/* Intel(R) Gigabit Ethernet Linux driver
|
* Copyright(c) 2007-2015 Intel Corporation.
|
* RTnet port 2009 Vladimir Zapolskiy <vladimir.zapolskiy@siemens.com>
|
* Copyright(c) 2015 Gilles Chanteperdrix <gch@xenomai.org>
|
*
|
* This program is free software; you can redistribute it and/or modify it
|
* under the terms and conditions of the GNU General Public License,
|
* version 2, as published by the Free Software Foundation.
|
*
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
* more details.
|
*
|
* You should have received a copy of the GNU General Public License along with
|
* this program; if not, see <http://www.gnu.org/licenses/>.
|
*
|
* The full GNU General Public License is included in this distribution in
|
* the file called "COPYING".
|
*
|
* Contact Information:
|
* e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
*/
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
#include <linux/module.h>
|
#include <linux/types.h>
|
#include <linux/init.h>
|
#include <linux/bitops.h>
|
#include <linux/vmalloc.h>
|
#include <linux/pagemap.h>
|
#include <linux/netdevice.h>
|
#include <linux/ipv6.h>
|
#include <linux/slab.h>
|
#include <net/checksum.h>
|
#include <net/ip6_checksum.h>
|
#include <linux/net_tstamp.h>
|
#include <linux/mii.h>
|
#include <linux/ethtool.h>
|
#include <linux/if.h>
|
#include <linux/if_vlan.h>
|
#include <linux/pci.h>
|
#include <linux/delay.h>
|
#include <linux/interrupt.h>
|
#include <linux/ip.h>
|
#include <linux/tcp.h>
|
#include <linux/sctp.h>
|
#include <linux/if_ether.h>
|
#include <linux/aer.h>
|
#include <linux/prefetch.h>
|
#include <linux/pm_runtime.h>
|
#include <linux/i2c.h>
|
#include "igb.h"
|
|
#include <rtnet_port.h>
|
|
// RTNET redefines
|
#ifdef NETIF_F_TSO
|
#undef NETIF_F_TSO
|
#define NETIF_F_TSO 0
|
#endif
|
|
#ifdef NETIF_F_TSO6
|
#undef NETIF_F_TSO6
|
#define NETIF_F_TSO6 0
|
#endif
|
|
#ifdef NETIF_F_HW_VLAN_TX
|
#undef NETIF_F_HW_VLAN_TX
|
#define NETIF_F_HW_VLAN_TX 0
|
#endif
|
|
#ifdef NETIF_F_HW_VLAN_RX
|
#undef NETIF_F_HW_VLAN_RX
|
#define NETIF_F_HW_VLAN_RX 0
|
#endif
|
|
#ifdef NETIF_F_HW_VLAN_FILTER
|
#undef NETIF_F_HW_VLAN_FILTER
|
#define NETIF_F_HW_VLAN_FILTER 0
|
#endif
|
|
#ifdef IGB_MAX_TX_QUEUES
|
#undef IGB_MAX_TX_QUEUES
|
#define IGB_MAX_TX_QUEUES 1
|
#endif
|
|
#ifdef IGB_MAX_RX_QUEUES
|
#undef IGB_MAX_RX_QUEUES
|
#define IGB_MAX_RX_QUEUES 1
|
#endif
|
|
#ifdef CONFIG_IGB_NAPI
|
#undef CONFIG_IGB_NAPI
|
#endif
|
|
#ifdef IGB_HAVE_TX_TIMEOUT
|
#undef IGB_HAVE_TX_TIMEOUT
|
#endif
|
|
#ifdef ETHTOOL_GPERMADDR
|
#undef ETHTOOL_GPERMADDR
|
#endif
|
|
#ifdef CONFIG_PM
|
#undef CONFIG_PM
|
#endif
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
#undef CONFIG_NET_POLL_CONTROLLER
|
#endif
|
|
#ifdef MAX_SKB_FRAGS
|
#undef MAX_SKB_FRAGS
|
#define MAX_SKB_FRAGS 1
|
#endif
|
|
#ifdef IGB_FRAMES_SUPPORT
|
#undef IGB_FRAMES_SUPPORT
|
#endif
|
|
#define MAJ 5
|
#define MIN 2
|
#define BUILD 18
|
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
|
__stringify(BUILD) "-k"
|
char igb_driver_name[] = "rt_igb";
|
char igb_driver_version[] = DRV_VERSION;
|
static const char igb_driver_string[] =
|
"Intel(R) Gigabit Ethernet Network Driver";
|
static const char igb_copyright[] =
|
"Copyright (c) 2007-2014 Intel Corporation.";
|
|
static const struct e1000_info *igb_info_tbl[] = {
|
[board_82575] = &e1000_82575_info,
|
};
|
|
#define MAX_UNITS 8
|
static int InterruptThrottle = 0;
|
module_param(InterruptThrottle, uint, 0);
|
MODULE_PARM_DESC(InterruptThrottle, "Throttle interrupts (boolean, false by default)");
|
|
static const struct pci_device_id igb_pci_tbl[] = {
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
|
/* required last entry */
|
{0, }
|
};
|
|
MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
|
|
static int igb_setup_all_tx_resources(struct igb_adapter *);
|
static int igb_setup_all_rx_resources(struct igb_adapter *);
|
static void igb_free_all_tx_resources(struct igb_adapter *);
|
static void igb_free_all_rx_resources(struct igb_adapter *);
|
static void igb_setup_mrqc(struct igb_adapter *);
|
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
|
static void igb_remove(struct pci_dev *pdev);
|
static int igb_sw_init(struct igb_adapter *);
|
static int igb_open(struct rtnet_device *);
|
static int igb_close(struct rtnet_device *);
|
static void igb_configure(struct igb_adapter *);
|
static void igb_configure_tx(struct igb_adapter *);
|
static void igb_configure_rx(struct igb_adapter *);
|
static void igb_clean_all_tx_rings(struct igb_adapter *);
|
static void igb_clean_all_rx_rings(struct igb_adapter *);
|
static void igb_clean_tx_ring(struct igb_ring *);
|
static void igb_clean_rx_ring(struct igb_ring *);
|
static void igb_set_rx_mode(struct rtnet_device *);
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4,14,0)
|
static void igb_update_phy_info(struct timer_list *);
|
static void igb_watchdog(struct timer_list *);
|
#else
|
static void igb_update_phy_info(unsigned long);
|
static void igb_watchdog(unsigned long);
|
#endif
|
static void igb_watchdog_task(struct work_struct *);
|
static netdev_tx_t igb_xmit_frame(struct rtskb *skb, struct rtnet_device *);
|
static struct net_device_stats *igb_get_stats(struct rtnet_device *);
|
static int igb_intr(rtdm_irq_t *irq_handle);
|
static int igb_intr_msi(rtdm_irq_t *irq_handle);
|
static void igb_nrtsig_watchdog(rtdm_nrtsig_t *sig, void *data);
|
static irqreturn_t igb_msix_other(int irq, void *);
|
static int igb_msix_ring(rtdm_irq_t *irq_handle);
|
static void igb_poll(struct igb_q_vector *);
|
static bool igb_clean_tx_irq(struct igb_q_vector *);
|
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
|
static int igb_ioctl(struct rtnet_device *, struct ifreq *ifr, int cmd);
|
static void igb_reset_task(struct work_struct *);
|
static void igb_vlan_mode(struct rtnet_device *netdev,
|
netdev_features_t features);
|
static int igb_vlan_rx_add_vid(struct rtnet_device *, __be16, u16);
|
static void igb_restore_vlan(struct igb_adapter *);
|
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
|
|
#ifdef CONFIG_PM
|
#ifdef CONFIG_PM_SLEEP
|
static int igb_suspend(struct device *);
|
#endif
|
static int igb_resume(struct device *);
|
static int igb_runtime_suspend(struct device *dev);
|
static int igb_runtime_resume(struct device *dev);
|
static int igb_runtime_idle(struct device *dev);
|
static const struct dev_pm_ops igb_pm_ops = {
|
SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
|
SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
|
igb_runtime_idle)
|
};
|
#endif
|
static void igb_shutdown(struct pci_dev *);
|
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
/* for netdump / net console */
|
static void igb_netpoll(struct rtnet_device *);
|
#endif
|
|
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
|
pci_channel_state_t);
|
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
|
static void igb_io_resume(struct pci_dev *);
|
|
static const struct pci_error_handlers igb_err_handler = {
|
.error_detected = igb_io_error_detected,
|
.slot_reset = igb_io_slot_reset,
|
.resume = igb_io_resume,
|
};
|
|
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
|
|
static struct pci_driver igb_driver = {
|
.name = igb_driver_name,
|
.id_table = igb_pci_tbl,
|
.probe = igb_probe,
|
.remove = igb_remove,
|
#ifdef CONFIG_PM
|
.driver.pm = &igb_pm_ops,
|
#endif
|
.shutdown = igb_shutdown,
|
.sriov_configure = igb_pci_sriov_configure,
|
.err_handler = &igb_err_handler
|
};
|
|
MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
|
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
|
MODULE_LICENSE("GPL");
|
MODULE_VERSION(DRV_VERSION);
|
|
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
|
static int local_debug = -1;
|
module_param_named(debug, local_debug, int, 0);
|
MODULE_PARM_DESC(debug, "debug level (0=none,...,16=all)");
|
|
struct igb_reg_info {
|
u32 ofs;
|
char *name;
|
};
|
|
static const struct igb_reg_info igb_reg_info_tbl[] = {
|
|
/* General Registers */
|
{E1000_CTRL, "CTRL"},
|
{E1000_STATUS, "STATUS"},
|
{E1000_CTRL_EXT, "CTRL_EXT"},
|
|
/* Interrupt Registers */
|
{E1000_ICR, "ICR"},
|
|
/* RX Registers */
|
{E1000_RCTL, "RCTL"},
|
{E1000_RDLEN(0), "RDLEN"},
|
{E1000_RDH(0), "RDH"},
|
{E1000_RDT(0), "RDT"},
|
{E1000_RXDCTL(0), "RXDCTL"},
|
{E1000_RDBAL(0), "RDBAL"},
|
{E1000_RDBAH(0), "RDBAH"},
|
|
/* TX Registers */
|
{E1000_TCTL, "TCTL"},
|
{E1000_TDBAL(0), "TDBAL"},
|
{E1000_TDBAH(0), "TDBAH"},
|
{E1000_TDLEN(0), "TDLEN"},
|
{E1000_TDH(0), "TDH"},
|
{E1000_TDT(0), "TDT"},
|
{E1000_TXDCTL(0), "TXDCTL"},
|
{E1000_TDFH, "TDFH"},
|
{E1000_TDFT, "TDFT"},
|
{E1000_TDFHS, "TDFHS"},
|
{E1000_TDFPC, "TDFPC"},
|
|
/* List Terminator */
|
{}
|
};
|
|
/* igb_regdump - register printout routine */
|
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
|
{
|
int n = 0;
|
char rname[16];
|
u32 regs[8];
|
|
switch (reginfo->ofs) {
|
case E1000_RDLEN(0):
|
for (n = 0; n < 4; n++)
|
regs[n] = rd32(E1000_RDLEN(n));
|
break;
|
case E1000_RDH(0):
|
for (n = 0; n < 4; n++)
|
regs[n] = rd32(E1000_RDH(n));
|
break;
|
case E1000_RDT(0):
|
for (n = 0; n < 4; n++)
|
regs[n] = rd32(E1000_RDT(n));
|
break;
|
case E1000_RXDCTL(0):
|
for (n = 0; n < 4; n++)
|
regs[n] = rd32(E1000_RXDCTL(n));
|
break;
|
case E1000_RDBAL(0):
|
for (n = 0; n < 4; n++)
|
regs[n] = rd32(E1000_RDBAL(n));
|
break;
|
case E1000_RDBAH(0):
|
for (n = 0; n < 4; n++)
|
regs[n] = rd32(E1000_RDBAH(n));
|
break;
|
case E1000_TDBAL(0):
|
for (n = 0; n < 4; n++)
|
regs[n] = rd32(E1000_RDBAL(n));
|
break;
|
case E1000_TDBAH(0):
|
for (n = 0; n < 4; n++)
|
regs[n] = rd32(E1000_TDBAH(n));
|
break;
|
case E1000_TDLEN(0):
|
for (n = 0; n < 4; n++)
|
regs[n] = rd32(E1000_TDLEN(n));
|
break;
|
case E1000_TDH(0):
|
for (n = 0; n < 4; n++)
|
regs[n] = rd32(E1000_TDH(n));
|
break;
|
case E1000_TDT(0):
|
for (n = 0; n < 4; n++)
|
regs[n] = rd32(E1000_TDT(n));
|
break;
|
case E1000_TXDCTL(0):
|
for (n = 0; n < 4; n++)
|
regs[n] = rd32(E1000_TXDCTL(n));
|
break;
|
default:
|
pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
|
return;
|
}
|
|
snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
|
pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
|
regs[2], regs[3]);
|
}
|
|
/* igb_dump - Print registers, Tx-rings and Rx-rings */
|
static void igb_dump(struct igb_adapter *adapter)
|
{
|
struct rtnet_device *netdev = adapter->netdev;
|
struct e1000_hw *hw = &adapter->hw;
|
struct igb_reg_info *reginfo;
|
struct igb_ring *tx_ring;
|
union e1000_adv_tx_desc *tx_desc;
|
struct my_u0 { u64 a; u64 b; } *u0;
|
struct igb_ring *rx_ring;
|
union e1000_adv_rx_desc *rx_desc;
|
u32 staterr;
|
u16 i, n;
|
|
/* Print netdevice Info */
|
if (netdev) {
|
dev_info(&adapter->pdev->dev, "Net device Info\n");
|
pr_info("Device Name\n");
|
pr_info("%s\n", netdev->name);
|
}
|
|
/* Print Registers */
|
dev_info(&adapter->pdev->dev, "Register Dump\n");
|
pr_info(" Register Name Value\n");
|
for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
|
reginfo->name; reginfo++) {
|
igb_regdump(hw, reginfo);
|
}
|
|
/* Print TX Ring Summary */
|
if (!netdev || !rtnetif_running(netdev))
|
goto exit;
|
|
dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
|
pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
|
for (n = 0; n < adapter->num_tx_queues; n++) {
|
struct igb_tx_buffer *buffer_info;
|
tx_ring = adapter->tx_ring[n];
|
buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
|
pr_info(" %5d %5X %5X %p %016llX\n",
|
n, tx_ring->next_to_use, tx_ring->next_to_clean,
|
buffer_info->next_to_watch,
|
(u64)buffer_info->time_stamp);
|
}
|
|
dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
|
|
/* Transmit Descriptor Formats
|
*
|
* Advanced Transmit Descriptor
|
* +--------------------------------------------------------------+
|
* 0 | Buffer Address [63:0] |
|
* +--------------------------------------------------------------+
|
* 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
|
* +--------------------------------------------------------------+
|
* 63 46 45 40 39 38 36 35 32 31 24 15 0
|
*/
|
|
for (n = 0; n < adapter->num_tx_queues; n++) {
|
tx_ring = adapter->tx_ring[n];
|
pr_info("------------------------------------\n");
|
pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
|
pr_info("------------------------------------\n");
|
pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
|
"[bi->dma ] leng ntw timestamp "
|
"bi->skb\n");
|
|
for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
|
const char *next_desc;
|
struct igb_tx_buffer *buffer_info;
|
tx_desc = IGB_TX_DESC(tx_ring, i);
|
buffer_info = &tx_ring->tx_buffer_info[i];
|
u0 = (struct my_u0 *)tx_desc;
|
if (i == tx_ring->next_to_use &&
|
i == tx_ring->next_to_clean)
|
next_desc = " NTC/U";
|
else if (i == tx_ring->next_to_use)
|
next_desc = " NTU";
|
else if (i == tx_ring->next_to_clean)
|
next_desc = " NTC";
|
else
|
next_desc = "";
|
|
pr_info("T [0x%03X] %016llX %016llX"
|
" %p %016llX %p%s\n", i,
|
le64_to_cpu(u0->a),
|
le64_to_cpu(u0->b),
|
buffer_info->next_to_watch,
|
(u64)buffer_info->time_stamp,
|
buffer_info->skb, next_desc);
|
|
if (buffer_info->skb)
|
print_hex_dump(KERN_INFO, "",
|
DUMP_PREFIX_ADDRESS,
|
16, 1, buffer_info->skb->data,
|
14,
|
true);
|
}
|
}
|
|
/* Print RX Rings Summary */
|
dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
|
pr_info("Queue [NTU] [NTC]\n");
|
for (n = 0; n < adapter->num_rx_queues; n++) {
|
rx_ring = adapter->rx_ring[n];
|
pr_info(" %5d %5X %5X\n",
|
n, rx_ring->next_to_use, rx_ring->next_to_clean);
|
}
|
|
/* Print RX Rings */
|
dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
|
|
/* Advanced Receive Descriptor (Read) Format
|
* 63 1 0
|
* +-----------------------------------------------------+
|
* 0 | Packet Buffer Address [63:1] |A0/NSE|
|
* +----------------------------------------------+------+
|
* 8 | Header Buffer Address [63:1] | DD |
|
* +-----------------------------------------------------+
|
*
|
*
|
* Advanced Receive Descriptor (Write-Back) Format
|
*
|
* 63 48 47 32 31 30 21 20 17 16 4 3 0
|
* +------------------------------------------------------+
|
* 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
|
* | Checksum Ident | | | | Type | Type |
|
* +------------------------------------------------------+
|
* 8 | VLAN Tag | Length | Extended Error | Extended Status |
|
* +------------------------------------------------------+
|
* 63 48 47 32 31 20 19 0
|
*/
|
|
for (n = 0; n < adapter->num_rx_queues; n++) {
|
rx_ring = adapter->rx_ring[n];
|
pr_info("------------------------------------\n");
|
pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
|
pr_info("------------------------------------\n");
|
pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
|
"[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
|
pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
|
"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
|
|
for (i = 0; i < rx_ring->count; i++) {
|
const char *next_desc;
|
struct igb_rx_buffer *buffer_info;
|
buffer_info = &rx_ring->rx_buffer_info[i];
|
rx_desc = IGB_RX_DESC(rx_ring, i);
|
u0 = (struct my_u0 *)rx_desc;
|
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
|
|
if (i == rx_ring->next_to_use)
|
next_desc = " NTU";
|
else if (i == rx_ring->next_to_clean)
|
next_desc = " NTC";
|
else
|
next_desc = "";
|
|
if (staterr & E1000_RXD_STAT_DD) {
|
/* Descriptor Done */
|
pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
|
"RWB", i,
|
le64_to_cpu(u0->a),
|
le64_to_cpu(u0->b),
|
next_desc);
|
} else {
|
pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
|
"R ", i,
|
le64_to_cpu(u0->a),
|
le64_to_cpu(u0->b),
|
(u64)buffer_info->dma,
|
next_desc);
|
|
}
|
}
|
}
|
|
exit:
|
return;
|
}
|
|
/**
|
* igb_get_hw_dev - return device
|
* @hw: pointer to hardware structure
|
*
|
* used by hardware layer to print debugging information
|
**/
|
struct rtnet_device *igb_get_hw_dev(struct e1000_hw *hw)
|
{
|
struct igb_adapter *adapter = hw->back;
|
return adapter->netdev;
|
}
|
|
/**
|
* igb_init_module - Driver Registration Routine
|
*
|
* igb_init_module is the first routine called when the driver is
|
* loaded. All it does is register with the PCI subsystem.
|
**/
|
static int __init igb_init_module(void)
|
{
|
int ret;
|
|
pr_info("%s - version %s\n",
|
igb_driver_string, igb_driver_version);
|
pr_info("%s\n", igb_copyright);
|
|
ret = pci_register_driver(&igb_driver);
|
return ret;
|
}
|
|
module_init(igb_init_module);
|
|
/**
|
* igb_exit_module - Driver Exit Cleanup Routine
|
*
|
* igb_exit_module is called just before the driver is removed
|
* from memory.
|
**/
|
static void __exit igb_exit_module(void)
|
{
|
pci_unregister_driver(&igb_driver);
|
}
|
|
module_exit(igb_exit_module);
|
|
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
|
/**
|
* igb_cache_ring_register - Descriptor ring to register mapping
|
* @adapter: board private structure to initialize
|
*
|
* Once we know the feature-set enabled for the device, we'll cache
|
* the register offset the descriptor ring is assigned to.
|
**/
|
static void igb_cache_ring_register(struct igb_adapter *adapter)
|
{
|
int i = 0, j = 0;
|
u32 rbase_offset = 0;
|
|
switch (adapter->hw.mac.type) {
|
case e1000_82576:
|
/* The queues are allocated for virtualization such that VF 0
|
* is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
|
* In order to avoid collision we start at the first free queue
|
* and continue consuming queues in the same sequence
|
*/
|
fallthrough;
|
case e1000_82575:
|
case e1000_82580:
|
case e1000_i350:
|
case e1000_i354:
|
case e1000_i210:
|
case e1000_i211:
|
fallthrough;
|
default:
|
for (; i < adapter->num_rx_queues; i++)
|
adapter->rx_ring[i]->reg_idx = rbase_offset + i;
|
for (; j < adapter->num_tx_queues; j++)
|
adapter->tx_ring[j]->reg_idx = rbase_offset + j;
|
break;
|
}
|
}
|
|
u32 igb_rd32(struct e1000_hw *hw, u32 reg)
|
{
|
struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
|
u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
|
u32 value = 0;
|
|
if (E1000_REMOVED(hw_addr))
|
return ~value;
|
|
value = readl(&hw_addr[reg]);
|
|
/* reads should not return all F's */
|
if (!(~value) && (!reg || !(~readl(hw_addr)))) {
|
struct rtnet_device *netdev = igb->netdev;
|
hw->hw_addr = NULL;
|
rtnetif_device_detach(netdev);
|
rtdev_err(netdev, "PCIe link lost, device now detached\n");
|
}
|
|
return value;
|
}
|
|
/**
|
* igb_write_ivar - configure ivar for given MSI-X vector
|
* @hw: pointer to the HW structure
|
* @msix_vector: vector number we are allocating to a given ring
|
* @index: row index of IVAR register to write within IVAR table
|
* @offset: column offset of in IVAR, should be multiple of 8
|
*
|
* This function is intended to handle the writing of the IVAR register
|
* for adapters 82576 and newer. The IVAR table consists of 2 columns,
|
* each containing an cause allocation for an Rx and Tx ring, and a
|
* variable number of rows depending on the number of queues supported.
