the status flags for this buffer. */
|
bdp->cbd_sc &= ~BD_ENET_RX_STATS;
|
|
/* Mark the buffer empty. */
|
bdp->cbd_sc |= BD_ENET_RX_EMPTY;
|
|
/* Update BD pointer to next entry. */
|
if (bdp->cbd_sc & BD_ENET_RX_WRAP)
|
bdp = cep->rx_bd_base;
|
else
|
bdp++;
|
|
}
|
cep->cur_rx = (cbd_t *)bdp;
|
|
return 0;
|
}
|
|
static int
|
fcc_enet_close(struct rtnet_device *rtdev)
|
{
|
/* Don't know what to do yet. */
|
rtnetif_stop_queue(rtdev);
|
|
return 0;
|
}
|
|
static struct net_device_stats *fcc_enet_get_stats(struct rtnet_device *rtdev)
|
{
|
struct fcc_enet_private *cep = (struct fcc_enet_private *)rtdev->priv;
|
|
return &cep->stats;
|
}
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
|
/* NOTE: Most of the following comes from the FEC driver for 860. The
|
* overall structure of MII code has been retained (as it's proved stable
|
* and well-tested), but actual transfer requests are processed "at once"
|
* instead of being queued (there's no interrupt-driven MII transfer
|
* mechanism, one has to toggle the data/clock bits manually).
|
*/
|
static int
|
mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
|
{
|
struct fcc_enet_private *fep;
|
int retval, tmp;
|
|
/* Add PHY address to register command. */
|
fep = dev->priv;
|
regval |= fep->phy_addr << 23;
|
|
retval = 0;
|
|
tmp = mii_send_receive(fep->fip, regval);
|
if (func)
|
func(tmp, dev);
|
|
return retval;
|
}
|
|
static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
|
{
|
int k;
|
|
if(!c)
|
return;
|
|
for(k = 0; (c+k)->mii_data != mk_mii_end; k++)
|
mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
|
}
|
|
static void mii_parse_sr(uint mii_reg, struct net_device *dev)
|
{
|
volatile struct fcc_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
|
|
if (mii_reg & 0x0004)
|
s |= PHY_STAT_LINK;
|
if (mii_reg & 0x0010)
|
s |= PHY_STAT_FAULT;
|
if (mii_reg & 0x0020)
|
s |= PHY_STAT_ANC;
|
|
fep->phy_status = s;
|
fep->link = (s & PHY_STAT_LINK) ? 1 : 0;
|
}
|
|
static void mii_parse_cr(uint mii_reg, struct net_device *dev)
|
{
|
volatile struct fcc_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);
|
|
if (mii_reg & 0x1000)
|
s |= PHY_CONF_ANE;
|
if (mii_reg & 0x4000)
|
s |= PHY_CONF_LOOP;
|
|
fep->phy_status = s;
|
}
|
|
static void mii_parse_anar(uint mii_reg, struct net_device *dev)
|
{
|
volatile struct fcc_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
s &= ~(PHY_CONF_SPMASK);
|
|
if (mii_reg & 0x0020)
|
s |= PHY_CONF_10HDX;
|
if (mii_reg & 0x0040)
|
s |= PHY_CONF_10FDX;
|
if (mii_reg & 0x0080)
|
s |= PHY_CONF_100HDX;
|
if (mii_reg & 0x00100)
|
s |= PHY_CONF_100FDX;
|
|
fep->phy_status = s;
|
}
|
|
/* Some boards don't have the MDIRQ line connected (PM826 is such a board) */
|
|
static void mii_waitfor_anc(uint mii_reg, struct net_device *dev)
|
{
|
struct fcc_enet_private *fep;
|
int regval;
|
int i;
|
|
fep = dev->priv;
|
regval = mk_mii_read(MII_REG_SR) | (fep->phy_addr << 23);
|
|
for (i = 0; i < 1000; i++)
|
{
|
if (mii_send_receive(fep->fip, regval) & 0x20)
|
return;
|
udelay(10000);
|
}
|
|
printk("%s: autonegotiation timeout\n", dev->name);
|
}
|
|
/* ------------------------------------------------------------------------- */
|
/* The Level one LXT970 is used by many boards */
|
|
#ifdef CONFIG_FCC_LXT970
|
|
#define MII_LXT970_MIRROR 16 /* Mirror register */
|
#define MII_LXT970_IER 17 /* Interrupt Enable Register */
|
#define MII_LXT970_ISR 18 /* Interrupt Status Register */
|
#define MII_LXT970_CONFIG 19 /* Configuration Register */
|
#define MII_LXT970_CSR 20 /* Chip Status Register */
|
|
static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
|
{
|
volatile struct fcc_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
s &= ~(PHY_STAT_SPMASK);
|
|
if (mii_reg & 0x0800) {
|
if (mii_reg & 0x1000)
|
s |= PHY_STAT_100FDX;
|
else
|
s |= PHY_STAT_100HDX;
|
} else {
|
if (mii_reg & 0x1000)
|
s |= PHY_STAT_10FDX;
|
else
|
s |= PHY_STAT_10HDX;
|
}
|
|
fep->phy_status = s;
|
}
|
|
static phy_info_t phy_info_lxt970 = {
|
0x07810000,
|
"LXT970",
|
|
(const phy_cmd_t []) { /* config */
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* startup - enable interrupts */
|
{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
|
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* ack_int */
|
/* read SR and ISR to acknowledge */
|
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
{ mk_mii_read(MII_LXT970_ISR), NULL },
|
|
/* find out the current status */
|
|
{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* shutdown - disable interrupts */
|
{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
|
{ mk_mii_end, }
|
},
|
};
|
|
#endif /* CONFIG_FEC_LXT970 */
|
|
/* ------------------------------------------------------------------------- */
|
/* The Level one LXT971 is used on some of my custom boards */
|
|
#ifdef CONFIG_FCC_LXT971
|
|
/* register definitions for the 971 */
|
|
#define MII_LXT971_PCR 16 /* Port Control Register */
|
#define MII_LXT971_SR2 17 /* Status Register 2 */
|
#define MII_LXT971_IER 18 /* Interrupt Enable Register */
|
#define MII_LXT971_ISR 19 /* Interrupt Status Register */
|
#define MII_LXT971_LCR 20 /* LED Control Register */
|
#define MII_LXT971_TCR 30 /* Transmit Control Register */
|
|
/*
|
* I had some nice ideas of running the MDIO faster...
