/*******************************************************************************
|
|
Intel PRO/1000 Linux driver
|
Copyright(c) 1999 - 2008 Intel Corporation.
|
|
This program is free software; you can redistribute it and/or modify it
|
under the terms and conditions of the GNU General Public License,
|
version 2, as published by the Free Software Foundation.
|
|
This program is distributed in the hope it will be useful, but WITHOUT
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
more details.
|
|
You should have received a copy of the GNU General Public License along with
|
this program; if not, write to the Free Software Foundation, Inc.,
|
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
The full GNU General Public License is included in this distribution in
|
the file called "COPYING".
|
|
Contact Information:
|
Linux NICS <linux.nics@intel.com>
|
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
*******************************************************************************/
|
|
#include <linux/module.h>
|
#include <linux/types.h>
|
#include <linux/init.h>
|
#include <linux/vmalloc.h>
|
#include <linux/pagemap.h>
|
#include <linux/netdevice.h>
|
#include <linux/tcp.h>
|
#include <linux/ipv6.h>
|
|
|
// RTNET defines...
|
#ifdef NETIF_F_TSO
|
#undef NETIF_F_TSO
|
#endif
|
|
#ifdef NETIF_F_TSO6
|
#undef NETIF_F_TSO6
|
#endif
|
|
#ifdef NETIF_F_HW_VLAN_TX
|
#undef NETIF_F_HW_VLAN_TX
|
#endif
|
|
#ifdef CONFIG_E1000_NAPI
|
#undef CONFIG_E1000_NAPI
|
#endif
|
|
#ifdef MAX_SKB_FRAGS
|
#undef MAX_SKB_FRAGS
|
#endif
|
|
#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
|
#define CONFIG_E1000_DISABLE_PACKET_SPLIT
|
#endif
|
|
#ifdef CONFIG_E1000_MQ
|
#undef CONFIG_E1000_MQ
|
#endif
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
#undef CONFIG_NET_POLL_CONTROLLER
|
#endif
|
|
#ifdef CONFIG_PM
|
#undef CONFIG_PM
|
#endif
|
|
#ifdef HAVE_PCI_ERS
|
#error "STOP it here"
|
#undef HAVE_PCI_ERS
|
#endif
|
|
#ifdef USE_REBOOT_NOTIFIER
|
#undef USE_REBOOT_NOTIFIER
|
#endif
|
|
#ifdef HAVE_TX_TIMEOUT
|
#undef HAVE_TX_TIMEOUT
|
#endif
|
|
|
#ifdef NETIF_F_TSO
|
#include <net/checksum.h>
|
#ifdef NETIF_F_TSO6
|
#include <net/ip6_checksum.h>
|
#endif
|
#endif
|
#ifdef SIOCGMIIPHY
|
#include <linux/mii.h>
|
#endif
|
#ifdef SIOCETHTOOL
|
#include <linux/ethtool.h>
|
#endif
|
#ifdef NETIF_F_HW_VLAN_TX
|
#include <linux/if_vlan.h>
|
#endif
|
#ifdef CONFIG_E1000_MQ
|
#include <linux/cpu.h>
|
#include <linux/smp.h>
|
#endif
|
|
#include "e1000.h"
|
|
#ifdef HAVE_PCI_ERS
|
#error "STOP it here"
|
#endif
|
|
|
|
char e1000_driver_name[MODULE_NAME_LEN] = "rt_e1000";
|
static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
|
|
#ifdef CONFIG_E1000_NAPI
|
#define DRV_NAPI "-NAPI"
|
#else
|
#define DRV_NAPI
|
#endif
|
|
|
#define DRV_DEBUG
|
|
#define DRV_HW_PERF
|
|
/*
|
* Port to rtnet based on e1000 driver version 7.6.15.5 (22-Sep-2008 Mathias Koehrer)
|
*
|
* */
|
|
#define DRV_VERSION "7.6.15.5" DRV_NAPI DRV_DEBUG DRV_HW_PERF " ported to RTnet"
|
const char e1000_driver_version[] = DRV_VERSION;
|
static const char e1000_copyright[] = "Copyright (c) 1999-2008 Intel Corporation.";
|
|
// RTNET wrappers
|
#define kmalloc(a,b) rtdm_malloc(a)
|
#define vmalloc(a) rtdm_malloc(a)
|
#define kfree(a) rtdm_free(a)
|
#define vfree(a) rtdm_free(a)
|
#define skb_reserve(a,b) rtskb_reserve(a,b)
|
#define net_device rtnet_device
|
#define sk_buff rtskb
|
#define netdev_priv(a) a->priv
|
// ----------------------
|
|
|
|
/* e1000_pci_tbl - PCI Device ID Table
|
*
|
* Last entry must be all 0s
|
*
|
* Macro expands to...