|
**/
|
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
|
int index, int offset)
|
{
|
u32 ivar = array_rd32(E1000_IVAR0, index);
|
|
/* clear any bits that are currently set */
|
ivar &= ~((u32)0xFF << offset);
|
|
/* write vector and valid bit */
|
ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
|
|
array_wr32(E1000_IVAR0, index, ivar);
|
}
|
|
#define IGB_N0_QUEUE -1
|
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
|
{
|
struct igb_adapter *adapter = q_vector->adapter;
|
struct e1000_hw *hw = &adapter->hw;
|
int rx_queue = IGB_N0_QUEUE;
|
int tx_queue = IGB_N0_QUEUE;
|
u32 msixbm = 0;
|
|
if (q_vector->rx.ring)
|
rx_queue = q_vector->rx.ring->reg_idx;
|
if (q_vector->tx.ring)
|
tx_queue = q_vector->tx.ring->reg_idx;
|
|
switch (hw->mac.type) {
|
case e1000_82575:
|
/* The 82575 assigns vectors using a bitmask, which matches the
|
* bitmask for the EICR/EIMS/EIMC registers. To assign one
|
* or more queues to a vector, we write the appropriate bits
|
* into the MSIXBM register for that vector.
|
*/
|
if (rx_queue > IGB_N0_QUEUE)
|
msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
|
if (tx_queue > IGB_N0_QUEUE)
|
msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
|
if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
|
msixbm |= E1000_EIMS_OTHER;
|
array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
|
q_vector->eims_value = msixbm;
|
break;
|
case e1000_82576:
|
/* 82576 uses a table that essentially consists of 2 columns
|
* with 8 rows. The ordering is column-major so we use the
|
* lower 3 bits as the row index, and the 4th bit as the
|
* column offset.
|
*/
|
if (rx_queue > IGB_N0_QUEUE)
|
igb_write_ivar(hw, msix_vector,
|
rx_queue & 0x7,
|
(rx_queue & 0x8) << 1);
|
if (tx_queue > IGB_N0_QUEUE)
|
igb_write_ivar(hw, msix_vector,
|
tx_queue & 0x7,
|
((tx_queue & 0x8) << 1) + 8);
|
q_vector->eims_value = 1 << msix_vector;
|
break;
|
case e1000_82580:
|
case e1000_i350:
|
case e1000_i354:
|
case e1000_i210:
|
case e1000_i211:
|
/* On 82580 and newer adapters the scheme is similar to 82576
|
* however instead of ordering column-major we have things
|
* ordered row-major. So we traverse the table by using
|
* bit 0 as the column offset, and the remaining bits as the
|
* row index.
|
*/
|
if (rx_queue > IGB_N0_QUEUE)
|
igb_write_ivar(hw, msix_vector,
|
rx_queue >> 1,
|
(rx_queue & 0x1) << 4);
|
if (tx_queue > IGB_N0_QUEUE)
|
igb_write_ivar(hw, msix_vector,
|
tx_queue >> 1,
|
((tx_queue & 0x1) << 4) + 8);
|
q_vector->eims_value = 1 << msix_vector;
|
break;
|
default:
|
BUG();
|
break;
|
}
|
|
/* add q_vector eims value to global eims_enable_mask */
|
adapter->eims_enable_mask |= q_vector->eims_value;
|
|
/* configure q_vector to set itr on first interrupt */
|
q_vector->set_itr = 1;
|
}
|
|
/**
|
* igb_configure_msix - Configure MSI-X hardware
|
* @adapter: board private structure to initialize
|
*
|
* igb_configure_msix sets up the hardware to properly
|
* generate MSI-X interrupts.
|
**/
|
static void igb_configure_msix(struct igb_adapter *adapter)
|
{
|
u32 tmp;
|
int i, vector = 0;
|
struct e1000_hw *hw = &adapter->hw;
|
|
adapter->eims_enable_mask = 0;
|
|
/* set vector for other causes, i.e. link changes */
|
switch (hw->mac.type) {
|
case e1000_82575:
|
tmp = rd32(E1000_CTRL_EXT);
|
/* enable MSI-X PBA support*/
|
tmp |= E1000_CTRL_EXT_PBA_CLR;
|
|
/* Auto-Mask interrupts upon ICR read. */
|
tmp |= E1000_CTRL_EXT_EIAME;
|
tmp |= E1000_CTRL_EXT_IRCA;
|
|
wr32(E1000_CTRL_EXT, tmp);
|
|
/* enable msix_other interrupt */
|
array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
|
adapter->eims_other = E1000_EIMS_OTHER;
|
|
break;
|
|
case e1000_82576:
|
case e1000_82580:
|
case e1000_i350:
|
case e1000_i354:
|
case e1000_i210:
|
case e1000_i211:
|
/* Turn on MSI-X capability first, or our settings
|
* won't stick. And it will take days to debug.
|
*/
|
wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
|
E1000_GPIE_PBA | E1000_GPIE_EIAME |
|
E1000_GPIE_NSICR);
|
|
/* enable msix_other interrupt */
|
adapter->eims_other = 1 << vector;
|
tmp = (vector++ | E1000_IVAR_VALID) << 8;
|
|
wr32(E1000_IVAR_MISC, tmp);
|
break;
|
default:
|
/* do nothing, since nothing else supports MSI-X */
|
break;
|
} /* switch (hw->mac.type) */
|
|
adapter->eims_enable_mask |= adapter->eims_other;
|
|
for (i = 0; i < adapter->num_q_vectors; i++)
|
igb_assign_vector(adapter->q_vector[i], vector++);
|
|
wrfl();
|
}
|
|
/**
|
* igb_request_msix - Initialize MSI-X interrupts
|
* @adapter: board private structure to initialize
|
*
|
* igb_request_msix allocates MSI-X vectors and requests interrupts from the
|
* kernel.
|
**/
|
static int igb_request_msix(struct igb_adapter *adapter)
|
{
|
struct rtnet_device *netdev = adapter->netdev;
|
struct e1000_hw *hw = &adapter->hw;
|
int i, err = 0, vector = 0, free_vector = 0;
|
|
err = request_irq(adapter->msix_entries[vector].vector,
|
igb_msix_other, 0, netdev->name, adapter);
|
if (err)
|
goto err_out;
|
|
for (i = 0; i < adapter->num_q_vectors; i++) {
|
struct igb_q_vector *q_vector = adapter->q_vector[i];
|
|
vector++;
|
|
q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
|
|
if (q_vector->rx.ring && q_vector->tx.ring)
|
sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
|
q_vector->rx.ring->queue_index);
|
else if (q_vector->tx.ring)
|
sprintf(q_vector->name, "%s-tx-%u", netdev->name,
|
q_vector->tx.ring->queue_index);
|
else if (q_vector->rx.ring)
|
sprintf(q_vector->name, "%s-rx-%u", netdev->name,
|
q_vector->rx.ring->queue_index);
|
else
|
sprintf(q_vector->name, "%s-unused", netdev->name);
|
|
err = rtdm_irq_request(&adapter->msix_irq_handle[vector],
|
adapter->msix_entries[vector].vector,
|
igb_msix_ring, 0, q_vector->name, q_vector);
|
if (err)
|
goto err_free;
|
}
|
|
igb_configure_msix(adapter);
|
return 0;
|
|
err_free:
|
/* free already assigned IRQs */
|
free_irq(adapter->msix_entries[free_vector++].vector, adapter);
|
|
vector--;
|
for (i = 0; i < vector; i++)
|
rtdm_irq_free(&adapter->msix_irq_handle[free_vector++]);
|
err_out:
|
return err;
|
}
|
|
/**
|
* igb_free_q_vector - Free memory allocated for specific interrupt vector
|
* @adapter: board private structure to initialize
|
* @v_idx: Index of vector to be freed
|
*
|
* This function frees the memory allocated to the q_vector.
|
**/
|
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
|
{
|
struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
|
|
adapter->q_vector[v_idx] = NULL;
|
|
/* igb_get_stats64() might access the rings on this vector,
|
* we must wait a grace period before freeing it.
|
*/
|
if (q_vector)
|
kfree_rcu(q_vector, rcu);
|
}
|
|
/**
|
* igb_reset_q_vector - Reset config for interrupt vector
|
* @adapter: board private structure to initialize
|
* @v_idx: Index of vector to be reset
|
*
|
* If NAPI is enabled it will delete any references to the
|
* NAPI struct. This is preparation for igb_free_q_vector.
|
**/
|
static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
|
{
|
struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
|
|
/* Coming from igb_set_interrupt_capability, the vectors are not yet
|
* allocated. So, q_vector is NULL so we should stop here.
|
*/
|
if (!q_vector)
|
return;
|
|
if (q_vector->tx.ring)
|
adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
|
|
if (q_vector->rx.ring)
|
adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
|
}
|
|
static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
|
{
|
int v_idx = adapter->num_q_vectors;
|
|
if (adapter->flags & IGB_FLAG_HAS_MSIX)
|
pci_disable_msix(adapter->pdev);
|
else if (adapter->flags & IGB_FLAG_HAS_MSI)
|
pci_disable_msi(adapter->pdev);
|
|
while (v_idx--)
|
igb_reset_q_vector(adapter, v_idx);
|
}
|
|
/**
|
* igb_free_q_vectors - Free memory allocated for interrupt vectors
|
* @adapter: board private structure to initialize
|
*
|
* This function frees the memory allocated to the q_vectors. In addition if
|
* NAPI is enabled it will delete any references to the NAPI struct prior
|
* to freeing the q_vector.
|
**/
|
static void igb_free_q_vectors(struct igb_adapter *adapter)
|
{
|
int v_idx = adapter->num_q_vectors;
|
|
adapter->num_tx_queues = 0;
|
adapter->num_rx_queues = 0;
|
adapter->num_q_vectors = 0;
|
|
while (v_idx--) {
|
igb_reset_q_vector(adapter, v_idx);
|
igb_free_q_vector(adapter, v_idx);
|
}
|
}
|
|
/**
|
* igb_clear_interrupt_scheme - reset the device to a state of no interrupts
|
* @adapter: board private structure to initialize
|
*
|
* This function resets the device so that it has 0 Rx queues, Tx queues, and
|
* MSI-X interrupts allocated.
|
*/
|
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
|
{
|
igb_free_q_vectors(adapter);
|
igb_reset_interrupt_capability(adapter);
|
}
|
|
/**
|
* igb_set_interrupt_capability - set MSI or MSI-X if supported
|
* @adapter: board private structure to initialize
|
* @msix: boolean value of MSIX capability
|
*
|
* Attempt to configure interrupts using the best available
|
* capabilities of the hardware and kernel.
|
**/
|
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
|
{
|
int err;
|
int numvecs, i;
|
|
if (!msix)
|
goto msi_only;
|
adapter->flags |= IGB_FLAG_HAS_MSIX;
|
|
/* Number of supported queues. */
|
adapter->num_rx_queues = adapter->rss_queues;
|
adapter->num_tx_queues = adapter->rss_queues;
|
|
/* start with one vector for every Rx queue */
|
numvecs = adapter->num_rx_queues;
|
|
/* if Tx handler is separate add 1 for every Tx queue */
|
if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
|
numvecs += adapter->num_tx_queues;
|
|
/* store the number of vectors reserved for queues */
|
adapter->num_q_vectors = numvecs;
|
|
/* add 1 vector for link status interrupts */
|
numvecs++;
|
for (i = 0; i < numvecs; i++)
|
adapter->msix_entries[i].entry = i;
|
|
err = pci_enable_msix_range(adapter->pdev,
|
adapter->msix_entries,
|
numvecs,
|
numvecs);
|
if (err > 0)
|
return;
|
|
igb_reset_interrupt_capability(adapter);
|
|
/* If we can't do MSI-X, try MSI */
|
msi_only:
|
adapter->flags &= ~IGB_FLAG_HAS_MSIX;
|
adapter->rss_queues = 1;
|
adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
|
adapter->num_rx_queues = 1;
|
adapter->num_tx_queues = 1;
|
adapter->num_q_vectors = 1;
|
if (!pci_enable_msi(adapter->pdev))
|
adapter->flags |= IGB_FLAG_HAS_MSI;
|
}
|
|
static void igb_add_ring(struct igb_ring *ring,
|
struct igb_ring_container *head)
|
{
|
head->ring = ring;
|
head->count++;
|
}
|
|
/**
|
* igb_alloc_q_vector - Allocate memory for a single interrupt vector
|
* @adapter: board private structure to initialize
|
* @v_count: q_vectors allocated on adapter, used for ring interleaving
|
* @v_idx: index of vector in adapter struct
|
* @txr_count: total number of Tx rings to allocate
|
* @txr_idx: index of first Tx ring to allocate
|
* @rxr_count: total number of Rx rings to allocate
|
* @rxr_idx: index of first Rx ring to allocate
|
*
|
* We allocate one q_vector. If allocation fails we return -ENOMEM.
|
**/
|
static int igb_alloc_q_vector(struct igb_adapter *adapter,
|
int v_count, int v_idx,
|
int txr_count, int txr_idx,
|
int rxr_count, int rxr_idx)
|
{
|
struct igb_q_vector *q_vector;
|
struct igb_ring *ring;
|
int ring_count, size;
|
|
/* igb only supports 1 Tx and/or 1 Rx queue per vector */
|
if (txr_count > 1 || rxr_count > 1)
|
return -ENOMEM;
|
|
ring_count = txr_count + rxr_count;
|
size = sizeof(struct igb_q_vector) +
|
(sizeof(struct igb_ring) * ring_count);
|
|
/* allocate q_vector and rings */
|
q_vector = adapter->q_vector[v_idx];
|
if (!q_vector)
|
q_vector = kzalloc(size, GFP_KERNEL);
|
else
|
memset(q_vector, 0, size);
|
if (!q_vector)
|
return -ENOMEM;
|
|
/* tie q_vector and adapter together */
|
adapter->q_vector[v_idx] = q_vector;
|
q_vector->adapter = adapter;
|
|
/* initialize work limits */
|
q_vector->tx.work_limit = adapter->tx_work_limit;
|
|
/* initialize ITR configuration */
|
q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
|
q_vector->itr_val = IGB_START_ITR;
|
|
/* initialize pointer to rings */
|
ring = q_vector->ring;
|
|
/* intialize ITR */
|
if (rxr_count) {
|
/* rx or rx/tx vector */
|
if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
|
q_vector->itr_val = adapter->rx_itr_setting;
|
} else {
|
/* tx only vector */
|
if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
|
q_vector->itr_val = adapter->tx_itr_setting;
|
}
|
|
if (txr_count) {
|
/* assign generic ring traits */
|
ring->dev = &adapter->pdev->dev;
|
ring->netdev = adapter->netdev;
|
|
/* configure backlink on ring */
|
ring->q_vector = q_vector;
|
|
/* update q_vector Tx values */
|
igb_add_ring(ring, &q_vector->tx);
|
|
/* For 82575, context index must be unique per ring. */
|
if (adapter->hw.mac.type == e1000_82575)
|
set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
|
|
/* apply Tx specific ring traits */
|
ring->count = adapter->tx_ring_count;
|
ring->queue_index = txr_idx;
|
|
/* assign ring to adapter */
|
adapter->tx_ring[txr_idx] = ring;
|
|
/* push pointer to next ring */
|
ring++;
|
}
|
|
if (rxr_count) {
|
/* assign generic ring traits */
|
ring->dev = &adapter->pdev->dev;
|
ring->netdev = adapter->netdev;
|
|
/* configure backlink on ring */
|
ring->q_vector = q_vector;
|
|
/* update q_vector Rx values */
|
igb_add_ring(ring, &q_vector->rx);
|
|
/* set flag indicating ring supports SCTP checksum offload */
|
if (adapter->hw.mac.type >= e1000_82576)
|
set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
|
|
/* On i350, i354, i210, and i211, loopback VLAN packets
|
* have the tag byte-swapped.
|
*/
|
if (adapter->hw.mac.type >= e1000_i350)
|
set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
|
|
/* apply Rx specific ring traits */
|
ring->count = adapter->rx_ring_count;
|
ring->queue_index = rxr_idx;
|
|
/* assign ring to adapter */
|
adapter->rx_ring[rxr_idx] = ring;
|
}
|
|
return 0;
|
}
|
|
|
/**
|
* igb_alloc_q_vectors - Allocate memory for interrupt vectors
|
* @adapter: board private structure to initialize
|
*
|
* We allocate one q_vector per queue interrupt. If allocation fails we
|
* return -ENOMEM.
|
**/
|
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
|
{
|
int q_vectors = adapter->num_q_vectors;
|
int rxr_remaining = adapter->num_rx_queues;
|
int txr_remaining = adapter->num_tx_queues;
|
int rxr_idx = 0, txr_idx = 0, v_idx = 0;
|
int err;
|
|
if (q_vectors >= (rxr_remaining + txr_remaining)) {
|
for (; rxr_remaining; v_idx++) {
|
err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
|
0, 0, 1, rxr_idx);
|
|
if (err)
|
goto err_out;
|
|
/* update counts and index */
|
rxr_remaining--;
|
rxr_idx++;
|
}
|
}
|
|
for (; v_idx < q_vectors; v_idx++) {
|
int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
|
int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
|
|
err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
|
tqpv, txr_idx, rqpv, rxr_idx);
|
|
if (err)
|
goto err_out;
|
|
/* update counts and index */
|
rxr_remaining -= rqpv;
|
txr_remaining -= tqpv;
|
rxr_idx++;
|
txr_idx++;
|
}
|
|
return 0;
|
|
err_out:
|
adapter->num_tx_queues = 0;
|
adapter->num_rx_queues = 0;
|
adapter->num_q_vectors = 0;
|
|
while (v_idx--)
|
igb_free_q_vector(adapter, v_idx);
|
|
return -ENOMEM;
|
}
|
|
/**
|
* igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
|
* @adapter: board private structure to initialize
|
* @msix: boolean value of MSIX capability
|
*
|
* This function initializes the interrupts and allocates all of the queues.
|
**/
|
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
|
{
|
struct pci_dev *pdev = adapter->pdev;
|
int err;
|
|
igb_set_interrupt_capability(adapter, msix);
|
|
err = igb_alloc_q_vectors(adapter);
|
if (err) {
|
dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
|
goto err_alloc_q_vectors;
|
}
|
|
igb_cache_ring_register(adapter);
|
|
return 0;
|
|
err_alloc_q_vectors:
|
igb_reset_interrupt_capability(adapter);
|
return err;
|
}
|
|
/**
|
* igb_request_irq - initialize interrupts
|
* @adapter: board private structure to initialize
|
*
|
* Attempts to configure interrupts using the best available
|
* capabilities of the hardware and kernel.
|
**/
|
static int igb_request_irq(struct igb_adapter *adapter)
|
{
|
struct rtnet_device *netdev = adapter->netdev;
|
struct pci_dev *pdev = adapter->pdev;
|
int err = 0;
|
|
rt_stack_connect(netdev, &STACK_manager);
|
|
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
|
err = igb_request_msix(adapter);
|
if (!err)
|
goto request_done;
|
/* fall back to MSI */
|
igb_free_all_tx_resources(adapter);
|
igb_free_all_rx_resources(adapter);
|
|
igb_clear_interrupt_scheme(adapter);
|
err = igb_init_interrupt_scheme(adapter, false);
|
if (err)
|
goto request_done;
|
|
igb_setup_all_tx_resources(adapter);
|
igb_setup_all_rx_resources(adapter);
|
igb_configure(adapter);
|
}
|
|
igb_assign_vector(adapter->q_vector[0], 0);
|
|
if (adapter->flags & IGB_FLAG_HAS_MSI) {
|
err = rtdm_irq_request(&adapter->irq_handle,
|
pdev->irq, igb_intr_msi, 0,
|
netdev->name, adapter);
|
if (!err)
|
goto request_done;
|
|
/* fall back to legacy interrupts */
|
igb_reset_interrupt_capability(adapter);
|
adapter->flags &= ~IGB_FLAG_HAS_MSI;
|
}
|
|
err = rtdm_irq_request(&adapter->irq_handle,
|
pdev->irq, igb_intr, IRQF_SHARED,
|
netdev->name, adapter);
|
|
if (err)
|
dev_err(&pdev->dev, "Error %d getting interrupt\n",
|
err);
|
|
request_done:
|
return err;
|
}
|
|
static void igb_free_irq(struct igb_adapter *adapter)
|
{
|
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
|
int vector = 0, i;
|
|
free_irq(adapter->msix_entries[vector++].vector, adapter);
|
|
for (i = 0; i < adapter->num_q_vectors; i++)
|
rtdm_irq_free(&adapter->msix_irq_handle[vector++]);
|
} else {
|
rtdm_irq_free(&adapter->irq_handle);
|
}
|
}
|
|
/**
|
* igb_irq_disable - Mask off interrupt generation on the NIC
|
* @adapter: board private structure
|
**/
|
static void igb_irq_disable(struct igb_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
|
/* we need to be careful when disabling interrupts. The VFs are also
|
* mapped into these registers and so clearing the bits can cause
|
* issues on the VF drivers so we only need to clear what we set
|
*/
|
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
|
u32 regval = rd32(E1000_EIAM);
|
|
wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
|
wr32(E1000_EIMC, adapter->eims_enable_mask);
|
regval = rd32(E1000_EIAC);
|
wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
|
}
|
|
wr32(E1000_IAM, 0);
|
wr32(E1000_IMC, ~0);
|
wrfl();
|
|
msleep(10);
|
}
|
|
/**
|
* igb_irq_enable - Enable default interrupt generation settings
|
* @adapter: board private structure
|
**/
|
static void igb_irq_enable(struct igb_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
|
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
|
u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
|
u32 regval = rd32(E1000_EIAC);
|
|
wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
|
regval = rd32(E1000_EIAM);
|
wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
|
wr32(E1000_EIMS, adapter->eims_enable_mask);
|
wr32(E1000_IMS, ims);
|
} else {
|
wr32(E1000_IMS, IMS_ENABLE_MASK |
|
E1000_IMS_DRSTA);
|
wr32(E1000_IAM, IMS_ENABLE_MASK |
|
E1000_IMS_DRSTA);
|
}
|
}
|
|
static void igb_update_mng_vlan(struct igb_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
u16 vid = adapter->hw.mng_cookie.vlan_id;
|
u16 old_vid = adapter->mng_vlan_id;
|
|
if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
|
/* add VID to filter table */
|
igb_vfta_set(hw, vid, true);
|
adapter->mng_vlan_id = vid;
|
} else {
|
adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
|
}
|
|
if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
|
(vid != old_vid) &&
|
!test_bit(old_vid, adapter->active_vlans)) {
|
/* remove VID from filter table */
|
igb_vfta_set(hw, old_vid, false);
|
}
|
}
|
|
/**
|
* igb_release_hw_control - release control of the h/w to f/w
|
* @adapter: address of board private structure
|
*
|
* igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
|
* For ASF and Pass Through versions of f/w this means that the
|
* driver is no longer loaded.