|
* The 971 should support 8MHz and I tried it, but things acted really
|
* weird, so 2.5 MHz ought to be enough for anyone...
|
*/
|
|
static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
|
{
|
volatile struct fcc_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
s &= ~(PHY_STAT_SPMASK);
|
|
if (mii_reg & 0x4000) {
|
if (mii_reg & 0x0200)
|
s |= PHY_STAT_100FDX;
|
else
|
s |= PHY_STAT_100HDX;
|
} else {
|
if (mii_reg & 0x0200)
|
s |= PHY_STAT_10FDX;
|
else
|
s |= PHY_STAT_10HDX;
|
}
|
if (mii_reg & 0x0008)
|
s |= PHY_STAT_FAULT;
|
|
fep->phy_status = s;
|
}
|
|
static phy_info_t phy_info_lxt971 = {
|
0x0001378e,
|
"LXT971",
|
|
(const phy_cmd_t []) { /* config */
|
// { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* startup - enable interrupts */
|
{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
|
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
|
|
/* Somehow does the 971 tell me that the link is down
|
* the first read after power-up.
|
* read here to get a valid value in ack_int */
|
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
#ifdef CONFIG_PM826
|
{ mk_mii_read(MII_REG_SR), mii_waitfor_anc },
|
#endif
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* ack_int */
|
/* find out the current status */
|
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
|
|
/* we only need to read ISR to acknowledge */
|
|
{ mk_mii_read(MII_LXT971_ISR), NULL },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* shutdown - disable interrupts */
|
{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
|
{ mk_mii_end, }
|
},
|
};
|
|
#endif /* CONFIG_FEC_LXT971 */
|
|
|
/* ------------------------------------------------------------------------- */
|
/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
|
|
#ifdef CONFIG_FCC_QS6612
|
|
/* register definitions */
|
|
#define MII_QS6612_MCR 17 /* Mode Control Register */
|
#define MII_QS6612_FTR 27 /* Factory Test Register */
|
#define MII_QS6612_MCO 28 /* Misc. Control Register */
|
#define MII_QS6612_ISR 29 /* Interrupt Source Register */
|
#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
|
#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
|
|
static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
|
{
|
volatile struct fcc_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
s &= ~(PHY_STAT_SPMASK);
|
|
switch((mii_reg >> 2) & 7) {
|
case 1: s |= PHY_STAT_10HDX; break;
|
case 2: s |= PHY_STAT_100HDX; break;
|
case 5: s |= PHY_STAT_10FDX; break;
|
case 6: s |= PHY_STAT_100FDX; break;
|
}
|
|
fep->phy_status = s;
|
}
|
|
static phy_info_t phy_info_qs6612 = {
|
0x00181440,
|
"QS6612",
|
|
(const phy_cmd_t []) { /* config */
|
// { mk_mii_write(MII_REG_ANAR, 0x061), NULL }, /* 10 Mbps */
|
|
/* The PHY powers up isolated on the RPX,
|
* so send a command to allow operation.
|
*/
|
|
{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
|
|
/* parse cr and anar to get some info */
|
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* startup - enable interrupts */
|
{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
|
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* ack_int */
|
|
/* we need to read ISR, SR and ANER to acknowledge */
|
|
{ mk_mii_read(MII_QS6612_ISR), NULL },
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
{ mk_mii_read(MII_REG_ANER), NULL },
|
|
/* read pcr to get info */
|
|
{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* shutdown - disable interrupts */
|
{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
|
{ mk_mii_end, }
|
},
|
};
|
|
|
#endif /* CONFIG_FCC_QS6612 */
|
|
/* ------------------------------------------------------------------------- */
|
/* The AMD Am79C873 PHY is on PM826 */
|
|
#ifdef CONFIG_FCC_AMD79C873
|
|
#define MII_79C873_IER 17 /* Interrupt Enable Register */
|
#define MII_79C873_DR 18 /* Diagnostic Register */
|
|
static void mii_parse_79c873_cr(uint mii_reg, struct net_device *dev)
|
{
|
volatile struct fcc_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
s &= ~(PHY_STAT_SPMASK);
|
|
if (mii_reg & 0x2000) {
|
if (mii_reg & 0x0100)
|
s |= PHY_STAT_100FDX;
|
else
|
s |= PHY_STAT_100HDX;
|
} else {
|
if (mii_reg & 0x0100)
|
s |= PHY_STAT_10FDX;
|
else
|
s |= PHY_STAT_10HDX;
|
}
|
|
fep->phy_status = s;
|
}
|
|
static phy_info_t phy_info_79c873 = {
|
0x00181b80,
|
"AMD79C873",
|
|
(const phy_cmd_t []) { /* config */
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* startup */
|
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
|
#ifdef CONFIG_PM826
|
{ mk_mii_read(MII_REG_SR), mii_waitfor_anc },
|
#endif
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* ack_int */
|
/* read SR twice: to acknowledge and to get link status */
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
|
/* find out the current link parameters */
|
|
{ mk_mii_read(MII_REG_CR), mii_parse_79c873_cr },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* shutdown - disable interrupts */
|
{ mk_mii_write(MII_79C873_IER, 0x0000), NULL },