|
* {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
|
*/
|
|
#define PCI_ID_LIST_PCI \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82542), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82543GC_FIBER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82543GC_COPPER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82544EI_COPPER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82544EI_FIBER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82544GC_COPPER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82544GC_LOM), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82540EM), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82545EM_COPPER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82546EB_COPPER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82545EM_FIBER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82546EB_FIBER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82541EI), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82541ER_LOM), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82540EM_LOM), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82540EP_LOM), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82540EP), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82541EI_MOBILE), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82547EI), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82547EI_MOBILE), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82546EB_QUAD_COPPER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82540EP_LP), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82545GM_COPPER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82545GM_FIBER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82545GM_SERDES), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82547GI), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82541GI), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82541GI_MOBILE), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82541ER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82546GB_COPPER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82546GB_FIBER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82546GB_SERDES), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82541GI_LF), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82546GB_PCIE), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82546GB_QUAD_COPPER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3)
|
|
#define PCI_ID_LIST_PCIE \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_ICH8_IGP_M_AMT), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_ICH8_IGP_AMT), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_ICH8_IGP_C), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_ICH8_IFE), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_ICH8_IGP_M), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82571EB_COPPER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82571EB_FIBER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82571EB_SERDES), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82572EI_COPPER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82572EI_FIBER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82572EI_SERDES), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82573E), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82573E_IAMT), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_80003ES2LAN_COPPER_DPT), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_80003ES2LAN_SERDES_DPT), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82573L), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82571EB_QUAD_COPPER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82571EB_QUAD_FIBER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82571EB_SERDES_DUAL), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82571EB_SERDES_QUAD), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82572EI), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_80003ES2LAN_COPPER_SPT), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_80003ES2LAN_SERDES_SPT), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82571EB_QUAD_COPPER_LP), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_82571PT_QUAD_COPPER), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_ICH8_IFE_GT), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_ICH8_IFE_G), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_ICH9_IGP_AMT), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_ICH9_IGP_C), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_ICH9_IFE), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_ICH9_IFE_G), \
|
INTEL_E1000_ETHERNET_DEVICE(E1000_DEV_ID_ICH9_IFE_GT)
|
|
|
|
|
static struct pci_device_id e1000_pci_tbl[] = {
|
PCI_ID_LIST_PCI,
|
PCI_ID_LIST_PCIE,
|
/* required last entry */
|
{0,}
|
};
|
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
|
|
static struct pci_device_id e1000_pcipure_tbl[] = {
|
PCI_ID_LIST_PCI,
|
/* required last entry */
|
{0,}
|
};
|
|
static struct pci_device_id e1000_pcie_tbl[] = {
|
PCI_ID_LIST_PCIE,
|
/* required last entry */
|
{0,}
|
};
|
|
|
|
static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *tx_ring);
|
static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring);
|
static void e1000_free_tx_resources(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *tx_ring);
|
static void e1000_free_rx_resources(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring);
|
|
static int e1000_init_module(void);
|
static void e1000_exit_module(void);
|
static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
|
static void e1000_remove(struct pci_dev *pdev);
|
static int e1000_alloc_queues(struct e1000_adapter *adapter);
|
#ifdef CONFIG_E1000_MQ
|
static void e1000_setup_queue_mapping(struct e1000_adapter *adapter);
|
#endif
|
static int e1000_sw_init(struct e1000_adapter *adapter);
|
static int e1000_open(struct net_device *netdev);
|
static int e1000_close(struct net_device *netdev);
|
static void e1000_configure(struct e1000_adapter *adapter);
|
static void e1000_configure_tx(struct e1000_adapter *adapter);
|
static void e1000_configure_rx(struct e1000_adapter *adapter);
|
static void e1000_setup_rctl(struct e1000_adapter *adapter);