|
**/
|
static void igb_release_hw_control(struct igb_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
u32 ctrl_ext;
|
|
/* Let firmware take over control of h/w */
|
ctrl_ext = rd32(E1000_CTRL_EXT);
|
wr32(E1000_CTRL_EXT,
|
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
|
}
|
|
/**
|
* igb_get_hw_control - get control of the h/w from f/w
|
* @adapter: address of board private structure
|
*
|
* igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
|
* For ASF and Pass Through versions of f/w this means that
|
* the driver is loaded.
|
**/
|
static void igb_get_hw_control(struct igb_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
u32 ctrl_ext;
|
|
/* Let firmware know the driver has taken over */
|
ctrl_ext = rd32(E1000_CTRL_EXT);
|
wr32(E1000_CTRL_EXT,
|
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
|
}
|
|
/**
|
* igb_configure - configure the hardware for RX and TX
|
* @adapter: private board structure
|
**/
|
static void igb_configure(struct igb_adapter *adapter)
|
{
|
struct rtnet_device *netdev = adapter->netdev;
|
int i;
|
|
igb_get_hw_control(adapter);
|
igb_set_rx_mode(netdev);
|
|
igb_restore_vlan(adapter);
|
|
igb_setup_tctl(adapter);
|
igb_setup_mrqc(adapter);
|
igb_setup_rctl(adapter);
|
|
igb_configure_tx(adapter);
|
igb_configure_rx(adapter);
|
|
igb_rx_fifo_flush_82575(&adapter->hw);
|
|
/* call igb_desc_unused which always leaves
|
* at least 1 descriptor unused to make sure
|
* next_to_use != next_to_clean
|
*/
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
struct igb_ring *ring = adapter->rx_ring[i];
|
igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
|
}
|
}
|
|
/**
|
* igb_power_up_link - Power up the phy/serdes link
|
* @adapter: address of board private structure
|
**/
|
void igb_power_up_link(struct igb_adapter *adapter)
|
{
|
igb_reset_phy(&adapter->hw);
|
|
if (adapter->hw.phy.media_type == e1000_media_type_copper)
|
igb_power_up_phy_copper(&adapter->hw);
|
else
|
igb_power_up_serdes_link_82575(&adapter->hw);
|
|
igb_setup_link(&adapter->hw);
|
}
|
|
/**
|
* igb_power_down_link - Power down the phy/serdes link
|
* @adapter: address of board private structure
|
*/
|
static void igb_power_down_link(struct igb_adapter *adapter)
|
{
|
if (adapter->hw.phy.media_type == e1000_media_type_copper)
|
igb_power_down_phy_copper_82575(&adapter->hw);
|
else
|
igb_shutdown_serdes_link_82575(&adapter->hw);
|
}
|
|
/**
|
* Detect and switch function for Media Auto Sense
|
* @adapter: address of the board private structure
|
**/
|
static void igb_check_swap_media(struct igb_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
u32 ctrl_ext, connsw;
|
bool swap_now = false;
|
|
ctrl_ext = rd32(E1000_CTRL_EXT);
|
connsw = rd32(E1000_CONNSW);
|
|
/* need to live swap if current media is copper and we have fiber/serdes
|
* to go to.
|
*/
|
|
if ((hw->phy.media_type == e1000_media_type_copper) &&
|
(!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
|
swap_now = true;
|
} else if (!(connsw & E1000_CONNSW_SERDESD)) {
|
/* copper signal takes time to appear */
|
if (adapter->copper_tries < 4) {
|
adapter->copper_tries++;
|
connsw |= E1000_CONNSW_AUTOSENSE_CONF;
|
wr32(E1000_CONNSW, connsw);
|
return;
|
} else {
|
adapter->copper_tries = 0;
|
if ((connsw & E1000_CONNSW_PHYSD) &&
|
(!(connsw & E1000_CONNSW_PHY_PDN))) {
|
swap_now = true;
|
connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
|
wr32(E1000_CONNSW, connsw);
|
}
|
}
|
}
|
|
if (!swap_now)
|
return;
|
|
switch (hw->phy.media_type) {
|
case e1000_media_type_copper:
|
rtdev_info(adapter->netdev,
|
"MAS: changing media to fiber/serdes\n");
|
ctrl_ext |=
|
E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
|
adapter->flags |= IGB_FLAG_MEDIA_RESET;
|
adapter->copper_tries = 0;
|
break;
|
case e1000_media_type_internal_serdes:
|
case e1000_media_type_fiber:
|
rtdev_info(adapter->netdev,
|
"MAS: changing media to copper\n");
|
ctrl_ext &=
|
~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
|
adapter->flags |= IGB_FLAG_MEDIA_RESET;
|
break;
|
default:
|
/* shouldn't get here during regular operation */
|
rtdev_err(adapter->netdev,
|
"AMS: Invalid media type found, returning\n");
|
break;
|
}
|
wr32(E1000_CTRL_EXT, ctrl_ext);
|
}
|
|
/**
|
* igb_up - Open the interface and prepare it to handle traffic
|
* @adapter: board private structure
|
**/
|
int igb_up(struct igb_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
|
/* hardware has been reset, we need to reload some things */
|
igb_configure(adapter);
|
|
clear_bit(__IGB_DOWN, &adapter->state);
|
|
if (adapter->flags & IGB_FLAG_HAS_MSIX)
|
igb_configure_msix(adapter);
|
else
|
igb_assign_vector(adapter->q_vector[0], 0);
|
|
/* Clear any pending interrupts. */
|
rd32(E1000_ICR);
|
igb_irq_enable(adapter);
|
|
rtnetif_start_queue(adapter->netdev);
|
|
/* start the watchdog. */
|
hw->mac.get_link_status = 1;
|
schedule_work(&adapter->watchdog_task);
|
|
if ((adapter->flags & IGB_FLAG_EEE) &&
|
(!hw->dev_spec._82575.eee_disable))
|
adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
|
|
return 0;
|
}
|
|
void igb_down(struct igb_adapter *adapter)
|
{
|
struct rtnet_device *netdev = adapter->netdev;
|
struct e1000_hw *hw = &adapter->hw;
|
u32 tctl, rctl;
|
|
/* signal that we're down so the interrupt handler does not
|
* reschedule our watchdog timer
|
*/
|
set_bit(__IGB_DOWN, &adapter->state);
|
|
/* disable receives in the hardware */
|
rctl = rd32(E1000_RCTL);
|
wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
|
/* flush and sleep below */
|
|
rtnetif_stop_queue(netdev);
|
|
/* disable transmits in the hardware */
|
tctl = rd32(E1000_TCTL);
|
tctl &= ~E1000_TCTL_EN;
|
wr32(E1000_TCTL, tctl);
|
/* flush both disables and wait for them to finish */
|
wrfl();
|
usleep_range(10000, 11000);
|
|
igb_irq_disable(adapter);
|
|
adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
|
|
del_timer_sync(&adapter->watchdog_timer);
|
del_timer_sync(&adapter->phy_info_timer);
|
|
/* record the stats before reset*/
|
spin_lock(&adapter->stats64_lock);
|
igb_update_stats(adapter);
|
spin_unlock(&adapter->stats64_lock);
|
|
rtnetif_carrier_off(netdev);
|
adapter->link_speed = 0;
|
adapter->link_duplex = 0;
|
|
if (!pci_channel_offline(adapter->pdev))
|
igb_reset(adapter);
|
igb_clean_all_tx_rings(adapter);
|
igb_clean_all_rx_rings(adapter);
|
}
|
|
void igb_reinit_locked(struct igb_adapter *adapter)
|
{
|
WARN_ON(in_interrupt());
|
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
|
usleep_range(1000, 2000);
|
igb_down(adapter);
|
igb_up(adapter);
|
clear_bit(__IGB_RESETTING, &adapter->state);
|
}
|
|
/** igb_enable_mas - Media Autosense re-enable after swap
|
*
|
* @adapter: adapter struct
|
**/
|
static void igb_enable_mas(struct igb_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
u32 connsw = rd32(E1000_CONNSW);
|
|
/* configure for SerDes media detect */
|
if ((hw->phy.media_type == e1000_media_type_copper) &&
|
(!(connsw & E1000_CONNSW_SERDESD))) {
|
connsw |= E1000_CONNSW_ENRGSRC;
|
connsw |= E1000_CONNSW_AUTOSENSE_EN;
|
wr32(E1000_CONNSW, connsw);
|
wrfl();
|
}
|
}
|
|
void igb_reset(struct igb_adapter *adapter)
|
{
|
struct pci_dev *pdev = adapter->pdev;
|
struct e1000_hw *hw = &adapter->hw;
|
struct e1000_mac_info *mac = &hw->mac;
|
struct e1000_fc_info *fc = &hw->fc;
|
u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
|
|
/* Repartition Pba for greater than 9k mtu
|
* To take effect CTRL.RST is required.
|
*/
|
switch (mac->type) {
|
case e1000_i350:
|
case e1000_i354:
|
case e1000_82580:
|
pba = rd32(E1000_RXPBS);
|
pba = igb_rxpbs_adjust_82580(pba);
|
break;
|
case e1000_82576:
|
pba = rd32(E1000_RXPBS);
|
pba &= E1000_RXPBS_SIZE_MASK_82576;
|
break;
|
case e1000_82575:
|
case e1000_i210:
|
case e1000_i211:
|
default:
|
pba = E1000_PBA_34K;
|
break;
|
}
|
|
if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
|
(mac->type < e1000_82576)) {
|
/* adjust PBA for jumbo frames */
|
wr32(E1000_PBA, pba);
|
|
/* To maintain wire speed transmits, the Tx FIFO should be
|
* large enough to accommodate two full transmit packets,
|
* rounded up to the next 1KB and expressed in KB. Likewise,
|
* the Rx FIFO should be large enough to accommodate at least
|
* one full receive packet and is similarly rounded up and
|
* expressed in KB.
|
*/
|
pba = rd32(E1000_PBA);
|
/* upper 16 bits has Tx packet buffer allocation size in KB */
|
tx_space = pba >> 16;
|
/* lower 16 bits has Rx packet buffer allocation size in KB */
|
pba &= 0xffff;
|
/* the Tx fifo also stores 16 bytes of information about the Tx
|
* but don't include ethernet FCS because hardware appends it
|
*/
|
min_tx_space = (adapter->max_frame_size +
|
sizeof(union e1000_adv_tx_desc) -
|
ETH_FCS_LEN) * 2;
|
min_tx_space = ALIGN(min_tx_space, 1024);
|
min_tx_space >>= 10;
|
/* software strips receive CRC, so leave room for it */
|
min_rx_space = adapter->max_frame_size;
|
min_rx_space = ALIGN(min_rx_space, 1024);
|
min_rx_space >>= 10;
|
|
/* If current Tx allocation is less than the min Tx FIFO size,
|
* and the min Tx FIFO size is less than the current Rx FIFO
|
* allocation, take space away from current Rx allocation
|
*/
|
if (tx_space < min_tx_space &&
|
((min_tx_space - tx_space) < pba)) {
|
pba = pba - (min_tx_space - tx_space);
|
|
/* if short on Rx space, Rx wins and must trump Tx
|
* adjustment
|
*/
|
if (pba < min_rx_space)
|
pba = min_rx_space;
|
}
|
wr32(E1000_PBA, pba);
|
}
|
|
/* flow control settings */
|
/* The high water mark must be low enough to fit one full frame
|
* (or the size used for early receive) above it in the Rx FIFO.
|
* Set it to the lower of:
|
* - 90% of the Rx FIFO size, or
|
* - the full Rx FIFO size minus one full frame
|
*/
|
hwm = min(((pba << 10) * 9 / 10),
|
((pba << 10) - 2 * adapter->max_frame_size));
|
|
fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
|
fc->low_water = fc->high_water - 16;
|
fc->pause_time = 0xFFFF;
|
fc->send_xon = 1;
|
fc->current_mode = fc->requested_mode;
|
|
/* Allow time for pending master requests to run */
|
hw->mac.ops.reset_hw(hw);
|
wr32(E1000_WUC, 0);
|
|
if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
|
/* need to resetup here after media swap */
|
adapter->ei.get_invariants(hw);
|
adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
|
}
|
if ((mac->type == e1000_82575) &&
|
(adapter->flags & IGB_FLAG_MAS_ENABLE)) {
|
igb_enable_mas(adapter);
|
}
|
if (hw->mac.ops.init_hw(hw))
|
dev_err(&pdev->dev, "Hardware Error\n");
|
|
/* Flow control settings reset on hardware reset, so guarantee flow
|
* control is off when forcing speed.
|
*/
|
if (!hw->mac.autoneg)
|
igb_force_mac_fc(hw);
|
|
igb_init_dmac(adapter, pba);
|
#ifdef CONFIG_IGB_HWMON
|
/* Re-initialize the thermal sensor on i350 devices. */
|
if (!test_bit(__IGB_DOWN, &adapter->state)) {
|
if (mac->type == e1000_i350 && hw->bus.func == 0) {
|
/* If present, re-initialize the external thermal sensor
|
* interface.
|
*/
|
if (adapter->ets)
|
mac->ops.init_thermal_sensor_thresh(hw);
|
}
|
}
|
#endif
|
/* Re-establish EEE setting */
|
if (hw->phy.media_type == e1000_media_type_copper) {
|
switch (mac->type) {
|
case e1000_i350:
|
case e1000_i210:
|
case e1000_i211:
|
igb_set_eee_i350(hw, true, true);
|
break;
|
case e1000_i354:
|
igb_set_eee_i354(hw, true, true);
|
break;
|
default:
|
break;
|
}
|
}
|
if (!rtnetif_running(adapter->netdev))
|
igb_power_down_link(adapter);
|
|
igb_update_mng_vlan(adapter);
|
|
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
|
wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
|
|
igb_get_phy_info(hw);
|
}
|
|
|
/**
|
* igb_set_fw_version - Configure version string for ethtool
|
* @adapter: adapter struct
|
**/
|
void igb_set_fw_version(struct igb_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
struct e1000_fw_version fw;
|
|
igb_get_fw_version(hw, &fw);
|
|
switch (hw->mac.type) {
|
case e1000_i210:
|
case e1000_i211:
|
if (!(igb_get_flash_presence_i210(hw))) {
|
snprintf(adapter->fw_version,
|
sizeof(adapter->fw_version),
|
"%2d.%2d-%d",
|
fw.invm_major, fw.invm_minor,
|
fw.invm_img_type);
|
break;
|
}
|
fallthrough;
|
default:
|
/* if option is rom valid, display its version too */
|
if (fw.or_valid) {
|
snprintf(adapter->fw_version,
|
sizeof(adapter->fw_version),
|
"%d.%d, 0x%08x, %d.%d.%d",
|
fw.eep_major, fw.eep_minor, fw.etrack_id,
|
fw.or_major, fw.or_build, fw.or_patch);
|
/* no option rom */
|
} else if (fw.etrack_id != 0X0000) {
|
snprintf(adapter->fw_version,
|
sizeof(adapter->fw_version),
|
"%d.%d, 0x%08x",
|
fw.eep_major, fw.eep_minor, fw.etrack_id);
|
} else {
|
snprintf(adapter->fw_version,
|
sizeof(adapter->fw_version),
|
"%d.%d.%d",
|
fw.eep_major, fw.eep_minor, fw.eep_build);
|
}
|
break;
|
}
|
}
|
|
/**
|
* igb_init_mas - init Media Autosense feature if enabled in the NVM
|
*
|
* @adapter: adapter struct
|
**/
|
static void igb_init_mas(struct igb_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
u16 eeprom_data;
|
|
hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
|
switch (hw->bus.func) {
|
case E1000_FUNC_0:
|
if (eeprom_data & IGB_MAS_ENABLE_0) {
|
adapter->flags |= IGB_FLAG_MAS_ENABLE;
|
rtdev_info(adapter->netdev,
|
"MAS: Enabling Media Autosense for port %d\n",
|
hw->bus.func);
|
}
|
break;
|
case E1000_FUNC_1:
|
if (eeprom_data & IGB_MAS_ENABLE_1) {
|
adapter->flags |= IGB_FLAG_MAS_ENABLE;
|
rtdev_info(adapter->netdev,
|
"MAS: Enabling Media Autosense for port %d\n",
|
hw->bus.func);
|
}
|
break;
|
case E1000_FUNC_2:
|
if (eeprom_data & IGB_MAS_ENABLE_2) {
|
adapter->flags |= IGB_FLAG_MAS_ENABLE;
|
rtdev_info(adapter->netdev,
|
"MAS: Enabling Media Autosense for port %d\n",
|
hw->bus.func);
|
}
|
break;
|
case E1000_FUNC_3:
|
if (eeprom_data & IGB_MAS_ENABLE_3) {
|
adapter->flags |= IGB_FLAG_MAS_ENABLE;
|
rtdev_info(adapter->netdev,
|
"MAS: Enabling Media Autosense for port %d\n",
|
hw->bus.func);
|
}
|
break;
|
default:
|
/* Shouldn't get here */
|
rtdev_err(adapter->netdev,
|
"MAS: Invalid port configuration, returning\n");
|
break;
|
}
|
}
|
|
static dma_addr_t igb_map_rtskb(struct rtnet_device *netdev,
|
struct rtskb *skb)
|
{
|
struct igb_adapter *adapter = netdev->priv;
|
struct device *dev = &adapter->pdev->dev;
|
dma_addr_t addr;
|
|
addr = dma_map_single(dev, skb->buf_start, RTSKB_SIZE,
|
DMA_BIDIRECTIONAL);
|
if (dma_mapping_error(dev, addr)) {
|
dev_err(dev, "DMA map failed\n");
|
return RTSKB_UNMAPPED;
|
}
|
return addr;
|
}
|
|
static void igb_unmap_rtskb(struct rtnet_device *netdev,
|
struct rtskb *skb)
|
{
|
struct igb_adapter *adapter = netdev->priv;
|
struct device *dev = &adapter->pdev->dev;
|
|
dma_unmap_single(dev, skb->buf_dma_addr, RTSKB_SIZE,
|
DMA_BIDIRECTIONAL);
|
}
|
|
/**
|
* igb_probe - Device Initialization Routine
|
* @pdev: PCI device information struct
|
* @ent: entry in igb_pci_tbl
|
*
|
* Returns 0 on success, negative on failure
|
*
|
* igb_probe initializes an adapter identified by a pci_dev structure.
|
* The OS initialization, configuring of the adapter private structure,
|
* and a hardware reset occur.
|
**/
|
static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
|
{
|
struct rtnet_device *netdev;
|
struct igb_adapter *adapter;
|
struct e1000_hw *hw;
|
u16 eeprom_data = 0;
|
s32 ret_val;
|
static int global_quad_port_a; /* global quad port a indication */
|
const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
|
int err, pci_using_dac;
|
u8 part_str[E1000_PBANUM_LENGTH];
|
|
/* Catch broken hardware that put the wrong VF device ID in
|
* the PCIe SR-IOV capability.
|
*/
|
if (pdev->is_virtfn) {
|
WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
|
pci_name(pdev), pdev->vendor, pdev->device);
|
return -EINVAL;
|
}
|
|
err = pci_enable_device_mem(pdev);
|
if (err)
|
return err;
|
|
pci_using_dac = 0;
|
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
|
if (!err) {
|
pci_using_dac = 1;
|
} else {
|
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
|
if (err) {
|
dev_err(&pdev->dev,
|
"No usable DMA configuration, aborting\n");
|
goto err_dma;
|
}
|
}
|
|
err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
|
IORESOURCE_MEM),
|
igb_driver_name);
|
if (err)
|
goto err_pci_reg;
|
|
pci_enable_pcie_error_reporting(pdev);
|
|
pci_set_master(pdev);
|
pci_save_state(pdev);
|
|
err = -ENOMEM;
|
netdev = rt_alloc_etherdev(sizeof(*adapter),
|
2 * IGB_DEFAULT_RXD + IGB_DEFAULT_TXD);
|
if (!netdev)
|
goto err_alloc_etherdev;
|
|
rtdev_alloc_name(netdev, "rteth%d");
|
rt_rtdev_connect(netdev, &RTDEV_manager);
|
|
netdev->vers = RTDEV_VERS_2_0;
|
netdev->sysbind = &pdev->dev;
|
|
pci_set_drvdata(pdev, netdev);
|
adapter = rtnetdev_priv(netdev);
|
adapter->netdev = netdev;
|
adapter->pdev = pdev;
|
hw = &adapter->hw;
|
hw->back = adapter;
|
|
err = -EIO;
|
hw->hw_addr = pci_iomap(pdev, 0, 0);
|
if (!hw->hw_addr)
|
goto err_ioremap;
|
|
netdev->open = igb_open;
|
netdev->stop = igb_close;
|
netdev->hard_start_xmit = igb_xmit_frame;
|
netdev->get_stats = igb_get_stats;
|
netdev->map_rtskb = igb_map_rtskb;
|
netdev->unmap_rtskb = igb_unmap_rtskb;
|
netdev->do_ioctl = igb_ioctl;
|
#if 0
|
netdev->set_multicast_list = igb_set_multi;
|
netdev->set_mac_address = igb_set_mac;
|
netdev->change_mtu = igb_change_mtu;
|
|
// No ethtool support for now
|
igb_set_ethtool_ops(netdev);
|
netdev->watchdog_timeo = 5 * HZ;
|
#endif
|
|
strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
|
|
netdev->mem_start = pci_resource_start(pdev, 0);
|
netdev->mem_end = pci_resource_end(pdev, 0);
|
|
/* PCI config space info */
|
hw->vendor_id = pdev->vendor;
|
hw->device_id = pdev->device;
|
hw->revision_id = pdev->revision;
|
hw->subsystem_vendor_id = pdev->subsystem_vendor;
|
hw->subsystem_device_id = pdev->subsystem_device;
|
|
/* Copy the default MAC, PHY and NVM function pointers */
|
memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
|
memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
|
memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
|
/* Initialize skew-specific constants */
|
err = ei->get_invariants(hw);
|
if (err)
|
goto err_sw_init;
|
|
/* setup the private structure */
|
err = igb_sw_init(adapter);
|
if (err)
|
goto err_sw_init;
|
|
igb_get_bus_info_pcie(hw);
|
|
hw->phy.autoneg_wait_to_complete = false;
|
|
/* Copper options */
|
if (hw->phy.media_type == e1000_media_type_copper) {
|
hw->phy.mdix = AUTO_ALL_MODES;
|
hw->phy.disable_polarity_correction = false;
|
hw->phy.ms_type = e1000_ms_hw_default;
|
}
|
|
if (igb_check_reset_block(hw))
|
dev_info(&pdev->dev,
|
"PHY reset is blocked due to SOL/IDER session.\n");
|
|
/* features is initialized to 0 in allocation, it might have bits
|
* set by igb_sw_init so we should use an or instead of an
|
* assignment.