|
{ mk_mii_end, }
|
},
|
};
|
|
#endif /* CONFIG_FCC_AMD79C873 */
|
|
|
/* ------------------------------------------------------------------------- */
|
/* The Davicom DM9131 is used on the HYMOD board */
|
|
#ifdef CONFIG_FCC_DM9131
|
|
/* register definitions */
|
|
#define MII_DM9131_ACR 16 /* Aux. Config Register */
|
#define MII_DM9131_ACSR 17 /* Aux. Config/Status Register */
|
#define MII_DM9131_10TCSR 18 /* 10BaseT Config/Status Reg. */
|
#define MII_DM9131_INTR 21 /* Interrupt Register */
|
#define MII_DM9131_RECR 22 /* Receive Error Counter Reg. */
|
#define MII_DM9131_DISCR 23 /* Disconnect Counter Register */
|
|
static void mii_parse_dm9131_acsr(uint mii_reg, struct net_device *dev)
|
{
|
volatile struct fcc_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
s &= ~(PHY_STAT_SPMASK);
|
|
switch ((mii_reg >> 12) & 0xf) {
|
case 1: s |= PHY_STAT_10HDX; break;
|
case 2: s |= PHY_STAT_10FDX; break;
|
case 4: s |= PHY_STAT_100HDX; break;
|
case 8: s |= PHY_STAT_100FDX; break;
|
}
|
|
fep->phy_status = s;
|
}
|
|
static phy_info_t phy_info_dm9131 = {
|
0x00181b80,
|
"DM9131",
|
|
(const phy_cmd_t []) { /* config */
|
/* parse cr and anar to get some info */
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* startup - enable interrupts */
|
{ mk_mii_write(MII_DM9131_INTR, 0x0002), NULL },
|
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* ack_int */
|
|
/* we need to read INTR, SR and ANER to acknowledge */
|
|
{ mk_mii_read(MII_DM9131_INTR), NULL },
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
{ mk_mii_read(MII_REG_ANER), NULL },
|
|
/* read acsr to get info */
|
|
{ mk_mii_read(MII_DM9131_ACSR), mii_parse_dm9131_acsr },
|
{ mk_mii_end, }
|
},
|
(const phy_cmd_t []) { /* shutdown - disable interrupts */
|
{ mk_mii_write(MII_DM9131_INTR, 0x0f00), NULL },
|
{ mk_mii_end, }
|
},
|
};
|
|
|
#endif /* CONFIG_FEC_DM9131 */
|
|
|
static phy_info_t *phy_info[] = {
|
|
#ifdef CONFIG_FCC_LXT970
|
&phy_info_lxt970,
|
#endif /* CONFIG_FCC_LXT970 */
|
|
#ifdef CONFIG_FCC_LXT971
|
&phy_info_lxt971,
|
#endif /* CONFIG_FCC_LXT971 */
|
|
#ifdef CONFIG_FCC_QS6612
|
&phy_info_qs6612,
|
#endif /* CONFIG_FCC_QS6612 */
|
|
#ifdef CONFIG_FCC_DM9131
|
&phy_info_dm9131,
|
#endif /* CONFIG_FCC_DM9131 */
|
|
#ifdef CONFIG_FCC_AMD79C873
|
&phy_info_79c873,
|
#endif /* CONFIG_FCC_AMD79C873 */
|
|
NULL
|
};
|
|
static void mii_display_status(struct net_device *dev)
|
{
|
volatile struct fcc_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
if (!fep->link && !fep->old_link) {
|
/* Link is still down - don't print anything */
|
return;
|
}
|
|
printk("%s: status: ", dev->name);
|
|
if (!fep->link) {
|
printk("link down");
|
} else {
|
printk("link up");
|
|
switch(s & PHY_STAT_SPMASK) {
|
case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break;
|
case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break;
|
case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break;
|
case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break;
|
default:
|
printk(", Unknown speed/duplex");
|
}
|
|
if (s & PHY_STAT_ANC)
|
printk(", auto-negotiation complete");
|
}
|
|
if (s & PHY_STAT_FAULT)
|
printk(", remote fault");
|
|
printk(".\n");
|
}
|
|
static void mii_display_config(struct net_device *dev)
|
{
|
volatile struct fcc_enet_private *fep = dev->priv;
|
uint s = fep->phy_status;
|
|
printk("%s: config: auto-negotiation ", dev->name);
|
|
if (s & PHY_CONF_ANE)
|
printk("on");
|
else
|
printk("off");
|
|
if (s & PHY_CONF_100FDX)
|
printk(", 100FDX");
|
if (s & PHY_CONF_100HDX)
|
printk(", 100HDX");
|
if (s & PHY_CONF_10FDX)
|
printk(", 10FDX");
|
if (s & PHY_CONF_10HDX)
|
printk(", 10HDX");
|
if (!(s & PHY_CONF_SPMASK))
|
printk(", No speed/duplex selected?");
|
|
if (s & PHY_CONF_LOOP)
|
printk(", loopback enabled");
|
|
printk(".\n");
|
|
fep->sequence_done = 1;
|
}
|
|
static void mii_relink(struct net_device *dev)
|
{
|
struct fcc_enet_private *fep = dev->priv;
|
int duplex;
|
|
fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
|
mii_display_status(dev);
|
fep->old_link = fep->link;
|
|
if (fep->link) {
|
duplex = 0;
|
if (fep->phy_status
|
& (PHY_STAT_100FDX | PHY_STAT_10FDX))
|
duplex = 1;
|
fcc_restart(dev, duplex);
|
} else {
|
fcc_stop(dev);
|
}
|
}
|
|
static void mii_queue_relink(uint mii_reg, struct net_device *dev)
|
{
|
struct fcc_enet_private *fep = dev->priv;
|
|
fep->phy_task.routine = (void *)mii_relink;
|
fep->phy_task.data = dev;
|
schedule_task(&fep->phy_task);
|
}
|
|
static void mii_queue_config(uint mii_reg, struct net_device *dev)
|
{
|
struct fcc_enet_private *fep = dev->priv;
|
|
fep->phy_task.routine = (void *)mii_display_config;
|
fep->phy_task.data = dev;
|
schedule_task(&fep->phy_task);
|
}
|
|
|
|
phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_REG_CR), mii_queue_relink },
|
{ mk_mii_end, } };
|
phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_REG_CR), mii_queue_config },
|
{ mk_mii_end, } };
|
|
|
/* Read remainder of PHY ID.