|
static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
|
static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
|
static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *tx_ring);
|
static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring);
|
static void e1000_set_multi(struct net_device *netdev);
|
static void e1000_update_phy_info_task(struct work_struct *work);
|
static void e1000_watchdog_task(struct work_struct *work);
|
static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
|
static int e1000_xmit_frame_ring(struct sk_buff *skb, struct net_device *netdev,
|
struct e1000_tx_ring *tx_ring);
|
static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
|
#ifdef CONFIG_E1000_MQ
|
static int e1000_subqueue_xmit_frame(struct sk_buff *skb,
|
struct net_device *netdev, int queue);
|
#endif
|
static void e1000_phy_read_status(struct e1000_adapter *adapter);
|
#if 0
|
static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
|
static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
|
static int e1000_set_mac(struct net_device *netdev, void *p);
|
#endif
|
static int e1000_intr(rtdm_irq_t *irq_handle);
|
static int e1000_intr_msi(rtdm_irq_t *irq_handle);
|
static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *tx_ring);
|
#ifdef CONFIG_E1000_NAPI
|
static int e1000_poll(struct napi_struct *napi, int budget);
|
static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
int *work_done, int work_to_do);
|
static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
int *work_done, int work_to_do);
|
static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
int *work_done, int work_to_do);
|
static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
int cleaned_count);
|
#else
|
static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
nanosecs_abs_t *time_stamp);
|
static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
nanosecs_abs_t *time_stamp);
|
#endif
|
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
int cleaned_count);
|
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
int cleaned_count);
|
#if 0
|
static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
|
#ifdef SIOCGMIIPHY
|
static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
|
int cmd);
|
static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
|
static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
|
static void e1000_tx_timeout(struct net_device *dev);
|
#endif
|
#endif
|
static void e1000_reset_task(struct work_struct *work);
|
static void e1000_smartspeed(struct e1000_adapter *adapter);
|
static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
|
struct sk_buff *skb);
|
|
#ifdef NETIF_F_HW_VLAN_TX
|
static void e1000_vlan_rx_register(struct net_device *netdev,
|
struct vlan_group *grp);
|
static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
|
static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
|
static void e1000_restore_vlan(struct e1000_adapter *adapter);
|
#endif
|
|
// static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
|
#ifdef CONFIG_PM
|
static int e1000_resume(struct pci_dev *pdev);
|
#endif
|
#ifndef USE_REBOOT_NOTIFIER
|
// static void e1000_shutdown(struct pci_dev *pdev);
|
#else
|
static int e1000_notify_reboot(struct notifier_block *, unsigned long event,
|
void *ptr);
|
static struct notifier_block e1000_notifier_reboot = {
|
.notifier_call = e1000_notify_reboot,
|
.next = NULL,
|
.priority = 0
|
};
|
#endif
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
/* for netdump / net console */
|
static void e1000_netpoll (struct net_device *netdev);
|
#endif
|
|
#define COPYBREAK_DEFAULT 256
|
static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
|
module_param(copybreak, uint, 0644);
|
MODULE_PARM_DESC(copybreak,
|
"Maximum size of packet that is copied to a new buffer on receive");
|
|
|
#ifdef HAVE_PCI_ERS
|
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
|
pci_channel_state_t state);
|
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
|
static void e1000_io_resume(struct pci_dev *pdev);
|
|
static struct pci_error_handlers e1000_err_handler = {
|
.error_detected = e1000_io_error_detected,
|
.slot_reset = e1000_io_slot_reset,
|
.resume = e1000_io_resume,
|
};
|
#endif
|
|
static struct pci_driver e1000_driver = {
|
.name = e1000_driver_name,
|
.id_table = e1000_pci_tbl,
|
.probe = e1000_probe,
|
.remove = e1000_remove,
|
#ifdef HAVE_PCI_ERS
|
.err_handler = &e1000_err_handler
|
#endif
|
};
|
|
MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
|
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
|
MODULE_LICENSE("GPL");
|
MODULE_VERSION(DRV_VERSION);
|
|
#define MAX_UNITS 8
|
static int cards[MAX_UNITS] = { [0 ... (MAX_UNITS-1)] = 1 };
|
module_param_array(cards, int, NULL, 0444);
|
MODULE_PARM_DESC(cards, "array of cards to be supported (eg. 1,0,1)");
|
|
|
static int local_debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
|
module_param(local_debug, int, 0);
|
MODULE_PARM_DESC(local_debug, "Debug level (0=none,...,16=all)");
|
|
/* The parameter 'pciif' might be used to use this driver for
|
* PCI or PCIe only NICs.
|
* This allows to reflect the situation that newer Linux kernels
|
* have two different (non real time) drivers for the e1000:
|
* e1000 for PCI only
|
* e1000e for PCIe only
|
*
|
* Using the 'pciif' parameter allows to load the driver
|
* modprobe rt_e1000 pciif=pci
|
* to use it as PCI only
|
* and a
|
* modprobe rt_e1000 -o rt_e1000e pciif=pcie
|
* allows to load a second instance of this driver named 'rt_e1000e'
|
*
|
* If the 'pciif' paramter is not specified, all (PCI and PCIe) e1000
|
* NICs will be used.
|
* */
|
static char *pciif = "all";
|
module_param(pciif, charp, 0);
|
MODULE_PARM_DESC(pciif, "PCI Interface: 'all' (default), 'pci', 'pcie'");
|
|
|
//#define register_netdev(a) rt_register_rtnetdev(a)
|
//#define unregister_netdev(a) rt_unregister_rtnetdev(a)
|
//#define free_netdev(a) rtdev_free(a)
|
//#define netif_stop_queue(a) rtnetif_stop_queue(a)
|
|
/**
|
* e1000_init_module - Driver Registration Routine
|
*
|
* e1000_init_module is the first routine called when the driver is
|
* loaded. All it does is register with the PCI subsystem.