|
*/
|
netdev->features |= NETIF_F_SG |
|
NETIF_F_IP_CSUM |
|
NETIF_F_IPV6_CSUM |
|
NETIF_F_TSO |
|
NETIF_F_TSO6 |
|
NETIF_F_RXHASH |
|
NETIF_F_RXCSUM |
|
NETIF_F_HW_VLAN_CTAG_RX |
|
NETIF_F_HW_VLAN_CTAG_TX;
|
|
#if 0
|
/* set this bit last since it cannot be part of hw_features */
|
netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
|
#endif
|
|
netdev->priv_flags |= IFF_SUPP_NOFCS;
|
|
if (pci_using_dac)
|
netdev->features |= NETIF_F_HIGHDMA;
|
|
netdev->priv_flags |= IFF_UNICAST_FLT;
|
|
adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
|
|
/* before reading the NVM, reset the controller to put the device in a
|
* known good starting state
|
*/
|
hw->mac.ops.reset_hw(hw);
|
|
/* make sure the NVM is good , i211/i210 parts can have special NVM
|
* that doesn't contain a checksum
|
*/
|
switch (hw->mac.type) {
|
case e1000_i210:
|
case e1000_i211:
|
if (igb_get_flash_presence_i210(hw)) {
|
if (hw->nvm.ops.validate(hw) < 0) {
|
dev_err(&pdev->dev,
|
"The NVM Checksum Is Not Valid\n");
|
err = -EIO;
|
goto err_eeprom;
|
}
|
}
|
break;
|
default:
|
if (hw->nvm.ops.validate(hw) < 0) {
|
dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
|
err = -EIO;
|
goto err_eeprom;
|
}
|
break;
|
}
|
|
/* copy the MAC address out of the NVM */
|
if (hw->mac.ops.read_mac_addr(hw))
|
dev_err(&pdev->dev, "NVM Read Error\n");
|
|
memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
|
|
if (!is_valid_ether_addr(netdev->dev_addr)) {
|
dev_err(&pdev->dev, "Invalid MAC Address\n");
|
err = -EIO;
|
goto err_eeprom;
|
}
|
|
/* get firmware version for ethtool -i */
|
igb_set_fw_version(adapter);
|
|
/* configure RXPBSIZE and TXPBSIZE */
|
if (hw->mac.type == e1000_i210) {
|
wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
|
wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
|
}
|
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4,14,0)
|
timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
|
timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
|
#else /* < 4.14 */
|
setup_timer(&adapter->watchdog_timer, igb_watchdog,
|
(unsigned long) adapter);
|
setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
|
(unsigned long) adapter);
|
#endif /* < 4.14 */
|
|
INIT_WORK(&adapter->reset_task, igb_reset_task);
|
INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
|
rtdm_nrtsig_init(&adapter->watchdog_nrtsig,
|
igb_nrtsig_watchdog, adapter);
|
|
/* Initialize link properties that are user-changeable */
|
adapter->fc_autoneg = true;
|
hw->mac.autoneg = true;
|
hw->phy.autoneg_advertised = 0x2f;
|
|
hw->fc.requested_mode = e1000_fc_default;
|
hw->fc.current_mode = e1000_fc_default;
|
|
igb_validate_mdi_setting(hw);
|
|
/* By default, support wake on port A */
|
if (hw->bus.func == 0)
|
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
|
|
/* Check the NVM for wake support on non-port A ports */
|
if (hw->mac.type >= e1000_82580)
|
hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
|
NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
|
&eeprom_data);
|
else if (hw->bus.func == 1)
|
hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
|
|
if (eeprom_data & IGB_EEPROM_APME)
|
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
|
|
/* now that we have the eeprom settings, apply the special cases where
|
* the eeprom may be wrong or the board simply won't support wake on
|
* lan on a particular port
|
*/
|
switch (pdev->device) {
|
case E1000_DEV_ID_82575GB_QUAD_COPPER:
|
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
|
break;
|
case E1000_DEV_ID_82575EB_FIBER_SERDES:
|
case E1000_DEV_ID_82576_FIBER:
|
case E1000_DEV_ID_82576_SERDES:
|
/* Wake events only supported on port A for dual fiber
|
* regardless of eeprom setting
|
*/
|
if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
|
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
|
break;
|
case E1000_DEV_ID_82576_QUAD_COPPER:
|
case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
|
/* if quad port adapter, disable WoL on all but port A */
|
if (global_quad_port_a != 0)
|
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
|
else
|
adapter->flags |= IGB_FLAG_QUAD_PORT_A;
|
/* Reset for multiple quad port adapters */
|
if (++global_quad_port_a == 4)
|
global_quad_port_a = 0;
|
break;
|
default:
|
/* If the device can't wake, don't set software support */
|
if (!device_can_wakeup(&adapter->pdev->dev))
|
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
|
}
|
|
/* initialize the wol settings based on the eeprom settings */
|
if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
|
adapter->wol |= E1000_WUFC_MAG;
|
|
/* Some vendors want WoL disabled by default, but still supported */
|
if ((hw->mac.type == e1000_i350) &&
|
(pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
|
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
|
adapter->wol = 0;
|
}
|
|
device_set_wakeup_enable(&adapter->pdev->dev,
|
adapter->flags & IGB_FLAG_WOL_SUPPORTED);
|
|
/* reset the hardware with the new settings */
|
igb_reset(adapter);
|
|
/* let the f/w know that the h/w is now under the control of the
|
* driver.
|
*/
|
igb_get_hw_control(adapter);
|
|
strcpy(netdev->name, "rteth%d");
|
err = rt_register_rtnetdev(netdev);
|
if (err)
|
goto err_release_hw_control;
|
|
/* carrier off reporting is important to ethtool even BEFORE open */
|
rtnetif_carrier_off(netdev);
|
|
#ifdef CONFIG_IGB_HWMON
|
/* Initialize the thermal sensor on i350 devices. */
|
if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
|
u16 ets_word;
|
|
/* Read the NVM to determine if this i350 device supports an
|
* external thermal sensor.
|
*/
|
hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
|
if (ets_word != 0x0000 && ets_word != 0xFFFF)
|
adapter->ets = true;
|
else
|
adapter->ets = false;
|
if (igb_sysfs_init(adapter))
|
dev_err(&pdev->dev,
|
"failed to allocate sysfs resources\n");
|
} else {
|
adapter->ets = false;
|
}
|
#endif
|
/* Check if Media Autosense is enabled */
|
adapter->ei = *ei;
|
if (hw->dev_spec._82575.mas_capable)
|
igb_init_mas(adapter);
|
|
dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
|
/* print bus type/speed/width info, not applicable to i354 */
|
if (hw->mac.type != e1000_i354) {
|
dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
|
netdev->name,
|
((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
|
(hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
|
"unknown"),
|
((hw->bus.width == e1000_bus_width_pcie_x4) ?
|
"Width x4" :
|
(hw->bus.width == e1000_bus_width_pcie_x2) ?
|
"Width x2" :
|
(hw->bus.width == e1000_bus_width_pcie_x1) ?
|
"Width x1" : "unknown"), netdev->dev_addr);
|
}
|
|
if ((hw->mac.type >= e1000_i210 ||
|
igb_get_flash_presence_i210(hw))) {
|
ret_val = igb_read_part_string(hw, part_str,
|
E1000_PBANUM_LENGTH);
|
} else {
|
ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
|
}
|
|
if (ret_val)
|
strcpy(part_str, "Unknown");
|
dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
|
dev_info(&pdev->dev,
|
"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
|
(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
|
(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
|
adapter->num_rx_queues, adapter->num_tx_queues);
|
if (hw->phy.media_type == e1000_media_type_copper) {
|
switch (hw->mac.type) {
|
case e1000_i350:
|
case e1000_i210:
|
case e1000_i211:
|
/* Enable EEE for internal copper PHY devices */
|
err = igb_set_eee_i350(hw, true, true);
|
if ((!err) &&
|
(!hw->dev_spec._82575.eee_disable)) {
|
adapter->eee_advert =
|
MDIO_EEE_100TX | MDIO_EEE_1000T;
|
adapter->flags |= IGB_FLAG_EEE;
|
}
|
break;
|
case e1000_i354:
|
if ((rd32(E1000_CTRL_EXT) &
|
E1000_CTRL_EXT_LINK_MODE_SGMII)) {
|
err = igb_set_eee_i354(hw, true, true);
|
if ((!err) &&
|
(!hw->dev_spec._82575.eee_disable)) {
|
adapter->eee_advert =
|
MDIO_EEE_100TX | MDIO_EEE_1000T;
|
adapter->flags |= IGB_FLAG_EEE;
|
}
|
}
|
break;
|
default:
|
break;
|
}
|
}
|
pm_runtime_put_noidle(&pdev->dev);
|
return 0;
|
|
err_release_hw_control:
|
igb_release_hw_control(adapter);
|
memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
|
err_eeprom:
|
if (!igb_check_reset_block(hw))
|
igb_reset_phy(hw);
|
|
if (hw->flash_address)
|
iounmap(hw->flash_address);
|
err_sw_init:
|
igb_clear_interrupt_scheme(adapter);
|
pci_iounmap(pdev, hw->hw_addr);
|
err_ioremap:
|
rtdev_free(netdev);
|
err_alloc_etherdev:
|
pci_release_selected_regions(pdev,
|
pci_select_bars(pdev, IORESOURCE_MEM));
|
err_pci_reg:
|
err_dma:
|
pci_disable_device(pdev);
|
return err;
|
}
|
|
/**
|
* igb_remove_i2c - Cleanup I2C interface
|
* @adapter: pointer to adapter structure
|
**/
|
static void igb_remove_i2c(struct igb_adapter *adapter)
|
{
|
/* free the adapter bus structure */
|
i2c_del_adapter(&adapter->i2c_adap);
|
}
|
|
/**
|
* igb_remove - Device Removal Routine
|
* @pdev: PCI device information struct
|
*
|
* igb_remove is called by the PCI subsystem to alert the driver
|
* that it should release a PCI device. The could be caused by a
|
* Hot-Plug event, or because the driver is going to be removed from
|
* memory.
|
**/
|
static void igb_remove(struct pci_dev *pdev)
|
{
|
struct rtnet_device *netdev = pci_get_drvdata(pdev);
|
struct igb_adapter *adapter = rtnetdev_priv(netdev);
|
struct e1000_hw *hw = &adapter->hw;
|
|
rtdev_down(netdev);
|
igb_down(adapter);
|
|
pm_runtime_get_noresume(&pdev->dev);
|
#ifdef CONFIG_IGB_HWMON
|
igb_sysfs_exit(adapter);
|
#endif
|
igb_remove_i2c(adapter);
|
/* The watchdog timer may be rescheduled, so explicitly
|
* disable watchdog from being rescheduled.
|
*/
|
del_timer_sync(&adapter->watchdog_timer);
|
del_timer_sync(&adapter->phy_info_timer);
|
|
cancel_work_sync(&adapter->reset_task);
|
cancel_work_sync(&adapter->watchdog_task);
|
|
/* Release control of h/w to f/w. If f/w is AMT enabled, this
|
* would have already happened in close and is redundant.
|
*/
|
igb_release_hw_control(adapter);
|
|
rt_rtdev_disconnect(netdev);
|
rt_unregister_rtnetdev(netdev);
|
|
igb_clear_interrupt_scheme(adapter);
|
|
pci_iounmap(pdev, hw->hw_addr);
|
if (hw->flash_address)
|
iounmap(hw->flash_address);
|
pci_release_selected_regions(pdev,
|
pci_select_bars(pdev, IORESOURCE_MEM));
|
|
kfree(adapter->shadow_vfta);
|
rtdev_free(netdev);
|
|
pci_disable_pcie_error_reporting(pdev);
|
|
pci_disable_device(pdev);
|
}
|
|
/**
|
* igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
|
* @adapter: board private structure to initialize
|
*
|
* This function initializes the vf specific data storage and then attempts to
|
* allocate the VFs. The reason for ordering it this way is because it is much
|
* mor expensive time wise to disable SR-IOV than it is to allocate and free
|
* the memory for the VFs.
|
**/
|
static void igb_probe_vfs(struct igb_adapter *adapter)
|
{
|
}
|
|
static void igb_init_queue_configuration(struct igb_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
u32 max_rss_queues;
|
|
max_rss_queues = 1;
|
adapter->rss_queues = max_rss_queues;
|
|
/* Determine if we need to pair queues. */
|
switch (hw->mac.type) {
|
case e1000_82575:
|
case e1000_i211:
|
/* Device supports enough interrupts without queue pairing. */
|
break;
|
case e1000_82576:
|
/* If VFs are going to be allocated with RSS queues then we
|
* should pair the queues in order to conserve interrupts due
|
* to limited supply.
|
*/
|
fallthrough;
|
case e1000_82580:
|
case e1000_i350:
|
case e1000_i354:
|
case e1000_i210:
|
default:
|
/* If rss_queues > half of max_rss_queues, pair the queues in
|
* order to conserve interrupts due to limited supply.
|
*/
|
if (adapter->rss_queues > (max_rss_queues / 2))
|
adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
|
break;
|
}
|
}
|
|
/**
|
* igb_sw_init - Initialize general software structures (struct igb_adapter)
|
* @adapter: board private structure to initialize
|
*
|
* igb_sw_init initializes the Adapter private data structure.
|
* Fields are initialized based on PCI device information and
|
* OS network device settings (MTU size).
|
**/
|
static int igb_sw_init(struct igb_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
struct rtnet_device *netdev = adapter->netdev;
|
struct pci_dev *pdev = adapter->pdev;
|
|
pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
|
|
/* set default ring sizes */
|
adapter->tx_ring_count = IGB_DEFAULT_TXD;
|
adapter->rx_ring_count = IGB_DEFAULT_RXD;
|
|
/* set default ITR values */
|
if (InterruptThrottle) {
|
adapter->rx_itr_setting = IGB_DEFAULT_ITR;
|
adapter->tx_itr_setting = IGB_DEFAULT_ITR;
|
} else {
|
adapter->rx_itr_setting = IGB_MIN_ITR_USECS;
|
adapter->tx_itr_setting = IGB_MIN_ITR_USECS;
|
}
|
|
/* set default work limits */
|
adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
|
|
adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
|
VLAN_HLEN;
|
adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
|
|
spin_lock_init(&adapter->stats64_lock);
|
|
igb_init_queue_configuration(adapter);
|
|
/* Setup and initialize a copy of the hw vlan table array */
|
adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
|
GFP_ATOMIC);
|
|
/* This call may decrease the number of queues */
|
if (igb_init_interrupt_scheme(adapter, true)) {
|
dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
|
return -ENOMEM;
|
}
|
|
igb_probe_vfs(adapter);
|
|
/* Explicitly disable IRQ since the NIC can be in any state. */
|
igb_irq_disable(adapter);
|
|
if (hw->mac.type >= e1000_i350)
|
adapter->flags &= ~IGB_FLAG_DMAC;
|
|
set_bit(__IGB_DOWN, &adapter->state);
|
return 0;
|
}
|
|
/**
|
* igb_open - Called when a network interface is made active
|
* @netdev: network interface device structure
|
*
|
* Returns 0 on success, negative value on failure
|
*
|
* The open entry point is called when a network interface is made
|
* active by the system (IFF_UP). At this point all resources needed
|
* for transmit and receive operations are allocated, the interrupt
|
* handler is registered with the OS, the watchdog timer is started,
|
* and the stack is notified that the interface is ready.
|
**/
|
static int __igb_open(struct rtnet_device *netdev, bool resuming)
|
{
|
struct igb_adapter *adapter = rtnetdev_priv(netdev);
|
struct e1000_hw *hw = &adapter->hw;
|
struct pci_dev *pdev = adapter->pdev;
|
int err;
|
|
/* disallow open during test */
|
if (test_bit(__IGB_TESTING, &adapter->state)) {
|
WARN_ON(resuming);
|
return -EBUSY;
|
}
|
|
if (!resuming)
|
pm_runtime_get_sync(&pdev->dev);
|
|
rtnetif_carrier_off(netdev);
|
|
/* allocate transmit descriptors */
|
err = igb_setup_all_tx_resources(adapter);
|
if (err)
|
goto err_setup_tx;
|
|
/* allocate receive descriptors */
|
err = igb_setup_all_rx_resources(adapter);
|
if (err)
|
goto err_setup_rx;
|
|
igb_power_up_link(adapter);
|
|
/* before we allocate an interrupt, we must be ready to handle it.
|
* Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
|
* as soon as we call pci_request_irq, so we have to setup our
|
* clean_rx handler before we do so.
|
*/
|
igb_configure(adapter);
|
|
err = igb_request_irq(adapter);
|
if (err)
|
goto err_req_irq;
|
|
/* From here on the code is the same as igb_up() */
|
clear_bit(__IGB_DOWN, &adapter->state);
|
|
/* Clear any pending interrupts. */
|
rd32(E1000_ICR);
|
|
igb_irq_enable(adapter);
|
|
rtnetif_start_queue(netdev);
|
|
if (!resuming)
|
pm_runtime_put(&pdev->dev);
|
|
/* start the watchdog. */
|
hw->mac.get_link_status = 1;
|
schedule_work(&adapter->watchdog_task);
|
|
return 0;
|
|
err_req_irq:
|
igb_release_hw_control(adapter);
|
igb_power_down_link(adapter);
|
igb_free_all_rx_resources(adapter);
|
err_setup_rx:
|
igb_free_all_tx_resources(adapter);
|
err_setup_tx:
|
igb_reset(adapter);
|
if (!resuming)
|
pm_runtime_put(&pdev->dev);
|
|
return err;
|
}
|
|
static int igb_open(struct rtnet_device *netdev)
|
{
|
return __igb_open(netdev, false);
|
}
|
|
/**
|
* igb_close - Disables a network interface
|
* @netdev: network interface device structure
|
*
|
* Returns 0, this is not allowed to fail
|
*
|
* The close entry point is called when an interface is de-activated
|
* by the OS. The hardware is still under the driver's control, but
|
* needs to be disabled. A global MAC reset is issued to stop the
|
* hardware, and all transmit and receive resources are freed.
|
**/
|
static int __igb_close(struct rtnet_device *netdev, bool suspending)
|
{
|
struct igb_adapter *adapter = rtnetdev_priv(netdev);
|
struct pci_dev *pdev = adapter->pdev;
|
|
WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
|
|
if (!suspending)
|
pm_runtime_get_sync(&pdev->dev);
|
|
igb_down(adapter);
|
igb_free_irq(adapter);
|
|
rt_stack_disconnect(netdev);
|
|
igb_free_all_tx_resources(adapter);
|
igb_free_all_rx_resources(adapter);
|
|
if (!suspending)
|
pm_runtime_put_sync(&pdev->dev);
|
return 0;
|
}
|
|
static int igb_close(struct rtnet_device *netdev)
|
{
|
return __igb_close(netdev, false);
|
}
|
|
/**
|
* igb_setup_tx_resources - allocate Tx resources (Descriptors)
|
* @tx_ring: tx descriptor ring (for a specific queue) to setup
|
*
|
* Return 0 on success, negative on failure
|
**/
|
int igb_setup_tx_resources(struct igb_ring *tx_ring)
|
{
|
struct device *dev = tx_ring->dev;
|
int size;
|
|
size = sizeof(struct igb_tx_buffer) * tx_ring->count;
|
|
tx_ring->tx_buffer_info = vzalloc(size);
|
if (!tx_ring->tx_buffer_info)
|
goto err;
|
|
/* round up to nearest 4K */
|
tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
|
tx_ring->size = ALIGN(tx_ring->size, 4096);
|
|
tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
|
&tx_ring->dma, GFP_KERNEL);
|
if (!tx_ring->desc)
|
goto err;
|
|
tx_ring->next_to_use = 0;
|
tx_ring->next_to_clean = 0;
|
|
return 0;
|
|
err:
|
vfree(tx_ring->tx_buffer_info);
|
tx_ring->tx_buffer_info = NULL;
|
dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
|
return -ENOMEM;
|
}
|
|
/**
|
* igb_setup_all_tx_resources - wrapper to allocate Tx resources
|
* (Descriptors) for all queues
|
* @adapter: board private structure
|
*
|
* Return 0 on success, negative on failure
|
**/
|
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
|
{
|
struct pci_dev *pdev = adapter->pdev;
|
int i, err = 0;
|
|
for (i = 0; i < adapter->num_tx_queues; i++) {
|
err = igb_setup_tx_resources(adapter->tx_ring[i]);
|
if (err) {
|
dev_err(&pdev->dev,
|
"Allocation for Tx Queue %u failed\n", i);
|
for (i--; i >= 0; i--)
|
igb_free_tx_resources(adapter->tx_ring[i]);
|
break;
|
}
|
}
|
|
return err;
|
}
|
|
/**
|
* igb_setup_tctl - configure the transmit control registers
|
* @adapter: Board private structure
|
**/
|
void igb_setup_tctl(struct igb_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
u32 tctl;
|
|
/* disable queue 0 which is enabled by default on 82575 and 82576 */
|
wr32(E1000_TXDCTL(0), 0);
|
|
/* Program the Transmit Control Register */
|
tctl = rd32(E1000_TCTL);
|
tctl &= ~E1000_TCTL_CT;
|
tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
|
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
|
|
igb_config_collision_dist(hw);
|
|
/* Enable transmits */
|
tctl |= E1000_TCTL_EN;
|
|
wr32(E1000_TCTL, tctl);
|
}
|
|
/**
|
* igb_configure_tx_ring - Configure transmit ring after Reset
|
* @adapter: board private structure
|
* @ring: tx ring to configure
|
*
|
* Configure a transmit ring after a reset.