|
*/
|
static void
|
mii_discover_phy3(uint mii_reg, struct net_device *dev)
|
{
|
struct fcc_enet_private *fep;
|
int i;
|
|
fep = dev->priv;
|
fep->phy_id |= (mii_reg & 0xffff);
|
|
for(i = 0; phy_info[i]; i++)
|
if(phy_info[i]->id == (fep->phy_id >> 4))
|
break;
|
|
if(!phy_info[i])
|
panic("%s: PHY id 0x%08x is not supported!\n",
|
dev->name, fep->phy_id);
|
|
fep->phy = phy_info[i];
|
|
printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
|
dev->name, fep->phy_addr, fep->phy->name, fep->phy_id);
|
}
|
|
/* Scan all of the MII PHY addresses looking for someone to respond
|
* with a valid ID. This usually happens quickly.
|
*/
|
static void
|
mii_discover_phy(uint mii_reg, struct net_device *dev)
|
{
|
struct fcc_enet_private *fep;
|
uint phytype;
|
|
fep = dev->priv;
|
|
if ((phytype = (mii_reg & 0xfff)) != 0xfff && phytype != 0) {
|
|
/* Got first part of ID, now get remainder. */
|
fep->phy_id = phytype << 16;
|
mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), mii_discover_phy3);
|
} else {
|
fep->phy_addr++;
|
if (fep->phy_addr < 32) {
|
mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
|
mii_discover_phy);
|
} else {
|
printk("FCC: No PHY device found.\n");
|
}
|
}
|
}
|
|
/* This interrupt occurs when the PHY detects a link change. */
|
#if !defined (CONFIG_PM826)
|
static void
|
mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
|
{
|
struct net_device *dev = dev_id;
|
struct fcc_enet_private *fep = dev->priv;
|
|
mii_do_cmd(dev, fep->phy->ack_int);
|
mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
|
}
|
#endif /* !CONFIG_PM826 */
|
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
#ifdef ORIGINAL_VERSION
|
/* Set or clear the multicast filter for this adaptor.
|
* Skeleton taken from sunlance driver.
|
* The CPM Ethernet implementation allows Multicast as well as individual
|
* MAC address filtering. Some of the drivers check to make sure it is
|
* a group multicast address, and discard those that are not. I guess I
|
* will do the same for now, but just remove the test if you want
|
* individual filtering as well (do the upper net layers want or support
|
* this kind of feature?).
|
*/
|
static void
|
set_multicast_list(struct net_device *dev)
|
{
|
struct fcc_enet_private *cep;
|
struct dev_mc_list *dmi;
|
u_char *mcptr, *tdptr;
|
volatile fcc_enet_t *ep;
|
int i, j;
|
|
cep = (struct fcc_enet_private *)dev->priv;
|
|
return;
|
/* Get pointer to FCC area in parameter RAM.
|
*/
|
ep = (fcc_enet_t *)dev->base_addr;
|
|
if (dev->flags&IFF_PROMISC) {
|
|
/* Log any net taps. */
|
printk("%s: Promiscuous mode enabled.\n", dev->name);
|
cep->fccp->fcc_fpsmr |= FCC_PSMR_PRO;
|
} else {
|
|
cep->fccp->fcc_fpsmr &= ~FCC_PSMR_PRO;
|
|
if (dev->flags & IFF_ALLMULTI) {
|
/* Catch all multicast addresses, so set the
|
* filter to all 1's.
|
*/
|
ep->fen_gaddrh = 0xffffffff;
|
ep->fen_gaddrl = 0xffffffff;
|
}
|
else {
|
/* Clear filter and add the addresses in the list.
|
*/
|
ep->fen_gaddrh = 0;
|
ep->fen_gaddrl = 0;
|
|
dmi = dev->mc_list;
|
|
for (i=0; i<dev->mc_count; i++) {
|
|
/* Only support group multicast for now.
|
*/
|
if (!(dmi->dmi_addr[0] & 1))
|
continue;
|
|
/* The address in dmi_addr is LSB first,
|
* and taddr is MSB first. We have to
|
* copy bytes MSB first from dmi_addr.
|
*/
|
mcptr = (u_char *)dmi->dmi_addr + 5;
|
tdptr = (u_char *)&ep->fen_taddrh;
|
for (j=0; j<6; j++)
|
*tdptr++ = *mcptr--;
|
|
/* Ask CPM to run CRC and set bit in
|
* filter mask.
|
*/
|
cpmp->cp_cpcr = mk_cr_cmd(cep->fip->fc_cpmpage,
|
cep->fip->fc_cpmblock, 0x0c,
|
CPM_CR_SET_GADDR) | CPM_CR_FLG;
|
udelay(10);
|
while (cpmp->cp_cpcr & CPM_CR_FLG);
|
}
|
}
|
}
|
}
|
|
|
/* Set the individual MAC address.
|
*/
|
int fcc_enet_set_mac_address(struct net_device *dev, void *p)
|
{
|
struct sockaddr *addr= (struct sockaddr *) p;
|
struct fcc_enet_private *cep;
|
volatile fcc_enet_t *ep;
|
unsigned char *eap;
|
int i;
|
|
cep = (struct fcc_enet_private *)(dev->priv);
|
ep = cep->ep;
|
|
if (netif_running(dev))
|
return -EBUSY;
|
|
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
|
|
eap = (unsigned char *) &(ep->fen_paddrh);
|
for (i=5; i>=0; i--)
|
*eap++ = addr->sa_data[i];
|
|
return 0;
|
}
|
#endif /* ORIGINAL_VERSION */
|
|
|
/* Initialize the CPM Ethernet on FCC.
|
*/
|
int __init fec_enet_init(void)
|
{
|
struct rtnet_device *rtdev = NULL;
|
struct fcc_enet_private *cep;
|
fcc_info_t *fip;
|
int i, np;
|
volatile immap_t *immap;
|
volatile iop8260_t *io;
|
|
immap = (immap_t *)IMAP_ADDR; /* and to internal registers */
|
io = &immap->im_ioport;
|
|
for (np = 0, fip = fcc_ports;
|
np < sizeof(fcc_ports) / sizeof(fcc_info_t);
|
np++, fip++) {
|
|
/* Skip FCC ports not used for RTnet.