|
**/
|
void igb_configure_tx_ring(struct igb_adapter *adapter,
|
struct igb_ring *ring)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
u32 txdctl = 0;
|
u64 tdba = ring->dma;
|
int reg_idx = ring->reg_idx;
|
|
/* disable the queue */
|
wr32(E1000_TXDCTL(reg_idx), 0);
|
wrfl();
|
mdelay(10);
|
|
wr32(E1000_TDLEN(reg_idx),
|
ring->count * sizeof(union e1000_adv_tx_desc));
|
wr32(E1000_TDBAL(reg_idx),
|
tdba & 0x00000000ffffffffULL);
|
wr32(E1000_TDBAH(reg_idx), tdba >> 32);
|
|
ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
|
wr32(E1000_TDH(reg_idx), 0);
|
writel(0, ring->tail);
|
|
txdctl |= IGB_TX_PTHRESH;
|
txdctl |= IGB_TX_HTHRESH << 8;
|
txdctl |= IGB_TX_WTHRESH << 16;
|
|
txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
|
wr32(E1000_TXDCTL(reg_idx), txdctl);
|
}
|
|
/**
|
* igb_configure_tx - Configure transmit Unit after Reset
|
* @adapter: board private structure
|
*
|
* Configure the Tx unit of the MAC after a reset.
|
**/
|
static void igb_configure_tx(struct igb_adapter *adapter)
|
{
|
int i;
|
|
for (i = 0; i < adapter->num_tx_queues; i++)
|
igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
|
}
|
|
/**
|
* igb_setup_rx_resources - allocate Rx resources (Descriptors)
|
* @rx_ring: Rx descriptor ring (for a specific queue) to setup
|
*
|
* Returns 0 on success, negative on failure
|
**/
|
int igb_setup_rx_resources(struct igb_ring *rx_ring)
|
{
|
struct device *dev = rx_ring->dev;
|
int size;
|
|
size = sizeof(struct igb_rx_buffer) * rx_ring->count;
|
|
rx_ring->rx_buffer_info = vzalloc(size);
|
if (!rx_ring->rx_buffer_info)
|
goto err;
|
|
/* Round up to nearest 4K */
|
rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
|
rx_ring->size = ALIGN(rx_ring->size, 4096);
|
|
rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
|
&rx_ring->dma, GFP_KERNEL);
|
if (!rx_ring->desc)
|
goto err;
|
|
rx_ring->next_to_alloc = 0;
|
rx_ring->next_to_clean = 0;
|
rx_ring->next_to_use = 0;
|
|
return 0;
|
|
err:
|
vfree(rx_ring->rx_buffer_info);
|
rx_ring->rx_buffer_info = NULL;
|
dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
|
return -ENOMEM;
|
}
|
|
/**
|
* igb_setup_all_rx_resources - wrapper to allocate Rx resources
|
* (Descriptors) for all queues
|
* @adapter: board private structure
|
*
|
* Return 0 on success, negative on failure
|
**/
|
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
|
{
|
struct pci_dev *pdev = adapter->pdev;
|
int i, err = 0;
|
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
err = igb_setup_rx_resources(adapter->rx_ring[i]);
|
if (err) {
|
dev_err(&pdev->dev,
|
"Allocation for Rx Queue %u failed\n", i);
|
for (i--; i >= 0; i--)
|
igb_free_rx_resources(adapter->rx_ring[i]);
|
break;
|
}
|
}
|
|
return err;
|
}
|
|
/**
|
* igb_setup_mrqc - configure the multiple receive queue control registers
|
* @adapter: Board private structure
|
**/
|
static void igb_setup_mrqc(struct igb_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
u32 mrqc, rxcsum;
|
u32 j, num_rx_queues;
|
u32 rss_key[10];
|
|
get_random_bytes(rss_key, sizeof(rss_key));
|
for (j = 0; j < 10; j++)
|
wr32(E1000_RSSRK(j), rss_key[j]);
|
|
num_rx_queues = adapter->rss_queues;
|
|
switch (hw->mac.type) {
|
case e1000_82576:
|
/* 82576 supports 2 RSS queues for SR-IOV */
|
break;
|
default:
|
break;
|
}
|
|
if (adapter->rss_indir_tbl_init != num_rx_queues) {
|
for (j = 0; j < IGB_RETA_SIZE; j++)
|
adapter->rss_indir_tbl[j] =
|
(j * num_rx_queues) / IGB_RETA_SIZE;
|
adapter->rss_indir_tbl_init = num_rx_queues;
|
}
|
|
/* Disable raw packet checksumming so that RSS hash is placed in
|
* descriptor on writeback. No need to enable TCP/UDP/IP checksum
|
* offloads as they are enabled by default
|
*/
|
rxcsum = rd32(E1000_RXCSUM);
|
rxcsum |= E1000_RXCSUM_PCSD;
|
|
if (adapter->hw.mac.type >= e1000_82576)
|
/* Enable Receive Checksum Offload for SCTP */
|
rxcsum |= E1000_RXCSUM_CRCOFL;
|
|
/* Don't need to set TUOFL or IPOFL, they default to 1 */
|
wr32(E1000_RXCSUM, rxcsum);
|
|
/* Generate RSS hash based on packet types, TCP/UDP
|
* port numbers and/or IPv4/v6 src and dst addresses
|
*/
|
mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
|
E1000_MRQC_RSS_FIELD_IPV4_TCP |
|
E1000_MRQC_RSS_FIELD_IPV6 |
|
E1000_MRQC_RSS_FIELD_IPV6_TCP |
|
E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
|
|
if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
|
mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
|
if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
|
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
|
|
/* If VMDq is enabled then we set the appropriate mode for that, else
|
* we default to RSS so that an RSS hash is calculated per packet even
|
* if we are only using one queue
|
*/
|
if (hw->mac.type != e1000_i211)
|
mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
|
|
wr32(E1000_MRQC, mrqc);
|
}
|
|
/**
|
* igb_setup_rctl - configure the receive control registers
|
* @adapter: Board private structure
|
**/
|
void igb_setup_rctl(struct igb_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
u32 rctl;
|
|
rctl = rd32(E1000_RCTL);
|
|
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
|
rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
|
|
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
|
(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
|
|
/* enable stripping of CRC. It's unlikely this will break BMC
|
* redirection as it did with e1000. Newer features require
|
* that the HW strips the CRC.
|
*/
|
rctl |= E1000_RCTL_SECRC;
|
|
/* disable store bad packets and clear size bits. */
|
rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
|
|
/* enable LPE to prevent packets larger than max_frame_size */
|
rctl |= E1000_RCTL_LPE;
|
|
/* disable queue 0 to prevent tail write w/o re-config */
|
wr32(E1000_RXDCTL(0), 0);
|
|
/* This is useful for sniffing bad packets. */
|
if (adapter->netdev->features & NETIF_F_RXALL) {
|
/* UPE and MPE will be handled by normal PROMISC logic
|
* in e1000e_set_rx_mode
|
*/
|
rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
|
E1000_RCTL_BAM | /* RX All Bcast Pkts */
|
E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
|
|
rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
|
E1000_RCTL_DPF | /* Allow filtered pause */
|
E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
|
/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
|
* and that breaks VLANs.
|
*/
|
}
|
|
wr32(E1000_RCTL, rctl);
|
}
|
|
/**
|
* igb_rlpml_set - set maximum receive packet size
|
* @adapter: board private structure
|
*
|
* Configure maximum receivable packet size.
|
**/
|
static void igb_rlpml_set(struct igb_adapter *adapter)
|
{
|
u32 max_frame_size = adapter->max_frame_size;
|
struct e1000_hw *hw = &adapter->hw;
|
|
wr32(E1000_RLPML, max_frame_size);
|
}
|
|
static inline void igb_set_vmolr(struct igb_adapter *adapter,
|
int vfn, bool aupe)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
u32 vmolr;
|
|
/* This register exists only on 82576 and newer so if we are older then
|
* we should exit and do nothing
|
*/
|
if (hw->mac.type < e1000_82576)
|
return;
|
|
vmolr = rd32(E1000_VMOLR(vfn));
|
vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
|
if (hw->mac.type == e1000_i350) {
|
u32 dvmolr;
|
|
dvmolr = rd32(E1000_DVMOLR(vfn));
|
dvmolr |= E1000_DVMOLR_STRVLAN;
|
wr32(E1000_DVMOLR(vfn), dvmolr);
|
}
|
if (aupe)
|
vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
|
else
|
vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
|
|
/* clear all bits that might not be set */
|
vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
|
|
if (adapter->rss_queues > 1)
|
vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
|
/* for VMDq only allow the VFs and pool 0 to accept broadcast and
|
* multicast packets
|
*/
|
vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
|
|
wr32(E1000_VMOLR(vfn), vmolr);
|
}
|
|
/**
|
* igb_configure_rx_ring - Configure a receive ring after Reset
|
* @adapter: board private structure
|
* @ring: receive ring to be configured
|
*
|
* Configure the Rx unit of the MAC after a reset.
|
**/
|
void igb_configure_rx_ring(struct igb_adapter *adapter,
|
struct igb_ring *ring)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
u64 rdba = ring->dma;
|
int reg_idx = ring->reg_idx;
|
u32 srrctl = 0, rxdctl = 0;
|
|
ring->rx_buffer_len = max_t(u32, adapter->max_frame_size,
|
MAXIMUM_ETHERNET_VLAN_SIZE);
|
|
/* disable the queue */
|
wr32(E1000_RXDCTL(reg_idx), 0);
|
|
/* Set DMA base address registers */
|
wr32(E1000_RDBAL(reg_idx),
|
rdba & 0x00000000ffffffffULL);
|
wr32(E1000_RDBAH(reg_idx), rdba >> 32);
|
wr32(E1000_RDLEN(reg_idx),
|
ring->count * sizeof(union e1000_adv_rx_desc));
|
|
/* initialize head and tail */
|
ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
|
wr32(E1000_RDH(reg_idx), 0);
|
writel(0, ring->tail);
|
|
/* set descriptor configuration */
|
srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
|
srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
|
srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
|
if (hw->mac.type >= e1000_82580)
|
srrctl |= E1000_SRRCTL_TIMESTAMP;
|
/* Only set Drop Enable if we are supporting multiple queues */
|
if (adapter->num_rx_queues > 1)
|
srrctl |= E1000_SRRCTL_DROP_EN;
|
|
wr32(E1000_SRRCTL(reg_idx), srrctl);
|
|
/* set filtering for VMDQ pools */
|
igb_set_vmolr(adapter, reg_idx & 0x7, true);
|
|
rxdctl |= IGB_RX_PTHRESH;
|
rxdctl |= IGB_RX_HTHRESH << 8;
|
rxdctl |= IGB_RX_WTHRESH << 16;
|
|
/* enable receive descriptor fetching */
|
rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
|
wr32(E1000_RXDCTL(reg_idx), rxdctl);
|
}
|
|
/**
|
* igb_configure_rx - Configure receive Unit after Reset
|
* @adapter: board private structure
|
*
|
* Configure the Rx unit of the MAC after a reset.
|
**/
|
static void igb_configure_rx(struct igb_adapter *adapter)
|
{
|
int i;
|
|
/* set the correct pool for the PF default MAC address in entry 0 */
|
igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0, 0);
|
|
/* Setup the HW Rx Head and Tail Descriptor Pointers and
|
* the Base and Length of the Rx Descriptor Ring
|
*/
|
for (i = 0; i < adapter->num_rx_queues; i++)
|
igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
|
}
|
|
/**
|
* igb_free_tx_resources - Free Tx Resources per Queue
|
* @tx_ring: Tx descriptor ring for a specific queue
|
*
|
* Free all transmit software resources
|
**/
|
void igb_free_tx_resources(struct igb_ring *tx_ring)
|
{
|
igb_clean_tx_ring(tx_ring);
|
|
vfree(tx_ring->tx_buffer_info);
|
tx_ring->tx_buffer_info = NULL;
|
|
/* if not set, then don't free */
|
if (!tx_ring->desc)
|
return;
|
|
dma_free_coherent(tx_ring->dev, tx_ring->size,
|
tx_ring->desc, tx_ring->dma);
|
|
tx_ring->desc = NULL;
|
}
|
|
/**
|
* igb_free_all_tx_resources - Free Tx Resources for All Queues
|
* @adapter: board private structure
|
*
|
* Free all transmit software resources
|
**/
|
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
|
{
|
int i;
|
|
for (i = 0; i < adapter->num_tx_queues; i++)
|
if (adapter->tx_ring[i])
|
igb_free_tx_resources(adapter->tx_ring[i]);
|
}
|
|
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
|
struct igb_tx_buffer *tx_buffer)
|
{
|
if (tx_buffer->skb) {
|
kfree_rtskb(tx_buffer->skb);
|
tx_buffer->skb = NULL;
|
}
|
tx_buffer->next_to_watch = NULL;
|
/* buffer_info must be completely set up in the transmit path */
|
}
|
|
/**
|
* igb_clean_tx_ring - Free Tx Buffers
|
* @tx_ring: ring to be cleaned
|
**/
|
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
|
{
|
struct igb_tx_buffer *buffer_info;
|
unsigned long size;
|
u16 i;
|
|
if (!tx_ring->tx_buffer_info)
|
return;
|
/* Free all the Tx ring sk_buffs */
|
|
for (i = 0; i < tx_ring->count; i++) {
|
buffer_info = &tx_ring->tx_buffer_info[i];
|
igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
|
}
|
|
size = sizeof(struct igb_tx_buffer) * tx_ring->count;
|
memset(tx_ring->tx_buffer_info, 0, size);
|
|
/* Zero out the descriptor ring */
|
memset(tx_ring->desc, 0, tx_ring->size);
|
|
tx_ring->next_to_use = 0;
|
tx_ring->next_to_clean = 0;
|
}
|
|
/**
|
* igb_clean_all_tx_rings - Free Tx Buffers for all queues
|
* @adapter: board private structure
|
**/
|
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
|
{
|
int i;
|
|
for (i = 0; i < adapter->num_tx_queues; i++)
|
if (adapter->tx_ring[i])
|
igb_clean_tx_ring(adapter->tx_ring[i]);
|
}
|
|
/**
|
* igb_free_rx_resources - Free Rx Resources
|
* @rx_ring: ring to clean the resources from
|
*
|
* Free all receive software resources
|
**/
|
void igb_free_rx_resources(struct igb_ring *rx_ring)
|
{
|
igb_clean_rx_ring(rx_ring);
|
|
vfree(rx_ring->rx_buffer_info);
|
rx_ring->rx_buffer_info = NULL;
|
|
/* if not set, then don't free */
|
if (!rx_ring->desc)
|
return;
|
|
dma_free_coherent(rx_ring->dev, rx_ring->size,
|
rx_ring->desc, rx_ring->dma);
|
|
rx_ring->desc = NULL;
|
}
|
|
/**
|
* igb_free_all_rx_resources - Free Rx Resources for All Queues
|
* @adapter: board private structure
|
*
|
* Free all receive software resources
|
**/
|
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
|
{
|
int i;
|
|
for (i = 0; i < adapter->num_rx_queues; i++)
|
if (adapter->rx_ring[i])
|
igb_free_rx_resources(adapter->rx_ring[i]);
|
}
|
|
/**
|
* igb_clean_rx_ring - Free Rx Buffers per Queue
|
* @rx_ring: ring to free buffers from
|
**/
|
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
|
{
|
unsigned long size;
|
u16 i;
|
|
if (!rx_ring->rx_buffer_info)
|
return;
|
|
/* Free all the Rx ring sk_buffs */
|
for (i = 0; i < rx_ring->count; i++) {
|
struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
|
|
if (buffer_info->dma)
|
buffer_info->dma = 0;
|
|
if (buffer_info->skb) {
|
kfree_rtskb(buffer_info->skb);
|
buffer_info->skb = NULL;
|
}
|
}
|
|
size = sizeof(struct igb_rx_buffer) * rx_ring->count;
|
memset(rx_ring->rx_buffer_info, 0, size);
|
|
/* Zero out the descriptor ring */
|
memset(rx_ring->desc, 0, rx_ring->size);
|
|
rx_ring->next_to_clean = 0;
|
rx_ring->next_to_use = 0;
|
}
|
|
/**
|
* igb_clean_all_rx_rings - Free Rx Buffers for all queues
|
* @adapter: board private structure
|
**/
|
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
|
{
|
int i;
|
|
for (i = 0; i < adapter->num_rx_queues; i++)
|
if (adapter->rx_ring[i])
|
igb_clean_rx_ring(adapter->rx_ring[i]);
|
}
|
|
/**
|
* igb_write_mc_addr_list - write multicast addresses to MTA
|
* @netdev: network interface device structure
|
*
|
* Writes multicast address list to the MTA hash table.
|
* Returns: -ENOMEM on failure
|
* 0 on no addresses written
|
* X on writing X addresses to MTA
|
**/
|
static int igb_write_mc_addr_list(struct rtnet_device *netdev)
|
{
|
struct igb_adapter *adapter = rtnetdev_priv(netdev);
|
struct e1000_hw *hw = &adapter->hw;
|
#if 0
|
struct netdev_hw_addr *ha;
|
u8 *mta_list;
|
int i;
|
if (netdev_mc_empty(netdev)) {
|
/* nothing to program, so clear mc list */
|
igb_update_mc_addr_list(hw, NULL, 0);
|
igb_restore_vf_multicasts(adapter);
|
return 0;
|
}
|
|
mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
|
if (!mta_list)
|
return -ENOMEM;
|
|
/* The shared function expects a packed array of only addresses. */
|
i = 0;
|
netdev_for_each_mc_addr(ha, netdev)
|
memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
|
|
igb_update_mc_addr_list(hw, mta_list, i);
|
kfree(mta_list);
|
|
return netdev_mc_count(netdev);
|
#else
|
igb_update_mc_addr_list(hw, NULL, 0);
|
return 0;
|
#endif
|
}
|
|
/**
|
* igb_write_uc_addr_list - write unicast addresses to RAR table
|
* @netdev: network interface device structure
|
*
|
* Writes unicast address list to the RAR table.
|
* Returns: -ENOMEM on failure/insufficient address space
|
* 0 on no addresses written
|
* X on writing X addresses to the RAR table
|
**/
|
static int igb_write_uc_addr_list(struct rtnet_device *netdev)
|
{
|
struct igb_adapter *adapter = rtnetdev_priv(netdev);
|
struct e1000_hw *hw = &adapter->hw;
|
unsigned int vfn = 0;
|
unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
|
int count = 0;
|
|
/* write the addresses in reverse order to avoid write combining */
|
for (; rar_entries > 0 ; rar_entries--) {
|
wr32(E1000_RAH(rar_entries), 0);
|
wr32(E1000_RAL(rar_entries), 0);
|
}
|
wrfl();
|
|
return count;
|
}
|
|
/**
|
* igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
|
* @netdev: network interface device structure
|
*
|
* The set_rx_mode entry point is called whenever the unicast or multicast
|
* address lists or the network interface flags are updated. This routine is
|
* responsible for configuring the hardware for proper unicast, multicast,
|
* promiscuous mode, and all-multi behavior.
|
**/
|
static void igb_set_rx_mode(struct rtnet_device *netdev)
|
{
|
struct igb_adapter *adapter = rtnetdev_priv(netdev);
|
struct e1000_hw *hw = &adapter->hw;
|
unsigned int vfn = 0;
|
u32 rctl, vmolr = 0;
|
int count;
|
|
/* Check for Promiscuous and All Multicast modes */
|
rctl = rd32(E1000_RCTL);
|
|
/* clear the effected bits */
|
rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
|
|
if (netdev->flags & IFF_PROMISC) {
|
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
|
vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
|
} else {
|
if (netdev->flags & IFF_ALLMULTI) {
|
rctl |= E1000_RCTL_MPE;
|
vmolr |= E1000_VMOLR_MPME;
|
} else {
|
/* Write addresses to the MTA, if the attempt fails
|
* then we should just turn on promiscuous mode so
|
* that we can at least receive multicast traffic
|
*/
|
count = igb_write_mc_addr_list(netdev);
|
if (count < 0) {
|
rctl |= E1000_RCTL_MPE;
|
vmolr |= E1000_VMOLR_MPME;
|
} else if (count) {
|
vmolr |= E1000_VMOLR_ROMPE;
|
}
|
}
|
/* Write addresses to available RAR registers, if there is not
|
* sufficient space to store all the addresses then enable
|
* unicast promiscuous mode
|
*/
|
count = igb_write_uc_addr_list(netdev);
|
if (count < 0) {
|
rctl |= E1000_RCTL_UPE;
|
vmolr |= E1000_VMOLR_ROPE;
|
}
|
rctl |= E1000_RCTL_VFE;
|
}
|
wr32(E1000_RCTL, rctl);
|
|
/* In order to support SR-IOV and eventually VMDq it is necessary to set
|
* the VMOLR to enable the appropriate modes. Without this workaround
|
* we will have issues with VLAN tag stripping not being done for frames
|
* that are only arriving because we are the default pool
|
*/
|
if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
|
return;
|
|
vmolr |= rd32(E1000_VMOLR(vfn)) &
|
~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
|
wr32(E1000_VMOLR(vfn), vmolr);
|
}
|
|
static void igb_check_wvbr(struct igb_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
u32 wvbr = 0;
|
|
switch (hw->mac.type) {
|
case e1000_82576:
|
case e1000_i350:
|
wvbr = rd32(E1000_WVBR);
|
if (!wvbr)
|
return;
|
break;
|
default:
|
break;
|
}
|
|
adapter->wvbr |= wvbr;
|
}
|
|
#define IGB_STAGGERED_QUEUE_OFFSET 8
|
|
/* Need to wait a few seconds after link up to get diagnostic information from
|
* the phy
|
*/
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4,14,0)
|
static void igb_update_phy_info(struct timer_list *t)
|
{
|
struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
|
#else /* < 4.14 */
|
static void igb_update_phy_info(unsigned long data)
|
{
|
struct igb_adapter *adapter = (struct igb_adapter *) data;
|
#endif /* < 4.14 */
|
igb_get_phy_info(&adapter->hw);
|
}
|
|
/**
|
* igb_has_link - check shared code for link and determine up/down
|
* @adapter: pointer to driver private info
|
**/
|
bool igb_has_link(struct igb_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
bool link_active = false;
|
|
/* get_link_status is set on LSC (link status) interrupt or
|
* rx sequence error interrupt. get_link_status will stay
|
* false until the e1000_check_for_link establishes link
|
* for copper adapters ONLY
|
*/
|
switch (hw->phy.media_type) {
|
case e1000_media_type_copper:
|
if (!hw->mac.get_link_status)
|
return true;
|
fallthrough;
|
case e1000_media_type_internal_serdes:
|
hw->mac.ops.check_for_link(hw);
|
link_active = !hw->mac.get_link_status;
|
break;
|
default:
|
case e1000_media_type_unknown:
|
break;
|
}
|
|
if (((hw->mac.type == e1000_i210) ||
|
(hw->mac.type == e1000_i211)) &&
|
(hw->phy.id == I210_I_PHY_ID)) {
|
if (!rtnetif_carrier_ok(adapter->netdev)) {
|
adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
|
} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
|
adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
|
adapter->link_check_timeout = jiffies;
|
}
|
}
|
|
return link_active;
|
}
|
|
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
|
{
|
bool ret = false;
|
u32 ctrl_ext, thstat;
|
|
/* check for thermal sensor event on i350 copper only */
|
if (hw->mac.type == e1000_i350) {
|
thstat = rd32(E1000_THSTAT);
|
ctrl_ext = rd32(E1000_CTRL_EXT);
|
|
if ((hw->phy.media_type == e1000_media_type_copper) &&
|
!(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
|
ret = !!(thstat & event);
|
}
|
|
return ret;
|
}
|
|
/**
|
* igb_check_lvmmc - check for malformed packets received
|
* and indicated in LVMMC register
|
* @adapter: pointer to adapter
|
**/
|
static void igb_check_lvmmc(struct igb_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
u32 lvmmc;
|
|
lvmmc = rd32(E1000_LVMMC);
|
if (lvmmc) {
|
if (unlikely(net_ratelimit())) {
|
rtdev_warn(adapter->netdev,
|
"malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
|
lvmmc);
|
}
|
}
|
}
|
|
/**
|
* igb_watchdog - Timer Call-back
|
* @data: pointer to adapter cast into an unsigned long
|
**/
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4,14,0)
|
static void igb_watchdog(struct timer_list *t)
|
{
|
struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
|
#else /* < 4.14 */
|
static void igb_watchdog(unsigned long data)
|
{
|
struct igb_adapter *adapter = (struct igb_adapter *)data;
|
#endif /* < 4.14 */
|
/* Do the rest outside of interrupt context */
|
schedule_work(&adapter->watchdog_task);
|
}
|
|
static void igb_watchdog_task(struct work_struct *work)
|
{
|
struct igb_adapter *adapter = container_of(work,
|
struct igb_adapter,
|
watchdog_task);
|
struct e1000_hw *hw = &adapter->hw;
|
struct e1000_phy_info *phy = &hw->phy;
|
struct rtnet_device *netdev = adapter->netdev;
|
u32 link;
|
int i;
|
u32 connsw;
|
|
link = igb_has_link(adapter);
|
|
if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
|
if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
|
adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
|
else
|
link = false;
|
}
|
|
/* Force link down if we have fiber to swap to */
|
if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
|
if (hw->phy.media_type == e1000_media_type_copper) {
|
connsw = rd32(E1000_CONNSW);
|
if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
|
link = 0;
|
}
|
}
|
if (link) {
|
/* Perform a reset if the media type changed. */
|
if (hw->dev_spec._82575.media_changed) {
|
hw->dev_spec._82575.media_changed = false;
|
adapter->flags |= IGB_FLAG_MEDIA_RESET;
|
igb_reset(adapter);
|
}
|
/* Cancel scheduled suspend requests. */
|
pm_runtime_resume(adapter->pdev->dev.parent);
|
|
if (!rtnetif_carrier_ok(netdev)) {
|
u32 ctrl;
|
|
hw->mac.ops.get_speed_and_duplex(hw,
|
&adapter->link_speed,
|
&adapter->link_duplex);
|
|
ctrl = rd32(E1000_CTRL);
|
/* Links status message must follow this format */
|
rtdev_info(netdev,
|
"igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
|
netdev->name,
|
adapter->link_speed,
|
adapter->link_duplex == FULL_DUPLEX ?
|
"Full" : "Half",
|
(ctrl & E1000_CTRL_TFCE) &&
|
(ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
|
(ctrl & E1000_CTRL_RFCE) ? "RX" :
|
(ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
|
|
/* disable EEE if enabled */
|
if ((adapter->flags & IGB_FLAG_EEE) &&
|
(adapter->link_duplex == HALF_DUPLEX)) {
|
dev_info(&adapter->pdev->dev,
|
"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
|
adapter->hw.dev_spec._82575.eee_disable = true;
|
adapter->flags &= ~IGB_FLAG_EEE;
|
}
|
|
/* check if SmartSpeed worked */
|
igb_check_downshift(hw);
|
if (phy->speed_downgraded)
|
rtdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
|
|
/* check for thermal sensor event */
|
if (igb_thermal_sensor_event(hw,
|
E1000_THSTAT_LINK_THROTTLE))
|
rtdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
|
|
/* adjust timeout factor according to speed/duplex */
|
adapter->tx_timeout_factor = 1;
|
switch (adapter->link_speed) {
|
case SPEED_10:
|
adapter->tx_timeout_factor = 14;
|
break;
|
case SPEED_100:
|
/* maybe add some timeout factor ? */
|
break;
|
}
|
|
rtnetif_carrier_on(netdev);
|
|
/* link state has changed, schedule phy info update */
|
if (!test_bit(__IGB_DOWN, &adapter->state))
|
mod_timer(&adapter->phy_info_timer,
|
round_jiffies(jiffies + 2 * HZ));
|
}
|
} else {
|
if (rtnetif_carrier_ok(netdev)) {
|
adapter->link_speed = 0;
|
adapter->link_duplex = 0;
|
|
/* check for thermal sensor event */
|
if (igb_thermal_sensor_event(hw,
|
E1000_THSTAT_PWR_DOWN)) {
|
rtdev_err(netdev, "The network adapter was stopped because it overheated\n");
|
}
|
|
/* Links status message must follow this format */
|
rtdev_info(netdev, "igb: %s NIC Link is Down\n",
|
netdev->name);
|
rtnetif_carrier_off(netdev);
|
|
/* link state has changed, schedule phy info update */
|
if (!test_bit(__IGB_DOWN, &adapter->state))
|
mod_timer(&adapter->phy_info_timer,
|
round_jiffies(jiffies + 2 * HZ));
|
|
/* link is down, time to check for alternate media */
|
if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
|
igb_check_swap_media(adapter);
|
if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
|
schedule_work(&adapter->reset_task);
|
/* return immediately */
|
return;
|
}
|
}
|
pm_schedule_suspend(adapter->pdev->dev.parent,
|
MSEC_PER_SEC * 5);
|
|
/* also check for alternate media here */
|
} else if (!rtnetif_carrier_ok(netdev) &&
|
(adapter->flags & IGB_FLAG_MAS_ENABLE)) {
|
igb_check_swap_media(adapter);
|
if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
|
schedule_work(&adapter->reset_task);
|
/* return immediately */
|
return;
|
}
|
}
|
}
|
|
spin_lock(&adapter->stats64_lock);
|
igb_update_stats(adapter);
|
spin_unlock(&adapter->stats64_lock);
|
|
for (i = 0; i < adapter->num_tx_queues; i++) {
|
struct igb_ring *tx_ring = adapter->tx_ring[i];
|
if (!rtnetif_carrier_ok(netdev)) {
|
/* We've lost link, so the controller stops DMA,
|
* but we've got queued Tx work that's never going
|
* to get done, so reset controller to flush Tx.
|
* (Do the reset outside of interrupt context).
|
*/
|
if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
|
adapter->tx_timeout_count++;
|
schedule_work(&adapter->reset_task);
|
/* return immediately since reset is imminent */
|
return;
|
}
|
}
|
|
/* Force detection of hung controller every watchdog period */
|
set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
|
}
|
|
/* Cause software interrupt to ensure Rx ring is cleaned */
|
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
|
u32 eics = 0;
|
|
for (i = 0; i < adapter->num_q_vectors; i++)
|
eics |= adapter->q_vector[i]->eims_value;
|
wr32(E1000_EICS, eics);
|
} else {
|
wr32(E1000_ICS, E1000_ICS_RXDMT0);
|
}
|
|
/* Check LVMMC register on i350/i354 only */
|
if ((adapter->hw.mac.type == e1000_i350) ||
|
(adapter->hw.mac.type == e1000_i354))
|
igb_check_lvmmc(adapter);
|
|
/* Reset the timer */
|
if (!test_bit(__IGB_DOWN, &adapter->state)) {
|
if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
|
mod_timer(&adapter->watchdog_timer,
|
round_jiffies(jiffies + HZ));
|
else
|
mod_timer(&adapter->watchdog_timer,
|
round_jiffies(jiffies + 2 * HZ));
|
}
|
}
|
|
enum latency_range {
|
lowest_latency = 0,
|
low_latency = 1,
|
bulk_latency = 2,
|
latency_invalid = 255
|
};
|
|
/**
|
* igb_update_ring_itr - update the dynamic ITR value based on packet size
|
* @q_vector: pointer to q_vector
|
*
|
* Stores a new ITR value based on strictly on packet size. This
|
* algorithm is less sophisticated than that used in igb_update_itr,
|
* due to the difficulty of synchronizing statistics across multiple
|
* receive rings. The divisors and thresholds used by this function
|
* were determined based on theoretical maximum wire speed and testing
|
* data, in order to minimize response time while increasing bulk
|
* throughput.
|
* This functionality is controlled by ethtool's coalescing settings.
|
* NOTE: This function is called only when operating in a multiqueue
|
* receive environment.
|
**/
|
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
|
{
|
int new_val = q_vector->itr_val;
|
int avg_wire_size = 0;
|
struct igb_adapter *adapter = q_vector->adapter;
|
unsigned int packets;
|
|
if (!InterruptThrottle)
|
return;
|
|
/* For non-gigabit speeds, just fix the interrupt rate at 4000
|
* ints/sec - ITR timer value of 120 ticks.
|
*/
|
if (adapter->link_speed != SPEED_1000) {
|
new_val = IGB_4K_ITR;
|
goto set_itr_val;
|
}
|
|
packets = q_vector->rx.total_packets;
|
if (packets)
|
avg_wire_size = q_vector->rx.total_bytes / packets;
|
|
packets = q_vector->tx.total_packets;
|
if (packets)
|
avg_wire_size = max_t(u32, avg_wire_size,
|
q_vector->tx.total_bytes / packets);
|
|
/* if avg_wire_size isn't set no work was done */
|
if (!avg_wire_size)
|
goto clear_counts;
|
|
/* Add 24 bytes to size to account for CRC, preamble, and gap */
|
avg_wire_size += 24;
|
|
/* Don't starve jumbo frames */
|
avg_wire_size = min(avg_wire_size, 3000);
|
|
/* Give a little boost to mid-size frames */
|
if ((avg_wire_size > 300) && (avg_wire_size < 1200))
|
new_val = avg_wire_size / 3;
|
else
|
new_val = avg_wire_size / 2;
|
|
/* conservative mode (itr 3) eliminates the lowest_latency setting */
|
if (new_val < IGB_20K_ITR &&
|
((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
|
(!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
|
new_val = IGB_20K_ITR;
|
|
set_itr_val:
|
if (new_val != q_vector->itr_val) {
|
q_vector->itr_val = new_val;
|
q_vector->set_itr = 1;
|
}
|
clear_counts:
|
q_vector->rx.total_bytes = 0;
|
q_vector->rx.total_packets = 0;
|
q_vector->tx.total_bytes = 0;
|
q_vector->tx.total_packets = 0;
|
}
|
|
/**
|
* igb_update_itr - update the dynamic ITR value based on statistics
|
* @q_vector: pointer to q_vector
|
* @ring_container: ring info to update the itr for
|
*
|
* Stores a new ITR value based on packets and byte
|
* counts during the last interrupt. The advantage of per interrupt
|
* computation is faster updates and more accurate ITR for the current
|
* traffic pattern. Constants in this function were computed
|
* based on theoretical maximum wire speed and thresholds were set based
|
* on testing data as well as attempting to minimize response time
|
* while increasing bulk throughput.
|
* This functionality is controlled by ethtool's coalescing settings.
|
* NOTE: These calculations are only valid when operating in a single-
|
* queue environment.
|
**/
|
static void igb_update_itr(struct igb_q_vector *q_vector,
|
struct igb_ring_container *ring_container)
|
{
|
unsigned int packets = ring_container->total_packets;
|
unsigned int bytes = ring_container->total_bytes;
|
u8 itrval = ring_container->itr;
|
|
/* no packets, exit with status unchanged */
|
if (packets == 0)
|
return;
|
|
switch (itrval) {
|
case lowest_latency:
|
/* handle TSO and jumbo frames */
|
if (bytes/packets > 8000)
|
itrval = bulk_latency;
|
else if ((packets < 5) && (bytes > 512))
|
itrval = low_latency;
|
break;
|
case low_latency: /* 50 usec aka 20000 ints/s */
|
if (bytes > 10000) {
|
/* this if handles the TSO accounting */
|
if (bytes/packets > 8000)
|
itrval = bulk_latency;
|
else if ((packets < 10) || ((bytes/packets) > 1200))
|
itrval = bulk_latency;
|
else if ((packets > 35))
|
itrval = lowest_latency;
|
} else if (bytes/packets > 2000) {
|
itrval = bulk_latency;
|
} else if (packets <= 2 && bytes < 512) {
|
itrval = lowest_latency;
|
}
|
break;
|
case bulk_latency: /* 250 usec aka 4000 ints/s */
|
if (bytes > 25000) {
|
if (packets > 35)
|
itrval = low_latency;
|
} else if (bytes < 1500) {
|
itrval = low_latency;
|
}
|
break;
|
}
|
|
/* clear work counters since we have the values we need */
|
ring_container->total_bytes = 0;
|
ring_container->total_packets = 0;
|
|
/* write updated itr to ring container */
|
ring_container->itr = itrval;
|
}
|
|
static void igb_set_itr(struct igb_q_vector *q_vector)
|
{
|
struct igb_adapter *adapter = q_vector->adapter;
|
u32 new_itr = q_vector->itr_val;
|
u8 current_itr = 0;
|
|
if (!InterruptThrottle)
|
return;
|
|
/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
|
if (adapter->link_speed != SPEED_1000) {
|
current_itr = 0;
|
new_itr = IGB_4K_ITR;
|
goto set_itr_now;
|
}
|
|
igb_update_itr(q_vector, &q_vector->tx);
|
igb_update_itr(q_vector, &q_vector->rx);
|
|
current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
|
|
/* conservative mode (itr 3) eliminates the lowest_latency setting */
|
if (current_itr == lowest_latency &&
|
((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
|
(!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
|
current_itr = low_latency;
|
|
switch (current_itr) {
|
/* counts and packets in update_itr are dependent on these numbers */
|
case lowest_latency:
|
new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
|
break;
|
case low_latency:
|
new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
|
break;
|
case bulk_latency:
|
new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
|
break;
|
default:
|
break;
|
}
|
|
set_itr_now:
|
if (new_itr != q_vector->itr_val) {
|
/* this attempts to bias the interrupt rate towards Bulk
|
* by adding intermediate steps when interrupt rate is
|
* increasing
|
*/
|
new_itr = new_itr > q_vector->itr_val ?
|
max((new_itr * q_vector->itr_val) /
|
(new_itr + (q_vector->itr_val >> 2)),
|
new_itr) : new_itr;
|
/* Don't write the value here; it resets the adapter's
|
* internal timer, and causes us to delay far longer than
|
* we should between interrupts. Instead, we write the ITR
|
* value at the beginning of the next interrupt so the timing
|
* ends up being correct.
|
*/
|
q_vector->itr_val = new_itr;
|
q_vector->set_itr = 1;
|
}
|
}
|
|
|
#define IGB_SET_FLAG(_input, _flag, _result) \
|
((_flag <= _result) ? \
|
((u32)(_input & _flag) * (_result / _flag)) : \
|
((u32)(_input & _flag) / (_flag / _result)))
|
|
static u32 igb_tx_cmd_type(struct rtskb *skb, u32 tx_flags)
|
{
|
/* set type for advanced descriptor with frame checksum insertion */
|
u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
|
E1000_ADVTXD_DCMD_DEXT |
|
E1000_ADVTXD_DCMD_IFCS;
|
|
return cmd_type;
|
}
|
|
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
|
union e1000_adv_tx_desc *tx_desc,
|
u32 tx_flags, unsigned int paylen)
|
{
|
u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
|
|
/* 82575 requires a unique index per ring */
|
if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
|
olinfo_status |= tx_ring->reg_idx << 4;
|
|
tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
|
}
|
|
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
|
{
|
struct rtnet_device *netdev = tx_ring->netdev;
|
|
rtnetif_stop_queue(netdev);
|
|
/* Herbert's original patch had:
|
* smp_mb__after_netif_stop_queue();
|
* but since that doesn't exist yet, just open code it.
|
*/
|
smp_mb();
|
|
/* We need to check again in a case another CPU has just
|
* made room available.
|
*/
|
if (igb_desc_unused(tx_ring) < size)
|
return -EBUSY;
|
|
/* A reprieve! */
|
rtnetif_wake_queue(netdev);
|
|
tx_ring->tx_stats.restart_queue2++;
|
|
return 0;
|
}
|
|
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
|
{
|
if (igb_desc_unused(tx_ring) >= size)
|
return 0;
|
return __igb_maybe_stop_tx(tx_ring, size);
|
}
|
|
static void igb_tx_map(struct igb_ring *tx_ring,
|
struct igb_tx_buffer *first,
|
const u8 hdr_len)
|
{
|
struct rtskb *skb = first->skb;
|
struct igb_tx_buffer *tx_buffer;
|
union e1000_adv_tx_desc *tx_desc;
|
dma_addr_t dma;
|
unsigned int size;
|
u32 tx_flags = first->tx_flags;
|
u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
|
u16 i = tx_ring->next_to_use;
|
|
/* first descriptor is also last, set RS and EOP bits */
|
cmd_type |= IGB_TXD_DCMD;
|
tx_desc = IGB_TX_DESC(tx_ring, i);
|
|
igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
|
|
size = skb->len;
|
|
dma = rtskb_data_dma_addr(skb, 0);
|
|
tx_buffer = first;
|
|
tx_desc->read.buffer_addr = cpu_to_le64(dma);
|
tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
|
|
/* set the timestamp */
|
first->time_stamp = jiffies;
|
first->next_to_watch = tx_desc;
|
|
i++;
|
tx_desc++;
|
if (i == tx_ring->count) {
|
tx_desc = IGB_TX_DESC(tx_ring, 0);
|
i = 0;
|
}
|
|
/* Force memory writes to complete before letting h/w know there
|
* are new descriptors to fetch. (Only applicable for weak-ordered
|
* memory model archs, such as IA-64).
|
*
|
* We also need this memory barrier to make certain all of the
|
* status bits have been updated before next_to_watch is written.
|
*/
|
wmb();
|
|
if (skb->xmit_stamp)
|
*skb->xmit_stamp =
|
cpu_to_be64(rtdm_clock_read() + *skb->xmit_stamp);
|
/* set next_to_watch value indicating a packet is present */
|
tx_ring->next_to_use = i;
|
|
/* Make sure there is space in the ring for the next send. */
|
igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
|
|
writel(i, tx_ring->tail);
|
|
/* we need this if more than one processor can write to our tail
|
* at a time, it synchronizes IO on IA64/Altix systems
|
*/
|
mmiowb();
|
|
return;
|
}
|
|
netdev_tx_t igb_xmit_frame_ring(struct rtskb *skb,
|
struct igb_ring *tx_ring)
|
{
|
struct igb_tx_buffer *first;
|
u32 tx_flags = 0;
|
u16 count = 2;
|
u8 hdr_len = 0;
|
|
/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
|
* + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
|
* + 2 desc gap to keep tail from touching head,
|
* + 1 desc for context descriptor,
|
* otherwise try next time
|
*/
|
if (igb_maybe_stop_tx(tx_ring, count + 3)) {
|
/* this is a hard error */
|
return NETDEV_TX_BUSY;
|
}
|
|
if (skb->protocol == htons(ETH_P_IP))
|
tx_flags |= IGB_TX_FLAGS_IPV4;
|
|
/* record the location of the first descriptor for this packet */
|
first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
|
first->skb = skb;
|
first->bytecount = skb->len;
|
first->gso_segs = 1;
|
|
/* record initial flags and protocol */
|
first->tx_flags = tx_flags;
|
first->protocol = skb->protocol;
|
|
igb_tx_map(tx_ring, first, hdr_len);
|
|
return NETDEV_TX_OK;
|
}
|
|
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
|
struct rtskb *skb)
|
{
|
return adapter->tx_ring[0];
|
}
|
|
static netdev_tx_t igb_xmit_frame(struct rtskb *skb,
|
struct rtnet_device *netdev)
|
{
|
struct igb_adapter *adapter = rtnetdev_priv(netdev);
|
|
if (test_bit(__IGB_DOWN, &adapter->state)) {
|
kfree_rtskb(skb);
|
return NETDEV_TX_OK;
|
}
|
|
if (skb->len <= 0) {
|
kfree_rtskb(skb);
|
return NETDEV_TX_OK;
|
}
|
|
/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
|
* in order to meet this minimum size requirement.
|
*/
|
if (skb->len < 17) {
|
skb = rtskb_padto(skb, 17);
|
if (!skb)
|
return NETDEV_TX_OK;
|
}
|
|
return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
|
}
|
|
static void igb_reset_task(struct work_struct *work)
|
{
|
struct igb_adapter *adapter;
|
adapter = container_of(work, struct igb_adapter, reset_task);
|
|
igb_dump(adapter);
|
rtdev_err(adapter->netdev, "Reset adapter\n");
|
igb_reinit_locked(adapter);
|
}
|
|
/**
|
* igb_get_stats - Get System Network Statistics
|
* @netdev: network interface device structure
|
*
|
* Returns the address of the device statistics structure.
|
* The statistics are actually updated from the timer callback.
|
**/
|
static struct net_device_stats *
|
igb_get_stats(struct rtnet_device *netdev)
|
{
|
struct igb_adapter *adapter = netdev->priv;
|
|
/* only return the current stats */
|
return &adapter->net_stats;
|
}
|
|
/**
|
* igb_update_stats - Update the board statistics counters
|
* @adapter: board private structure
|
**/
|
void igb_update_stats(struct igb_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
struct pci_dev *pdev = adapter->pdev;
|
struct net_device_stats *net_stats;
|
u32 reg, mpc;
|
int i;
|
u64 bytes, packets;
|
|
/* Prevent stats update while adapter is being reset, or if the pci
|
* connection is down.