|
*/
|
if (np != rtnet_fcc - 1) continue;
|
|
/* Allocate some private information and create an Ethernet device instance.
|
*/
|
if (!rx_pool_size)
|
rx_pool_size = RX_RING_SIZE * 2;
|
|
rtdev = rt_alloc_etherdev(sizeof(struct fcc_enet_private),
|
rx_pool_size + TX_RING_SIZE);
|
if (rtdev == NULL) {
|
printk(KERN_ERR "fcc_enet: Could not allocate ethernet device.\n");
|
return -1;
|
}
|
rtdev_alloc_name(rtdev, "rteth%d");
|
rt_rtdev_connect(rtdev, &RTDEV_manager);
|
rtdev->vers = RTDEV_VERS_2_0;
|
|
cep = (struct fcc_enet_private *)rtdev->priv;
|
rtdm_lock_init(&cep->lock);
|
cep->fip = fip;
|
fip->rtdev = rtdev; /* need for cleanup */
|
|
init_fcc_shutdown(fip, cep, immap);
|
init_fcc_ioports(fip, io, immap);
|
init_fcc_param(fip, rtdev, immap);
|
|
rtdev->base_addr = (unsigned long)(cep->ep);
|
|
/* The CPM Ethernet specific entries in the device
|
* structure.
|
*/
|
rtdev->open = fcc_enet_open;
|
rtdev->hard_start_xmit = fcc_enet_start_xmit;
|
rtdev->stop = fcc_enet_close;
|
rtdev->hard_header = &rt_eth_header;
|
rtdev->get_stats = fcc_enet_get_stats;
|
|
if ((i = rt_register_rtnetdev(rtdev))) {
|
rtdm_irq_disable(&cep->irq_handle);
|
rtdm_irq_free(&cep->irq_handle);
|
rtdev_free(rtdev);
|
return i;
|
}
|
init_fcc_startup(fip, rtdev);
|
|
printk("%s: FCC%d ENET Version 0.4, %02x:%02x:%02x:%02x:%02x:%02x\n",
|
rtdev->name, fip->fc_fccnum + 1,
|
rtdev->dev_addr[0], rtdev->dev_addr[1], rtdev->dev_addr[2],
|
rtdev->dev_addr[3], rtdev->dev_addr[4], rtdev->dev_addr[5]);
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
/* Queue up command to detect the PHY and initialize the
|
* remainder of the interface.
|
*/
|
cep->phy_addr = 0;
|
mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
}
|
|
return 0;
|
}
|
|
/* Make sure the device is shut down during initialization.
|
*/
|
static void __init
|
init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
|
volatile immap_t *immap)
|
{
|
volatile fcc_enet_t *ep;
|
volatile fcc_t *fccp;
|
|
/* Get pointer to FCC area in parameter RAM.
|
*/
|
ep = (fcc_enet_t *)(&immap->im_dprambase[fip->fc_proff]);
|
|
/* And another to the FCC register area.
|
*/
|
fccp = (volatile fcc_t *)(&immap->im_fcc[fip->fc_fccnum]);
|
cep->fccp = fccp; /* Keep the pointers handy */
|
cep->ep = ep;
|
|
/* Disable receive and transmit in case someone left it running.
|
*/
|
fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
|
}
|
|
/* Initialize the I/O pins for the FCC Ethernet.
|
*/
|
static void __init
|
init_fcc_ioports(fcc_info_t *fip, volatile iop8260_t *io,
|
volatile immap_t *immap)
|
{
|
|
/* FCC1 pins are on port A/C. FCC2/3 are port B/C.
|
*/
|
if (fip->fc_proff == PROFF_FCC1) {
|
/* Configure port A and C pins for FCC1 Ethernet.
|
*/
|
io->iop_pdira &= ~PA1_DIRA0;
|
io->iop_pdira |= PA1_DIRA1;
|
io->iop_psora &= ~PA1_PSORA0;
|
io->iop_psora |= PA1_PSORA1;
|
io->iop_ppara |= (PA1_DIRA0 | PA1_DIRA1);
|
}
|
if (fip->fc_proff == PROFF_FCC2) {
|
/* Configure port B and C pins for FCC Ethernet.
|
*/
|
io->iop_pdirb &= ~PB2_DIRB0;
|
io->iop_pdirb |= PB2_DIRB1;
|
io->iop_psorb &= ~PB2_PSORB0;
|
io->iop_psorb |= PB2_PSORB1;
|
io->iop_pparb |= (PB2_DIRB0 | PB2_DIRB1);
|
}
|
if (fip->fc_proff == PROFF_FCC3) {
|
/* Configure port B and C pins for FCC Ethernet.
|
*/
|
io->iop_pdirb &= ~PB3_DIRB0;
|
io->iop_pdirb |= PB3_DIRB1;
|
io->iop_psorb &= ~PB3_PSORB0;
|
io->iop_psorb |= PB3_PSORB1;
|
io->iop_pparb |= (PB3_DIRB0 | PB3_DIRB1);
|
}
|
|
/* Port C has clocks......
|
*/
|
io->iop_psorc &= ~(fip->fc_trxclocks);
|
io->iop_pdirc &= ~(fip->fc_trxclocks);
|
io->iop_pparc |= fip->fc_trxclocks;
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
/* ....and the MII serial clock/data.
|
*/
|
#ifndef CONFIG_PM826
|
IOP_DAT(io,fip->fc_port) |= (fip->fc_mdio | fip->fc_mdck);
|
IOP_ODR(io,fip->fc_port) &= ~(fip->fc_mdio | fip->fc_mdck);
|
#endif /* CONFIG_PM826 */
|
IOP_DIR(io,fip->fc_port) |= (fip->fc_mdio | fip->fc_mdck);
|
IOP_PAR(io,fip->fc_port) &= ~(fip->fc_mdio | fip->fc_mdck);
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
/* Configure Serial Interface clock routing.