|
*/
|
if (adapter->link_speed == 0)
|
return;
|
if (pci_channel_offline(pdev))
|
return;
|
|
net_stats = &adapter->net_stats;
|
bytes = 0;
|
packets = 0;
|
|
rcu_read_lock();
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
struct igb_ring *ring = adapter->rx_ring[i];
|
u32 rqdpc = rd32(E1000_RQDPC(i));
|
if (hw->mac.type >= e1000_i210)
|
wr32(E1000_RQDPC(i), 0);
|
|
if (rqdpc) {
|
ring->rx_stats.drops += rqdpc;
|
net_stats->rx_fifo_errors += rqdpc;
|
}
|
|
bytes += ring->rx_stats.bytes;
|
packets += ring->rx_stats.packets;
|
}
|
|
net_stats->rx_bytes = bytes;
|
net_stats->rx_packets = packets;
|
|
bytes = 0;
|
packets = 0;
|
for (i = 0; i < adapter->num_tx_queues; i++) {
|
struct igb_ring *ring = adapter->tx_ring[i];
|
bytes += ring->tx_stats.bytes;
|
packets += ring->tx_stats.packets;
|
}
|
net_stats->tx_bytes = bytes;
|
net_stats->tx_packets = packets;
|
rcu_read_unlock();
|
|
/* read stats registers */
|
adapter->stats.crcerrs += rd32(E1000_CRCERRS);
|
adapter->stats.gprc += rd32(E1000_GPRC);
|
adapter->stats.gorc += rd32(E1000_GORCL);
|
rd32(E1000_GORCH); /* clear GORCL */
|
adapter->stats.bprc += rd32(E1000_BPRC);
|
adapter->stats.mprc += rd32(E1000_MPRC);
|
adapter->stats.roc += rd32(E1000_ROC);
|
|
adapter->stats.prc64 += rd32(E1000_PRC64);
|
adapter->stats.prc127 += rd32(E1000_PRC127);
|
adapter->stats.prc255 += rd32(E1000_PRC255);
|
adapter->stats.prc511 += rd32(E1000_PRC511);
|
adapter->stats.prc1023 += rd32(E1000_PRC1023);
|
adapter->stats.prc1522 += rd32(E1000_PRC1522);
|
adapter->stats.symerrs += rd32(E1000_SYMERRS);
|
adapter->stats.sec += rd32(E1000_SEC);
|
|
mpc = rd32(E1000_MPC);
|
adapter->stats.mpc += mpc;
|
net_stats->rx_fifo_errors += mpc;
|
adapter->stats.scc += rd32(E1000_SCC);
|
adapter->stats.ecol += rd32(E1000_ECOL);
|
adapter->stats.mcc += rd32(E1000_MCC);
|
adapter->stats.latecol += rd32(E1000_LATECOL);
|
adapter->stats.dc += rd32(E1000_DC);
|
adapter->stats.rlec += rd32(E1000_RLEC);
|
adapter->stats.xonrxc += rd32(E1000_XONRXC);
|
adapter->stats.xontxc += rd32(E1000_XONTXC);
|
adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
|
adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
|
adapter->stats.fcruc += rd32(E1000_FCRUC);
|
adapter->stats.gptc += rd32(E1000_GPTC);
|
adapter->stats.gotc += rd32(E1000_GOTCL);
|
rd32(E1000_GOTCH); /* clear GOTCL */
|
adapter->stats.rnbc += rd32(E1000_RNBC);
|
adapter->stats.ruc += rd32(E1000_RUC);
|
adapter->stats.rfc += rd32(E1000_RFC);
|
adapter->stats.rjc += rd32(E1000_RJC);
|
adapter->stats.tor += rd32(E1000_TORH);
|
adapter->stats.tot += rd32(E1000_TOTH);
|
adapter->stats.tpr += rd32(E1000_TPR);
|
|
adapter->stats.ptc64 += rd32(E1000_PTC64);
|
adapter->stats.ptc127 += rd32(E1000_PTC127);
|
adapter->stats.ptc255 += rd32(E1000_PTC255);
|
adapter->stats.ptc511 += rd32(E1000_PTC511);
|
adapter->stats.ptc1023 += rd32(E1000_PTC1023);
|
adapter->stats.ptc1522 += rd32(E1000_PTC1522);
|
|
adapter->stats.mptc += rd32(E1000_MPTC);
|
adapter->stats.bptc += rd32(E1000_BPTC);
|
|
adapter->stats.tpt += rd32(E1000_TPT);
|
adapter->stats.colc += rd32(E1000_COLC);
|
|
adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
|
/* read internal phy specific stats */
|
reg = rd32(E1000_CTRL_EXT);
|
if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
|
adapter->stats.rxerrc += rd32(E1000_RXERRC);
|
|
/* this stat has invalid values on i210/i211 */
|
if ((hw->mac.type != e1000_i210) &&
|
(hw->mac.type != e1000_i211))
|
adapter->stats.tncrs += rd32(E1000_TNCRS);
|
}
|
|
adapter->stats.tsctc += rd32(E1000_TSCTC);
|
adapter->stats.tsctfc += rd32(E1000_TSCTFC);
|
|
adapter->stats.iac += rd32(E1000_IAC);
|
adapter->stats.icrxoc += rd32(E1000_ICRXOC);
|
adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
|
adapter->stats.icrxatc += rd32(E1000_ICRXATC);
|
adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
|
adapter->stats.ictxatc += rd32(E1000_ICTXATC);
|
adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
|
adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
|
adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
|
|
/* Fill out the OS statistics structure */
|
net_stats->multicast = adapter->stats.mprc;
|
net_stats->collisions = adapter->stats.colc;
|
|
/* Rx Errors */
|
|
/* RLEC on some newer hardware can be incorrect so build
|
* our own version based on RUC and ROC
|
*/
|
net_stats->rx_errors = adapter->stats.rxerrc +
|
adapter->stats.crcerrs + adapter->stats.algnerrc +
|
adapter->stats.ruc + adapter->stats.roc +
|
adapter->stats.cexterr;
|
net_stats->rx_length_errors = adapter->stats.ruc +
|
adapter->stats.roc;
|
net_stats->rx_crc_errors = adapter->stats.crcerrs;
|
net_stats->rx_frame_errors = adapter->stats.algnerrc;
|
net_stats->rx_missed_errors = adapter->stats.mpc;
|
|
/* Tx Errors */
|
net_stats->tx_errors = adapter->stats.ecol +
|
adapter->stats.latecol;
|
net_stats->tx_aborted_errors = adapter->stats.ecol;
|
net_stats->tx_window_errors = adapter->stats.latecol;
|
net_stats->tx_carrier_errors = adapter->stats.tncrs;
|
|
/* Tx Dropped needs to be maintained elsewhere */
|
|
/* Management Stats */
|
adapter->stats.mgptc += rd32(E1000_MGTPTC);
|
adapter->stats.mgprc += rd32(E1000_MGTPRC);
|
adapter->stats.mgpdc += rd32(E1000_MGTPDC);
|
|
/* OS2BMC Stats */
|
reg = rd32(E1000_MANC);
|
if (reg & E1000_MANC_EN_BMC2OS) {
|
adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
|
adapter->stats.o2bspc += rd32(E1000_O2BSPC);
|
adapter->stats.b2ospc += rd32(E1000_B2OSPC);
|
adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
|
}
|
}
|
|
static void igb_nrtsig_watchdog(rtdm_nrtsig_t *sig, void *data)
|
{
|
struct igb_adapter *adapter = data;
|
mod_timer(&adapter->watchdog_timer, jiffies + 1);
|
}
|
|
static void igb_other_handler(struct igb_adapter *adapter, u32 icr, bool root)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
|
if (icr & E1000_ICR_DRSTA)
|
rtdm_schedule_nrt_work(&adapter->reset_task);
|
|
if (icr & E1000_ICR_DOUTSYNC) {
|
/* HW is reporting DMA is out of sync */
|
adapter->stats.doosync++;
|
/* The DMA Out of Sync is also indication of a spoof event
|
* in IOV mode. Check the Wrong VM Behavior register to
|
* see if it is really a spoof event.
|
*/
|
igb_check_wvbr(adapter);
|
}
|
|
if (icr & E1000_ICR_LSC) {
|
hw->mac.get_link_status = 1;
|
/* guard against interrupt when we're going down */
|
if (!test_bit(__IGB_DOWN, &adapter->state)) {
|
if (root)
|
mod_timer(&adapter->watchdog_timer,
|
jiffies + 1);
|
else
|
rtdm_nrtsig_pend(&adapter->watchdog_nrtsig);
|
}
|
}
|
}
|
|
static irqreturn_t igb_msix_other(int irq, void *data)
|
{
|
struct igb_adapter *adapter = data;
|
struct e1000_hw *hw = &adapter->hw;
|
u32 icr = rd32(E1000_ICR);
|
/* reading ICR causes bit 31 of EICR to be cleared */
|
|
igb_other_handler(adapter, icr, true);
|
|
wr32(E1000_EIMS, adapter->eims_other);
|
|
return IRQ_HANDLED;
|
}
|
|
static void igb_write_itr(struct igb_q_vector *q_vector)
|
{
|
struct igb_adapter *adapter = q_vector->adapter;
|
u32 itr_val = (q_vector->itr_val + 0x3) & 0x7FFC;
|
|
if (!q_vector->set_itr)
|
return;
|
|
if (!itr_val)
|
itr_val = 0x4;
|
|
if (adapter->hw.mac.type == e1000_82575)
|
itr_val |= itr_val << 16;
|
else
|
itr_val |= E1000_EITR_CNT_IGNR;
|
|
writel(itr_val, q_vector->itr_register);
|
q_vector->set_itr = 0;
|
}
|
|
static int igb_msix_ring(rtdm_irq_t *ih)
|
{
|
struct igb_q_vector *q_vector =
|
rtdm_irq_get_arg(ih, struct igb_q_vector);
|
|
/* Write the ITR value calculated from the previous interrupt. */
|
igb_write_itr(q_vector);
|
|
igb_poll(q_vector);
|
|
return RTDM_IRQ_HANDLED;
|
}
|
|
|
/**
|
* igb_intr_msi - Interrupt Handler
|
* @irq: interrupt number
|
* @data: pointer to a network interface device structure
|
**/
|
static int igb_intr_msi(rtdm_irq_t *ih)
|
{
|
struct igb_adapter *adapter =
|
rtdm_irq_get_arg(ih, struct igb_adapter);
|
struct igb_q_vector *q_vector = adapter->q_vector[0];
|
struct e1000_hw *hw = &adapter->hw;
|
u32 icr = rd32(E1000_ICR);
|
|
igb_write_itr(q_vector);
|
|
igb_other_handler(adapter, icr, false);
|
|
igb_poll(q_vector);
|
|
return RTDM_IRQ_HANDLED;
|
}
|
|
/**
|
* igb_intr - Legacy Interrupt Handler
|
* @irq: interrupt number
|
* @data: pointer to a network interface device structure
|
**/
|
static int igb_intr(rtdm_irq_t *ih)
|
{
|
struct igb_adapter *adapter =
|
rtdm_irq_get_arg(ih, struct igb_adapter);
|
struct igb_q_vector *q_vector = adapter->q_vector[0];
|
struct e1000_hw *hw = &adapter->hw;
|
/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
|
* need for the IMC write
|
*/
|
u32 icr = rd32(E1000_ICR);
|
|
/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
|
* not set, then the adapter didn't send an interrupt
|
*/
|
if (!(icr & E1000_ICR_INT_ASSERTED))
|
return IRQ_NONE;
|
|
igb_write_itr(q_vector);
|
|
igb_other_handler(adapter, icr, false);
|
|
igb_poll(q_vector);
|
|
return RTDM_IRQ_HANDLED;
|
}
|
|
static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
|
{
|
struct igb_adapter *adapter = q_vector->adapter;
|
struct e1000_hw *hw = &adapter->hw;
|
|
if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
|
(!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
|
if (adapter->num_q_vectors == 1)
|
igb_set_itr(q_vector);
|
else
|
igb_update_ring_itr(q_vector);
|
}
|
|
if (!test_bit(__IGB_DOWN, &adapter->state)) {
|
if (adapter->flags & IGB_FLAG_HAS_MSIX)
|
wr32(E1000_EIMS, q_vector->eims_value);
|
else
|
igb_irq_enable(adapter);
|
}
|
}
|
|
/**
|
* igb_poll - NAPI Rx polling callback
|
* @napi: napi polling structure
|
* @budget: count of how many packets we should handle
|
**/
|
static void igb_poll(struct igb_q_vector *q_vector)
|
{
|
if (q_vector->tx.ring)
|
igb_clean_tx_irq(q_vector);
|
|
if (q_vector->rx.ring)
|
igb_clean_rx_irq(q_vector, 64);
|
|
igb_ring_irq_enable(q_vector);
|
}
|
|
/**
|
* igb_clean_tx_irq - Reclaim resources after transmit completes
|
* @q_vector: pointer to q_vector containing needed info
|
*
|
* returns true if ring is completely cleaned
|
**/
|
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
|
{
|
struct igb_adapter *adapter = q_vector->adapter;
|
struct igb_ring *tx_ring = q_vector->tx.ring;
|
struct igb_tx_buffer *tx_buffer;
|
union e1000_adv_tx_desc *tx_desc;
|
unsigned int total_bytes = 0, total_packets = 0;
|
unsigned int budget = q_vector->tx.work_limit;
|
unsigned int i = tx_ring->next_to_clean;
|
|
if (test_bit(__IGB_DOWN, &adapter->state))
|
return true;
|
|
tx_buffer = &tx_ring->tx_buffer_info[i];
|
tx_desc = IGB_TX_DESC(tx_ring, i);
|
i -= tx_ring->count;
|
|
do {
|
union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
|
|
/* if next_to_watch is not set then there is no work pending */
|
if (!eop_desc)
|
break;
|
|
/* prevent any other reads prior to eop_desc */
|
smp_rmb();
|
|
/* if DD is not set pending work has not been completed */
|
if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
|
break;
|
|
/* clear next_to_watch to prevent false hangs */
|
tx_buffer->next_to_watch = NULL;
|
|
/* update the statistics for this packet */
|
total_bytes += tx_buffer->bytecount;
|
total_packets += tx_buffer->gso_segs;
|
|
/* free the skb */
|
kfree_rtskb(tx_buffer->skb);
|
|
/* clear tx_buffer data */
|
tx_buffer->skb = NULL;
|
|
/* clear last DMA location and unmap remaining buffers */
|
while (tx_desc != eop_desc) {
|
tx_buffer++;
|
tx_desc++;
|
i++;
|
if (unlikely(!i)) {
|
i -= tx_ring->count;
|
tx_buffer = tx_ring->tx_buffer_info;
|
tx_desc = IGB_TX_DESC(tx_ring, 0);
|
}
|
}
|
|
/* move us one more past the eop_desc for start of next pkt */
|
tx_buffer++;
|
tx_desc++;
|
i++;
|
if (unlikely(!i)) {
|
i -= tx_ring->count;
|
tx_buffer = tx_ring->tx_buffer_info;
|
tx_desc = IGB_TX_DESC(tx_ring, 0);
|
}
|
|
/* issue prefetch for next Tx descriptor */
|
prefetch(tx_desc);
|
|
/* update budget accounting */
|
budget--;
|
} while (likely(budget));
|
|
i += tx_ring->count;
|
tx_ring->next_to_clean = i;
|
tx_ring->tx_stats.bytes += total_bytes;
|
tx_ring->tx_stats.packets += total_packets;
|
q_vector->tx.total_bytes += total_bytes;
|
q_vector->tx.total_packets += total_packets;
|
|
if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
|
struct e1000_hw *hw = &adapter->hw;
|
|
/* Detect a transmit hang in hardware, this serializes the
|
* check with the clearing of time_stamp and movement of i
|
*/
|
clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
|
if (tx_buffer->next_to_watch &&
|
time_after(jiffies, tx_buffer->time_stamp +
|
(adapter->tx_timeout_factor * HZ)) &&
|
!(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
|
|
/* detected Tx unit hang */
|
dev_err(tx_ring->dev,
|
"Detected Tx Unit Hang\n"
|
" Tx Queue <%d>\n"
|
" TDH <%x>\n"
|
" TDT <%x>\n"
|
" next_to_use <%x>\n"
|
" next_to_clean <%x>\n"
|
"buffer_info[next_to_clean]\n"
|
" time_stamp <%lx>\n"
|
" next_to_watch <%p>\n"
|
" jiffies <%lx>\n"
|
" desc.status <%x>\n",
|
tx_ring->queue_index,
|
rd32(E1000_TDH(tx_ring->reg_idx)),
|
readl(tx_ring->tail),
|
tx_ring->next_to_use,
|
tx_ring->next_to_clean,
|
tx_buffer->time_stamp,
|
tx_buffer->next_to_watch,
|
jiffies,
|
tx_buffer->next_to_watch->wb.status);
|
rtnetif_stop_queue(tx_ring->netdev);
|
|
/* we are about to reset, no point in enabling stuff */
|
return true;
|
}
|
}
|
|
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
|
if (unlikely(total_packets &&
|
rtnetif_carrier_ok(tx_ring->netdev) &&
|
igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
|
/* Make sure that anybody stopping the queue after this
|
* sees the new next_to_clean.
|
*/
|
smp_mb();
|
if (rtnetif_queue_stopped(tx_ring->netdev) &&
|
!(test_bit(__IGB_DOWN, &adapter->state))) {
|
rtnetif_wake_queue(tx_ring->netdev);
|
|
tx_ring->tx_stats.restart_queue++;
|
}
|
}
|
|
return !!budget;
|
}
|
|
static struct rtskb *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
|
union e1000_adv_rx_desc *rx_desc)
|
{
|
struct igb_rx_buffer *rx_buffer;
|
struct rtskb *skb;
|
|
rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
|
skb = rx_buffer->skb;
|
prefetchw(skb->data);
|
|
/* pull the header of the skb in */
|
rtskb_put(skb, le16_to_cpu(rx_desc->wb.upper.length));
|
rx_buffer->skb = NULL;
|
rx_buffer->dma = 0;
|
|
return skb;
|
}
|
|
static inline void igb_rx_checksum(struct igb_ring *ring,
|
union e1000_adv_rx_desc *rx_desc,
|
struct rtskb *skb)
|
{
|
skb->ip_summed = CHECKSUM_NONE;
|
|
/* Ignore Checksum bit is set */
|
if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
|
return;
|
|
/* Rx checksum disabled via ethtool */
|
if (!(ring->netdev->features & NETIF_F_RXCSUM))
|
return;
|
|
/* TCP/UDP checksum error bit is set */
|
if (igb_test_staterr(rx_desc,
|
E1000_RXDEXT_STATERR_TCPE |
|
E1000_RXDEXT_STATERR_IPE)) {
|
/* work around errata with sctp packets where the TCPE aka
|
* L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
|
* packets, (aka let the stack check the crc32c)
|
*/
|
if (!((skb->len == 60) &&
|
test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
|
ring->rx_stats.csum_err++;
|
}
|
/* let the stack verify checksum errors */
|
return;
|
}
|
/* It must be a TCP or UDP packet with a valid checksum */
|
if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
|
E1000_RXD_STAT_UDPCS))
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
dev_dbg(ring->dev, "cksum success: bits %08X\n",
|
le32_to_cpu(rx_desc->wb.upper.status_error));
|
}
|
|
/**
|
* igb_is_non_eop - process handling of non-EOP buffers
|
* @rx_ring: Rx ring being processed
|
* @rx_desc: Rx descriptor for current buffer
|
* @skb: current socket buffer containing buffer in progress
|
*
|
* This function updates next to clean. If the buffer is an EOP buffer
|
* this function exits returning false, otherwise it will place the
|
* sk_buff in the next buffer to be chained and return true indicating
|
* that this is in fact a non-EOP buffer.
|
**/
|
static bool igb_is_non_eop(struct igb_ring *rx_ring,
|
union e1000_adv_rx_desc *rx_desc)
|
{
|
u32 ntc = rx_ring->next_to_clean + 1;
|
|
/* fetch, update, and store next to clean */
|
ntc = (ntc < rx_ring->count) ? ntc : 0;
|
rx_ring->next_to_clean = ntc;
|
|
prefetch(IGB_RX_DESC(rx_ring, ntc));
|
|
if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
|
return false;
|
|
return true;
|
}
|
|
/**
|
* igb_cleanup_headers - Correct corrupted or empty headers
|
* @rx_ring: rx descriptor ring packet is being transacted on
|
* @rx_desc: pointer to the EOP Rx descriptor
|
* @skb: pointer to current skb being fixed
|
*
|
* Address the case where we are pulling data in on pages only
|
* and as such no data is present in the skb header.
|
*
|
* In addition if skb is not at least 60 bytes we need to pad it so that
|
* it is large enough to qualify as a valid Ethernet frame.
|
*
|
* Returns true if an error was encountered and skb was freed.
|
**/
|
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
|
union e1000_adv_rx_desc *rx_desc,
|
struct rtskb *skb)
|
{
|
if (unlikely((igb_test_staterr(rx_desc,
|
E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
|
struct rtnet_device *netdev = rx_ring->netdev;
|
if (!(netdev->features & NETIF_F_RXALL)) {
|
kfree_rtskb(skb);
|
return true;
|
}
|
}
|
|
return false;
|
}
|
|
/**
|
* igb_process_skb_fields - Populate skb header fields from Rx descriptor
|
* @rx_ring: rx descriptor ring packet is being transacted on
|
* @rx_desc: pointer to the EOP Rx descriptor
|
* @skb: pointer to current skb being populated
|
*
|
* This function checks the ring, descriptor, and packet information in
|
* order to populate the hash, checksum, VLAN, timestamp, protocol, and
|
* other fields within the skb.
|
**/
|
static void igb_process_skb_fields(struct igb_ring *rx_ring,
|
union e1000_adv_rx_desc *rx_desc,
|
struct rtskb *skb)
|
{
|
igb_rx_checksum(rx_ring, rx_desc, skb);
|
|
skb->protocol = rt_eth_type_trans(skb, rx_ring->netdev);
|
}
|
|
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
|
{
|
struct igb_ring *rx_ring = q_vector->rx.ring;
|
unsigned int total_bytes = 0, total_packets = 0;
|
u16 cleaned_count = igb_desc_unused(rx_ring);
|
nanosecs_abs_t time_stamp = rtdm_clock_read();
|
struct rtskb *skb;
|
|
while (likely(total_packets < budget)) {
|
union e1000_adv_rx_desc *rx_desc;
|
|
/* return some buffers to hardware, one at a time is too slow */
|
if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
|
igb_alloc_rx_buffers(rx_ring, cleaned_count);
|
cleaned_count = 0;
|
}
|
|
rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
|
|
if (!rx_desc->wb.upper.status_error)
|
break;
|
|
/* This memory barrier is needed to keep us from reading
|
* any other fields out of the rx_desc until we know the
|
* descriptor has been written back
|
*/
|
rmb();
|
|
/* retrieve a buffer from the ring */
|
skb = igb_fetch_rx_buffer(rx_ring, rx_desc);
|
skb->time_stamp = time_stamp;
|
|
cleaned_count++;
|
|
/* fetch next buffer in frame if non-eop */
|
if (igb_is_non_eop(rx_ring, rx_desc)) {
|
kfree_rtskb(skb);
|
continue;
|
}
|
|
/* verify the packet layout is correct */
|
if (igb_cleanup_headers(rx_ring, rx_desc, skb))
|
continue;
|
|
/* probably a little skewed due to removing CRC */
|
total_bytes += skb->len;
|
|
/* populate checksum, timestamp, VLAN, and protocol */
|
igb_process_skb_fields(rx_ring, rx_desc, skb);
|
|
rtnetif_rx(skb);
|
|
/* reset skb pointer */
|
skb = NULL;
|
|
/* update budget accounting */
|
total_packets++;
|
}
|
|
rx_ring->rx_stats.packets += total_packets;
|
rx_ring->rx_stats.bytes += total_bytes;
|
q_vector->rx.total_packets += total_packets;
|
q_vector->rx.total_bytes += total_bytes;
|
|
if (cleaned_count)
|
igb_alloc_rx_buffers(rx_ring, cleaned_count);
|
|
if (total_packets)
|
rt_mark_stack_mgr(q_vector->adapter->netdev);
|
|
return total_packets < budget;
|
}
|
|
static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
|
struct igb_rx_buffer *bi)
|
{
|
struct igb_adapter *adapter = rx_ring->q_vector->adapter;
|
struct rtskb *skb = bi->skb;
|
dma_addr_t dma = bi->dma;
|
|
if (dma)
|
return true;
|
|
if (likely(!skb)) {
|
skb = rtnetdev_alloc_rtskb(adapter->netdev,
|
rx_ring->rx_buffer_len + NET_IP_ALIGN);
|
if (!skb) {
|
rx_ring->rx_stats.alloc_failed++;
|
return false;
|
}
|
|
rtskb_reserve(skb, NET_IP_ALIGN);
|
skb->rtdev = adapter->netdev;
|
|
bi->skb = skb;
|
bi->dma = rtskb_data_dma_addr(skb, 0);
|
}
|
|
return true;
|
}
|
|
/**
|
* igb_alloc_rx_buffers - Replace used receive buffers; packet split
|
* @adapter: address of board private structure
|
**/
|
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
|
{
|
union e1000_adv_rx_desc *rx_desc;
|
struct igb_rx_buffer *bi;
|
u16 i = rx_ring->next_to_use;
|
|
/* nothing to do */
|
if (!cleaned_count)
|
return;
|
|
rx_desc = IGB_RX_DESC(rx_ring, i);
|
bi = &rx_ring->rx_buffer_info[i];
|
i -= rx_ring->count;
|
|
do {
|
if (!igb_alloc_mapped_skb(rx_ring, bi))
|
break;
|
|
/* Refresh the desc even if buffer_addrs didn't change
|
* because each write-back erases this info.
|
*/
|
rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
|
|
rx_desc++;
|
bi++;
|
i++;
|
if (unlikely(!i)) {
|
rx_desc = IGB_RX_DESC(rx_ring, 0);
|
bi = rx_ring->rx_buffer_info;
|
i -= rx_ring->count;
|
}
|
|
/* clear the status bits for the next_to_use descriptor */
|
rx_desc->wb.upper.status_error = 0;
|
|
cleaned_count--;
|
} while (cleaned_count);
|
|
i += rx_ring->count;
|
|
if (rx_ring->next_to_use != i) {
|
/* record the next descriptor to use */
|
rx_ring->next_to_use = i;
|
|
/* Force memory writes to complete before letting h/w
|
* know there are new descriptors to fetch. (Only
|
* applicable for weak-ordered memory model archs,
|
* such as IA-64).
|
*/
|
wmb();
|
writel(i, rx_ring->tail);
|
}
|
}
|
|
/**
|
* igb_mii_ioctl -
|
* @netdev:
|
* @ifreq:
|
* @cmd:
|
**/
|
static int igb_mii_ioctl(struct rtnet_device *netdev, struct ifreq *ifr, int cmd)
|
{
|
struct igb_adapter *adapter = rtnetdev_priv(netdev);
|
struct mii_ioctl_data *data = if_mii(ifr);
|
|
if (adapter->hw.phy.media_type != e1000_media_type_copper)
|
return -EOPNOTSUPP;
|
|
switch (cmd) {
|
case SIOCGMIIPHY:
|
data->phy_id = adapter->hw.phy.addr;
|
break;
|
case SIOCGMIIREG:
|
if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
|
&data->val_out))
|
return -EIO;
|
break;
|
case SIOCSMIIREG:
|
default:
|
return -EOPNOTSUPP;
|
}
|
return 0;
|
}
|
|
/**
|
* igb_ioctl -
|
* @netdev:
|
* @ifreq:
|
* @cmd:
|
**/
|
static int igb_ioctl(struct rtnet_device *netdev, struct ifreq *ifr, int cmd)
|
{
|
if (rtdm_in_rt_context())
|
return -ENOSYS;
|
|
switch (cmd) {
|
case SIOCGMIIPHY:
|
case SIOCGMIIREG:
|
case SIOCSMIIREG:
|
return igb_mii_ioctl(netdev, ifr, cmd);
|
|
default:
|
return -EOPNOTSUPP;
|
}
|
}
|
|
void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
|
{
|
struct igb_adapter *adapter = hw->back;
|
|
pci_read_config_word(adapter->pdev, reg, value);
|
}
|
|
void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
|
{
|
struct igb_adapter *adapter = hw->back;
|
|
pci_write_config_word(adapter->pdev, reg, *value);
|
}
|
|
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
|
{
|
struct igb_adapter *adapter = hw->back;
|
|
if (pcie_capability_read_word(adapter->pdev, reg, value))
|
return -E1000_ERR_CONFIG;
|
|
return 0;
|
}
|
|
s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
|
{
|
struct igb_adapter *adapter = hw->back;
|
|
if (pcie_capability_write_word(adapter->pdev, reg, *value))
|
return -E1000_ERR_CONFIG;
|
|
return 0;
|
}
|
|
static void igb_vlan_mode(struct rtnet_device *netdev, netdev_features_t features)
|
{
|
struct igb_adapter *adapter = rtnetdev_priv(netdev);
|
struct e1000_hw *hw = &adapter->hw;
|
u32 ctrl;
|
|
/* disable VLAN tag insert/strip */
|
ctrl = rd32(E1000_CTRL);
|
ctrl &= ~E1000_CTRL_VME;
|
wr32(E1000_CTRL, ctrl);
|
|
igb_rlpml_set(adapter);
|
}
|
|
static int igb_vlan_rx_add_vid(struct rtnet_device *netdev,
|
__be16 proto, u16 vid)
|
{
|
struct igb_adapter *adapter = rtnetdev_priv(netdev);
|
struct e1000_hw *hw = &adapter->hw;
|
|
/* add the filter since PF can receive vlans w/o entry in vlvf */
|
igb_vfta_set(hw, vid, true);
|
|
set_bit(vid, adapter->active_vlans);
|
|
return 0;
|
}
|
|
static void igb_restore_vlan(struct igb_adapter *adapter)
|
{
|
u16 vid;
|
|
igb_vlan_mode(adapter->netdev, adapter->netdev->features);
|
|
for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
|
igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
|
}
|
|
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
|
bool runtime)
|
{
|
struct rtnet_device *netdev = pci_get_drvdata(pdev);
|
struct igb_adapter *adapter = rtnetdev_priv(netdev);
|
struct e1000_hw *hw = &adapter->hw;
|
u32 ctrl, rctl, status;
|
u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
|
#ifdef CONFIG_PM
|
int retval = 0;
|
#endif
|
|
rtnetif_device_detach(netdev);
|
|
if (rtnetif_running(netdev))
|
__igb_close(netdev, true);
|
|
igb_clear_interrupt_scheme(adapter);
|
|
#ifdef CONFIG_PM
|
retval = pci_save_state(pdev);
|
if (retval)
|
return retval;
|
#endif
|
|
status = rd32(E1000_STATUS);
|
if (status & E1000_STATUS_LU)
|
wufc &= ~E1000_WUFC_LNKC;
|
|
if (wufc) {
|
igb_setup_rctl(adapter);
|
igb_set_rx_mode(netdev);
|
|
/* turn on all-multi mode if wake on multicast is enabled */
|
if (wufc & E1000_WUFC_MC) {
|
rctl = rd32(E1000_RCTL);
|
rctl |= E1000_RCTL_MPE;
|
wr32(E1000_RCTL, rctl);
|
}
|
|
ctrl = rd32(E1000_CTRL);
|
/* advertise wake from D3Cold */
|
#define E1000_CTRL_ADVD3WUC 0x00100000
|
/* phy power management enable */
|
#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
|
ctrl |= E1000_CTRL_ADVD3WUC;
|
wr32(E1000_CTRL, ctrl);
|
|
/* Allow time for pending master requests to run */
|
igb_disable_pcie_master(hw);
|
|
wr32(E1000_WUC, E1000_WUC_PME_EN);
|
wr32(E1000_WUFC, wufc);
|
} else {
|
wr32(E1000_WUC, 0);
|
wr32(E1000_WUFC, 0);
|
}
|
|
*enable_wake = wufc || adapter->en_mng_pt;
|
if (!*enable_wake)
|
igb_power_down_link(adapter);
|
else
|
igb_power_up_link(adapter);
|
|
/* Release control of h/w to f/w. If f/w is AMT enabled, this
|
* would have already happened in close and is redundant.
|
*/
|
igb_release_hw_control(adapter);
|
|
pci_disable_device(pdev);
|
|
return 0;
|
}
|
|
#ifdef CONFIG_PM
|
#ifdef CONFIG_PM_SLEEP
|
static int igb_suspend(struct device *dev)
|
{
|
int retval;
|
bool wake;
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
retval = __igb_shutdown(pdev, &wake, 0);
|
if (retval)
|
return retval;
|
|
if (wake) {
|
pci_prepare_to_sleep(pdev);
|
} else {
|
pci_wake_from_d3(pdev, false);
|
pci_set_power_state(pdev, PCI_D3hot);
|
}
|
|
return 0;
|
}
|
#endif /* CONFIG_PM_SLEEP */
|
|
static int igb_resume(struct device *dev)
|
{
|
struct pci_dev *pdev = to_pci_dev(dev);
|
struct rtnet_device *netdev = pci_get_drvdata(pdev);
|
struct igb_adapter *adapter = rtnetdev_priv(netdev);
|
struct e1000_hw *hw = &adapter->hw;
|
u32 err;
|
|
pci_set_power_state(pdev, PCI_D0);
|
pci_restore_state(pdev);
|
pci_save_state(pdev);
|
|
if (!pci_device_is_present(pdev))
|
return -ENODEV;
|
err = pci_enable_device_mem(pdev);
|
if (err) {
|
dev_err(&pdev->dev,
|
"igb: Cannot enable PCI device from suspend\n");
|
return err;
|
}
|
pci_set_master(pdev);
|
|
pci_enable_wake(pdev, PCI_D3hot, 0);
|
pci_enable_wake(pdev, PCI_D3cold, 0);
|
|
if (igb_init_interrupt_scheme(adapter, true)) {
|
dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
|
return -ENOMEM;
|
}
|
|
igb_reset(adapter);
|
|
/* let the f/w know that the h/w is now under the control of the
|
* driver.
|
*/
|
igb_get_hw_control(adapter);
|
|
wr32(E1000_WUS, ~0);
|
|
if (netdev->flags & IFF_UP) {
|
rtnl_lock();
|
err = __igb_open(netdev, true);
|
rtnl_unlock();
|
if (err)
|
return err;
|
}
|
|
rtnetif_device_attach(netdev);
|
return 0;
|
}
|
|
static int igb_runtime_idle(struct device *dev)
|
{
|
struct pci_dev *pdev = to_pci_dev(dev);
|
struct rtnet_device *netdev = pci_get_drvdata(pdev);
|
struct igb_adapter *adapter = rtnetdev_priv(netdev);
|
|
if (!igb_has_link(adapter))
|
pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
|
|
return -EBUSY;
|
}
|
|
static int igb_runtime_suspend(struct device *dev)
|
{
|
struct pci_dev *pdev = to_pci_dev(dev);
|
int retval;
|
bool wake;
|
|
retval = __igb_shutdown(pdev, &wake, 1);
|
if (retval)
|
return retval;
|
|
if (wake) {
|
pci_prepare_to_sleep(pdev);
|
} else {
|
pci_wake_from_d3(pdev, false);
|
pci_set_power_state(pdev, PCI_D3hot);
|
}
|
|
return 0;
|
}
|
|
static int igb_runtime_resume(struct device *dev)
|
{
|
return igb_resume(dev);
|
}
|
#endif /* CONFIG_PM */
|
|
static void igb_shutdown(struct pci_dev *pdev)
|
{
|
bool wake;
|
|
__igb_shutdown(pdev, &wake, 0);
|
|
if (system_state == SYSTEM_POWER_OFF) {
|
pci_wake_from_d3(pdev, wake);
|
pci_set_power_state(pdev, PCI_D3hot);
|
}
|
}
|
|
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
|
{
|
return 0;
|
}
|
|
/**
|
* igb_io_error_detected - called when PCI error is detected
|
* @pdev: Pointer to PCI device
|
* @state: The current pci connection state
|
*
|
* This function is called after a PCI bus error affecting
|
* this device has been detected.
|
**/
|
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
|
pci_channel_state_t state)
|
{
|
struct rtnet_device *netdev = pci_get_drvdata(pdev);
|
struct igb_adapter *adapter = rtnetdev_priv(netdev);
|
|
rtnetif_device_detach(netdev);
|
|
if (state == pci_channel_io_perm_failure)
|
return PCI_ERS_RESULT_DISCONNECT;
|
|
if (rtnetif_running(netdev))
|
igb_down(adapter);
|
pci_disable_device(pdev);
|
|
/* Request a slot slot reset. */
|
return PCI_ERS_RESULT_NEED_RESET;
|
}
|
|
/**
|
* igb_io_slot_reset - called after the pci bus has been reset.
|
* @pdev: Pointer to PCI device
|
*
|
* Restart the card from scratch, as if from a cold-boot. Implementation
|
* resembles the first-half of the igb_resume routine.
|
**/
|
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
|
{
|
struct rtnet_device *netdev = pci_get_drvdata(pdev);
|
struct igb_adapter *adapter = rtnetdev_priv(netdev);
|
struct e1000_hw *hw = &adapter->hw;
|
pci_ers_result_t result;
|
int err;
|
|
if (pci_enable_device_mem(pdev)) {
|
dev_err(&pdev->dev,
|
"Cannot re-enable PCI device after reset.\n");
|
result = PCI_ERS_RESULT_DISCONNECT;
|
} else {
|
pci_set_master(pdev);
|
pci_restore_state(pdev);
|
pci_save_state(pdev);
|
|
pci_enable_wake(pdev, PCI_D3hot, 0);
|
pci_enable_wake(pdev, PCI_D3cold, 0);
|
|
igb_reset(adapter);
|
wr32(E1000_WUS, ~0);
|
result = PCI_ERS_RESULT_RECOVERED;
|
}
|
|
err = pci_aer_clear_nonfatal_status(pdev);
|
if (err) {
|
dev_err(&pdev->dev,
|
"pci_aer_clear_nonfatal_status failed 0x%0x\n",
|
err);
|
/* non-fatal, continue */
|
}
|
|
return result;
|
}
|
|
/**
|
* igb_io_resume - called when traffic can start flowing again.
|
* @pdev: Pointer to PCI device
|
*
|
* This callback is called when the error recovery driver tells us that
|
* its OK to resume normal operation. Implementation resembles the
|
* second-half of the igb_resume routine.
|
*/
|
static void igb_io_resume(struct pci_dev *pdev)
|
{
|
struct rtnet_device *netdev = pci_get_drvdata(pdev);
|
struct igb_adapter *adapter = rtnetdev_priv(netdev);
|
|
if (rtnetif_running(netdev)) {
|
if (igb_up(adapter)) {
|
dev_err(&pdev->dev, "igb_up failed after reset\n");
|
return;
|
}
|
}
|
|
rtnetif_device_attach(netdev);
|
|
/* let the f/w know that the h/w is now under the control of the
|
* driver.
|
*/
|
igb_get_hw_control(adapter);
|
}
|
|
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
|
u8 qsel)
|
{
|
u32 rar_low, rar_high;
|
struct e1000_hw *hw = &adapter->hw;
|
|
/* HW expects these in little endian so we reverse the byte order
|
* from network order (big endian) to little endian
|
*/
|
rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
|
((u32) addr[2] << 16) | ((u32) addr[3] << 24));
|
rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
|
|
/* Indicate to hardware the Address is Valid. */
|
rar_high |= E1000_RAH_AV;
|
|
if (hw->mac.type == e1000_82575)
|
rar_high |= E1000_RAH_POOL_1 * qsel;
|
else
|
rar_high |= E1000_RAH_POOL_1 << qsel;
|
|
wr32(E1000_RAL(index), rar_low);
|
wrfl();
|
wr32(E1000_RAH(index), rar_high);
|
wrfl();
|
}
|
|
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
u32 dmac_thr;
|
u16 hwm;
|
|
if (hw->mac.type > e1000_82580) {
|
if (adapter->flags & IGB_FLAG_DMAC) {
|
u32 reg;
|
|
/* force threshold to 0. */
|
wr32(E1000_DMCTXTH, 0);
|
|
/* DMA Coalescing high water mark needs to be greater
|
* than the Rx threshold. Set hwm to PBA - max frame
|
* size in 16B units, capping it at PBA - 6KB.
|
*/
|
hwm = 64 * pba - adapter->max_frame_size / 16;
|
if (hwm < 64 * (pba - 6))
|
hwm = 64 * (pba - 6);
|
reg = rd32(E1000_FCRTC);
|
reg &= ~E1000_FCRTC_RTH_COAL_MASK;
|
reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
|
& E1000_FCRTC_RTH_COAL_MASK);
|
wr32(E1000_FCRTC, reg);
|
|
/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
|
* frame size, capping it at PBA - 10KB.
|
*/
|
dmac_thr = pba - adapter->max_frame_size / 512;
|
if (dmac_thr < pba - 10)
|
dmac_thr = pba - 10;
|
reg = rd32(E1000_DMACR);
|
reg &= ~E1000_DMACR_DMACTHR_MASK;
|
reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
|
& E1000_DMACR_DMACTHR_MASK);
|
|
/* transition to L0x or L1 if available..*/
|
reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
|
|
/* watchdog timer= +-1000 usec in 32usec intervals */
|
reg |= (1000 >> 5);
|
|
/* Disable BMC-to-OS Watchdog Enable */
|
if (hw->mac.type != e1000_i354)
|
reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
|
|
wr32(E1000_DMACR, reg);
|
|
/* no lower threshold to disable
|
* coalescing(smart fifb)-UTRESH=0
|
*/
|
wr32(E1000_DMCRTRH, 0);
|
|
reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
|
|
wr32(E1000_DMCTLX, reg);
|
|
/* free space in tx packet buffer to wake from
|
* DMA coal
|
*/
|
wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
|
(IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
|
|
/* make low power state decision controlled
|
* by DMA coal
|
*/
|
reg = rd32(E1000_PCIEMISC);
|
reg &= ~E1000_PCIEMISC_LX_DECISION;
|
wr32(E1000_PCIEMISC, reg);
|
} /* endif adapter->dmac is not disabled */
|
} else if (hw->mac.type == e1000_82580) {
|
u32 reg = rd32(E1000_PCIEMISC);
|
|
wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
|
wr32(E1000_DMACR, 0);
|
}
|
}
|
|
/**
|
* igb_read_i2c_byte - Reads 8 bit word over I2C
|
* @hw: pointer to hardware structure
|
* @byte_offset: byte offset to read
|
* @dev_addr: device address
|
* @data: value read
|
*
|
* Performs byte read operation over I2C interface at
|
* a specified device address.
|
**/
|
s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
|
u8 dev_addr, u8 *data)
|
{
|
struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
|
struct i2c_client *this_client = adapter->i2c_client;
|
s32 status;
|
u16 swfw_mask = 0;
|
|
if (!this_client)
|
return E1000_ERR_I2C;
|
|
swfw_mask = E1000_SWFW_PHY0_SM;
|
|
if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
|
return E1000_ERR_SWFW_SYNC;
|
|
status = i2c_smbus_read_byte_data(this_client, byte_offset);
|
hw->mac.ops.release_swfw_sync(hw, swfw_mask);
|
|
if (status < 0)
|
return E1000_ERR_I2C;
|
else {
|
*data = status;
|
return 0;
|
}
|
}
|
|
/**
|
* igb_write_i2c_byte - Writes 8 bit word over I2C
|
* @hw: pointer to hardware structure
|
* @byte_offset: byte offset to write
|
* @dev_addr: device address
|
* @data: value to write
|
*
|
* Performs byte write operation over I2C interface at
|
* a specified device address.
|
**/
|
s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
|
u8 dev_addr, u8 data)
|
{
|
struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
|
struct i2c_client *this_client = adapter->i2c_client;
|
s32 status;
|
u16 swfw_mask = E1000_SWFW_PHY0_SM;
|
|
if (!this_client)
|
return E1000_ERR_I2C;
|
|
if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
|
return E1000_ERR_SWFW_SYNC;
|
status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
|
hw->mac.ops.release_swfw_sync(hw, swfw_mask);
|
|
if (status)
|
return E1000_ERR_I2C;
|
else
|
return 0;
|
|
}
|
|
int igb_reinit_queues(struct igb_adapter *adapter)
|
{
|
struct rtnet_device *netdev = adapter->netdev;
|
struct pci_dev *pdev = adapter->pdev;
|
int err = 0;
|
|
if (rtnetif_running(netdev))
|
igb_close(netdev);
|
|
igb_reset_interrupt_capability(adapter);
|
|
if (igb_init_interrupt_scheme(adapter, true)) {
|
dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
|
return -ENOMEM;
|
}
|
|
if (rtnetif_running(netdev))
|
err = igb_open(netdev);
|
|
return err;
|
}
|
/* igb_main.c */
|