|
* First, clear all FCC bits to zero,
|
* then set the ones we want.
|
*/
|
immap->im_cpmux.cmx_fcr &= ~(fip->fc_clockmask);
|
immap->im_cpmux.cmx_fcr |= fip->fc_clockroute;
|
}
|
|
static void __init
|
init_fcc_param(fcc_info_t *fip, struct rtnet_device *rtdev,
|
volatile immap_t *immap)
|
{
|
unsigned char *eap;
|
unsigned long mem_addr;
|
bd_t *bd;
|
int i, j;
|
struct fcc_enet_private *cep;
|
volatile fcc_enet_t *ep;
|
volatile cbd_t *bdp;
|
volatile cpm8260_t *cp;
|
|
cep = (struct fcc_enet_private *)rtdev->priv;
|
ep = cep->ep;
|
cp = cpmp;
|
|
bd = (bd_t *)__res;
|
|
/* Zero the whole thing.....I must have missed some individually.
|
* It works when I do this.
|
*/
|
memset((char *)ep, 0, sizeof(fcc_enet_t));
|
|
/* Allocate space for the buffer descriptors in the DP ram.
|
* These are relative offsets in the DP ram address space.
|
* Initialize base addresses for the buffer descriptors.
|
*/
|
cep->rx_bd_base = (cbd_t *)m8260_cpm_hostalloc(sizeof(cbd_t) * RX_RING_SIZE, 8);
|
ep->fen_genfcc.fcc_rbase = __pa(cep->rx_bd_base);
|
cep->tx_bd_base = (cbd_t *)m8260_cpm_hostalloc(sizeof(cbd_t) * TX_RING_SIZE, 8);
|
ep->fen_genfcc.fcc_tbase = __pa(cep->tx_bd_base);
|
|
cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
|
cep->cur_rx = cep->rx_bd_base;
|
|
ep->fen_genfcc.fcc_rstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
|
ep->fen_genfcc.fcc_tstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
|
|
/* Set maximum bytes per receive buffer.
|
* It must be a multiple of 32.
|
*/
|
ep->fen_genfcc.fcc_mrblr = PKT_MAXBLR_SIZE;
|
|
/* Allocate space in the reserved FCC area of DPRAM for the
|
* internal buffers. No one uses this space (yet), so we
|
* can do this. Later, we will add resource management for
|
* this area.
|
*/
|
mem_addr = CPM_FCC_SPECIAL_BASE + (fip->fc_fccnum * 128);
|
ep->fen_genfcc.fcc_riptr = mem_addr;
|
ep->fen_genfcc.fcc_tiptr = mem_addr+32;
|
ep->fen_padptr = mem_addr+64;
|
memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32);
|
|
ep->fen_genfcc.fcc_rbptr = 0;
|
ep->fen_genfcc.fcc_tbptr = 0;
|
ep->fen_genfcc.fcc_rcrc = 0;
|
ep->fen_genfcc.fcc_tcrc = 0;
|
ep->fen_genfcc.fcc_res1 = 0;
|
ep->fen_genfcc.fcc_res2 = 0;
|
|
ep->fen_camptr = 0; /* CAM isn't used in this driver */
|
|
/* Set CRC preset and mask.
|
*/
|
ep->fen_cmask = 0xdebb20e3;
|
ep->fen_cpres = 0xffffffff;
|
|
ep->fen_crcec = 0; /* CRC Error counter */
|
ep->fen_alec = 0; /* alignment error counter */
|
ep->fen_disfc = 0; /* discard frame counter */
|
ep->fen_retlim = 15; /* Retry limit threshold */
|
ep->fen_pper = 0; /* Normal persistence */
|
|
/* Clear hash filter tables.
|
*/
|
ep->fen_gaddrh = 0;
|
ep->fen_gaddrl = 0;
|
ep->fen_iaddrh = 0;
|
ep->fen_iaddrl = 0;
|
|
/* Clear the Out-of-sequence TxBD.
|
*/
|
ep->fen_tfcstat = 0;
|
ep->fen_tfclen = 0;
|
ep->fen_tfcptr = 0;
|
|
ep->fen_mflr = PKT_MAXBUF_SIZE; /* maximum frame length register */
|
ep->fen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */
|
|
/* Set Ethernet station address.
|
*
|
* This is supplied in the board information structure, so we
|
* copy that into the controller.
|
*/
|
eap = (unsigned char *)&(ep->fen_paddrh);
|
#if defined(CONFIG_CPU86) || defined(CONFIG_TQM8260)
|
/*
|
* TQM8260 and CPU86 use sequential MAC addresses
|
*/
|
*eap++ = rtdev->dev_addr[5] = bd->bi_enetaddr[5] + fip->fc_fccnum;
|
for (i=4; i>=0; i--) {
|
*eap++ = rtdev->dev_addr[i] = bd->bi_enetaddr[i];
|
}
|
#elif defined(CONFIG_PM826)
|
*eap++ = rtdev->dev_addr[5] = bd->bi_enetaddr[5] + fip->fc_fccnum + 1;
|
for (i=4; i>=0; i--) {
|
*eap++ = rtdev->dev_addr[i] = bd->bi_enetaddr[i];
|
}
|
#else
|
/*
|
* So, far we have only been given one Ethernet address. We make
|
* it unique by toggling selected bits in the upper byte of the
|
* non-static part of the address (for the second and third ports,
|
* the first port uses the address supplied as is).
|
*/
|
for (i=5; i>=0; i--) {
|
if (i == 3 && fip->fc_fccnum != 0) {
|
rtdev->dev_addr[i] = bd->bi_enetaddr[i];
|
rtdev->dev_addr[i] ^= (1 << (7 - fip->fc_fccnum));
|
*eap++ = dev->dev_addr[i];
|
}
|
else {
|
*eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
|
}
|
}
|
#endif
|
|
ep->fen_taddrh = 0;
|
ep->fen_taddrm = 0;
|
ep->fen_taddrl = 0;
|
|
ep->fen_maxd1 = PKT_MAXDMA_SIZE; /* maximum DMA1 length */
|
ep->fen_maxd2 = PKT_MAXDMA_SIZE; /* maximum DMA2 length */
|
|
/* Clear stat counters, in case we ever enable RMON.
|
*/
|
ep->fen_octc = 0;
|
ep->fen_colc = 0;
|
ep->fen_broc = 0;
|
ep->fen_mulc = 0;
|
ep->fen_uspc = 0;
|
ep->fen_frgc = 0;
|
ep->fen_ospc = 0;
|
ep->fen_jbrc = 0;
|
ep->fen_p64c = 0;
|
ep->fen_p65c = 0;
|
ep->fen_p128c = 0;
|
ep->fen_p256c = 0;
|
ep->fen_p512c = 0;
|
ep->fen_p1024c = 0;
|
|
ep->fen_rfthr = 0; /* Suggested by manual */
|
ep->fen_rfcnt = 0;
|
ep->fen_cftype = 0;
|
|
/* Now allocate the host memory pages and initialize the
|
* buffer descriptors.
|
*/
|
bdp = cep->tx_bd_base;
|
for (i=0; i<TX_RING_SIZE; i++) {
|
|
/* Initialize the BD for every fragment in the page.
|
*/
|
bdp->cbd_sc = 0;
|
bdp->cbd_datlen = 0;
|
bdp->cbd_bufaddr = 0;
|
bdp++;
|
}
|
|
/* Set the last buffer to wrap.
|
*/
|
bdp--;
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
bdp = cep->rx_bd_base;
|
for (i=0; i<FCC_ENET_RX_PAGES; i++) {
|
|
/* Allocate a page.
|
*/
|
mem_addr = __get_free_page(GFP_KERNEL);
|
|
/* Initialize the BD for every fragment in the page.
|
*/
|
for (j=0; j<FCC_ENET_RX_FRPPG; j++) {
|
bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
|
bdp->cbd_datlen = 0;
|
bdp->cbd_bufaddr = __pa(mem_addr);
|
mem_addr += FCC_ENET_RX_FRSIZE;
|
bdp++;
|
}
|
}
|
|
/* Set the last buffer to wrap.
|
*/
|
bdp--;
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
/* Let's re-initialize the channel now. We have to do it later
|
* than the manual describes because we have just now finished
|
* the BD initialization.
|
*/
|
cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, 0x0c,
|
CPM_CR_INIT_TRX) | CPM_CR_FLG;
|
while (cp->cp_cpcr & CPM_CR_FLG);
|
|
cep->skb_cur = cep->skb_dirty = 0;
|
}
|
|
/* Let 'er rip.
|
*/
|
static void __init
|
init_fcc_startup(fcc_info_t *fip, struct rtnet_device *rtdev)
|
{
|
volatile fcc_t *fccp;
|
struct fcc_enet_private *cep;
|
|
cep = (struct fcc_enet_private *)rtdev->priv;
|
fccp = cep->fccp;
|
|
fccp->fcc_fcce = 0xffff; /* Clear any pending events */
|
|
/* Enable interrupts for transmit error, complete frame
|
* received, and any transmit buffer we have also set the
|
* interrupt flag.
|
*/
|
fccp->fcc_fccm = (FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
|
|
rt_stack_connect(rtdev, &STACK_manager);
|
|
/* Install our interrupt handler.
|
*/
|
if (rtdm_irq_request(&cep->irq_handle, fip->fc_interrupt,
|
fcc_enet_interrupt, 0, "rt_mpc8260_fcc_enet", rtdev)) {
|
printk(KERN_ERR "Couldn't request IRQ %d\n", rtdev->irq);
|
rtdev_free(rtdev);
|
return;
|
}
|
|
|
#if defined (CONFIG_XENO_DRIVERS_NET_USE_MDIO) && !defined (CONFIG_PM826)
|
# ifndef PHY_INTERRUPT
|
# error Want to use MDIO, but PHY_INTERRUPT not defined!
|
# endif
|
if (request_8xxirq(PHY_INTERRUPT, mii_link_interrupt, 0,
|
"mii", dev) < 0)
|
printk("Can't get MII IRQ %d\n", PHY_INTERRUPT);
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO, CONFIG_PM826 */
|
|
/* Set GFMR to enable Ethernet operating mode.
|
*/
|
#ifndef CONFIG_EST8260
|
fccp->fcc_gfmr = (FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
|
#else
|
fccp->fcc_gfmr = FCC_GFMR_MODE_ENET;
|
#endif
|
|
/* Set sync/delimiters.
|
*/
|
fccp->fcc_fdsr = 0xd555;
|
|
/* Set protocol specific processing mode for Ethernet.
|
* This has to be adjusted for Full Duplex operation after we can
|
* determine how to detect that.
|
*/
|
fccp->fcc_fpsmr = FCC_PSMR_ENCRC;
|
|
#ifdef CONFIG_ADS8260
|
/* Enable the PHY.
|
*/
|
ads_csr_addr[1] |= BCSR1_FETH_RST; /* Remove reset */
|
ads_csr_addr[1] &= ~BCSR1_FETHIEN; /* Enable */
|
#endif
|
|
#if defined(CONFIG_XENO_DRIVERS_NET_USE_MDIO) || defined(CONFIG_TQM8260)
|
/* start in full duplex mode, and negotiate speed */
|
fcc_restart (rtdev, 1);
|
#else
|
/* start in half duplex mode */
|
fcc_restart (rtdev, 0);
|
#endif
|
}
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
/* MII command/status interface.
|
* I'm not going to describe all of the details. You can find the
|
* protocol definition in many other places, including the data sheet
|
* of most PHY parts.
|
* I wonder what "they" were thinking (maybe weren't) when they leave
|
* the I2C in the CPM but I have to toggle these bits......
|
*
|
* Timing is a critical, especially on faster CPU's ...
|
*/
|
#define MDIO_DELAY 5
|
|
#define FCC_MDIO(bit) do { \
|
udelay(MDIO_DELAY); \
|
if (bit) \
|
IOP_DAT(io,fip->fc_port) |= fip->fc_mdio; \
|
else \
|
IOP_DAT(io,fip->fc_port) &= ~fip->fc_mdio; \
|
} while(0)
|
|
#define FCC_MDC(bit) do { \
|
udelay(MDIO_DELAY); \
|
if (bit) \
|
IOP_DAT(io,fip->fc_port) |= fip->fc_mdck; \
|
else \
|
IOP_DAT(io,fip->fc_port) &= ~fip->fc_mdck; \
|
} while(0)
|
|
static uint
|
mii_send_receive(fcc_info_t *fip, uint cmd)
|
{
|
uint retval;
|
int read_op, i, off;
|
volatile immap_t *immap;
|
volatile iop8260_t *io;
|
|
immap = (immap_t *)IMAP_ADDR;
|
io = &immap->im_ioport;
|
|
IOP_DIR(io,fip->fc_port) |= (fip->fc_mdio | fip->fc_mdck);
|
|
read_op = ((cmd & 0xf0000000) == 0x60000000);
|
|
/* Write preamble
|
*/
|
for (i = 0; i < 32; i++)
|
{
|
FCC_MDC(0);
|
FCC_MDIO(1);
|
FCC_MDC(1);
|
}
|
|
/* Write data
|
*/
|
for (i = 0, off = 31; i < (read_op ? 14 : 32); i++, --off)
|
{
|
FCC_MDC(0);
|
FCC_MDIO((cmd >> off) & 0x00000001);
|
FCC_MDC(1);
|
}
|
|
retval = cmd;
|
|
if (read_op)
|
{
|
retval >>= 16;
|
|
FCC_MDC(0);
|
IOP_DIR(io,fip->fc_port) &= ~fip->fc_mdio;
|
FCC_MDC(1);
|
FCC_MDC(0);
|
|
for (i = 0, off = 15; i < 16; i++, off--)
|
{
|
FCC_MDC(1);
|
udelay(MDIO_DELAY);
|
retval <<= 1;
|
if (IOP_DAT(io,fip->fc_port) & fip->fc_mdio)
|
retval++;
|
FCC_MDC(0);
|
}
|
}
|
|
IOP_DIR(io,fip->fc_port) |= (fip->fc_mdio | fip->fc_mdck);
|
|
for (i = 0; i < 32; i++)
|
{
|
FCC_MDC(0);
|
FCC_MDIO(1);
|
FCC_MDC(1);
|
}
|
|
return retval;
|
}
|
|
static void
|
fcc_stop(struct net_device *dev)
|
{
|
volatile fcc_t *fccp;
|
struct fcc_enet_private *fcp;
|
|
fcp = (struct fcc_enet_private *)(dev->priv);
|
fccp = fcp->fccp;
|
|
/* Disable transmit/receive */
|
fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
|
}
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
|
static void
|
fcc_restart(struct rtnet_device *rtdev, int duplex)
|
{
|
volatile fcc_t *fccp;
|
struct fcc_enet_private *fcp;
|
|
fcp = (struct fcc_enet_private *)rtdev->priv;
|
fccp = fcp->fccp;
|
|
if (duplex)
|
fccp->fcc_fpsmr |= (FCC_PSMR_FDE | FCC_PSMR_LPB);
|
else
|
fccp->fcc_fpsmr &= ~(FCC_PSMR_FDE | FCC_PSMR_LPB);
|
|
/* Enable transmit/receive */
|
fccp->fcc_gfmr |= FCC_GFMR_ENR | FCC_GFMR_ENT;
|
}
|
|
static int
|
fcc_enet_open(struct rtnet_device *rtdev)
|
{
|
struct fcc_enet_private *fep = rtdev->priv;
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_USE_MDIO
|
fep->sequence_done = 0;
|
fep->link = 0;
|
|
if (fep->phy) {
|
mii_do_cmd(dev, fep->phy->ack_int);
|
mii_do_cmd(dev, fep->phy->config);
|
mii_do_cmd(dev, phy_cmd_config); /* display configuration */
|
while(!fep->sequence_done)
|
schedule();
|
|
mii_do_cmd(dev, fep->phy->startup);
|
#ifdef CONFIG_PM826
|
/* Read the autonegotiation results */
|
mii_do_cmd(dev, fep->phy->ack_int);
|
mii_do_cmd(dev, phy_cmd_relink);
|
#endif /* CONFIG_PM826 */
|
rtnetif_start_queue(rtdev);
|
return 0; /* Success */
|
}
|
return -ENODEV; /* No PHY we understand */
|
#else
|
fep->link = 1;
|
rtnetif_start_queue(rtdev);
|
return 0; /* Always succeed */
|
#endif /* CONFIG_XENO_DRIVERS_NET_USE_MDIO */
|
}
|
|
static void __exit fcc_enet_cleanup(void)
|
{
|
struct rtnet_device *rtdev;
|
volatile immap_t *immap = (immap_t *)IMAP_ADDR;
|
struct fcc_enet_private *cep;
|
fcc_info_t *fip;
|
int np;
|
|
for (np = 0, fip = fcc_ports;
|
np < sizeof(fcc_ports) / sizeof(fcc_info_t);
|
np++, fip++) {
|
|
/* Skip FCC ports not used for RTnet. */
|
if (np != rtnet_fcc - 1) continue;
|
|
rtdev = fip->rtdev;
|
cep = (struct fcc_enet_private *)rtdev->priv;
|
|
rtdm_irq_disable(&cep->irq_handle);
|
rtdm_irq_free(&cep->irq_handle);
|
|
init_fcc_shutdown(fip, cep, immap);
|
printk("%s: cleanup incomplete (m8260_cpm_dpfree does not exit)!\n",
|
rtdev->name);
|
rt_stack_disconnect(rtdev);
|
rt_unregister_rtnetdev(rtdev);
|
rt_rtdev_disconnect(rtdev);
|
|
printk("%s: unloaded\n", rtdev->name);
|
rtdev_free(rtdev);
|
fip++;
|
}
|
}
|
|
module_init(fec_enet_init);
|
module_exit(fcc_enet_cleanup);
|