|
**/
|
static int __init e1000_init_module(void)
|
{
|
int ret;
|
strcpy(e1000_driver_name, THIS_MODULE->name);
|
printk(KERN_INFO "%s - %s version %s (pciif: %s)\n",
|
e1000_driver_string, e1000_driver_name, e1000_driver_version, pciif);
|
|
printk(KERN_INFO "%s\n", e1000_copyright);
|
|
|
if (0 == strcmp(pciif, "pcie"))
|
{
|
// PCIe only
|
e1000_driver.id_table = e1000_pcie_tbl;
|
}
|
else if (0 == strcmp(pciif, "pci"))
|
{
|
// PCI only
|
e1000_driver.id_table = e1000_pcipure_tbl;
|
}
|
|
ret = pci_register_driver(&e1000_driver);
|
#ifdef USE_REBOOT_NOTIFIER
|
if (ret >= 0) {
|
register_reboot_notifier(&e1000_notifier_reboot);
|
}
|
#endif
|
if (copybreak != COPYBREAK_DEFAULT) {
|
if (copybreak == 0)
|
printk(KERN_INFO "e1000: copybreak disabled\n");
|
else
|
printk(KERN_INFO "e1000: copybreak enabled for "
|
"packets <= %u bytes\n", copybreak);
|
}
|
return ret;
|
}
|
|
module_init(e1000_init_module);
|
|
/**
|
* e1000_exit_module - Driver Exit Cleanup Routine
|
*
|
* e1000_exit_module is called just before the driver is removed
|
* from memory.
|
**/
|
static void __exit e1000_exit_module(void)
|
{
|
#ifdef USE_REBOOT_NOTIFIER
|
unregister_reboot_notifier(&e1000_notifier_reboot);
|
#endif
|
pci_unregister_driver(&e1000_driver);
|
}
|
|
module_exit(e1000_exit_module);
|
|
static int e1000_request_irq(struct e1000_adapter *adapter)
|
{
|
struct net_device *netdev = adapter->netdev;
|
int err = 0;
|
|
if (adapter->flags & E1000_FLAG_HAS_MSI) {
|
err = pci_enable_msi(adapter->pdev);
|
if (!err)
|
adapter->flags |= E1000_FLAG_MSI_ENABLED;
|
}
|
rt_stack_connect(netdev, &STACK_manager);
|
if (adapter->flags & E1000_FLAG_MSI_ENABLED) {
|
err = rtdm_irq_request(&adapter->irq_handle, adapter->pdev->irq, e1000_intr_msi,
|
0, netdev->name, netdev);
|
if (!err) {
|
return err;
|
} else {
|
adapter->flags &= ~E1000_FLAG_MSI_ENABLED;
|
pci_disable_msi(adapter->pdev);
|
}
|
}
|
err = rtdm_irq_request(&adapter->irq_handle, adapter->pdev->irq,
|
e1000_intr, RTDM_IRQTYPE_SHARED, netdev->name,
|
netdev);
|
if (err)
|
DPRINTK(PROBE, ERR, "Unable to allocate interrupt Error: %d\n",
|
err);
|
|
return err;
|
}
|
|
static void e1000_free_irq(struct e1000_adapter *adapter)
|
{
|
// struct net_device *netdev = adapter->netdev;
|
|
rtdm_irq_free(&adapter->irq_handle);
|
|
if (adapter->flags & E1000_FLAG_MSI_ENABLED) {
|
pci_disable_msi(adapter->pdev);
|
adapter->flags &= ~E1000_FLAG_MSI_ENABLED;
|
}
|
}
|
|
/**
|
* e1000_irq_disable - Mask off interrupt generation on the NIC
|
* @adapter: board private structure
|
**/
|
static void e1000_irq_disable(struct e1000_adapter *adapter)
|
{
|
atomic_inc(&adapter->irq_sem);
|
E1000_WRITE_REG(&adapter->hw, E1000_IMC, ~0);
|
E1000_WRITE_FLUSH(&adapter->hw);
|
synchronize_irq(adapter->pdev->irq);
|
}
|
|
/**
|
* e1000_irq_enable - Enable default interrupt generation settings
|
* @adapter: board private structure
|
**/
|
|
static void e1000_irq_enable(struct e1000_adapter *adapter)
|
{
|
if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
|
E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
|
E1000_WRITE_FLUSH(&adapter->hw);
|
}
|
}
|
#ifdef NETIF_F_HW_VLAN_TX
|
|
static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
|
{
|
struct net_device *netdev = adapter->netdev;
|
u16 vid = adapter->hw.mng_cookie.vlan_id;
|
u16 old_vid = adapter->mng_vlan_id;
|
if (adapter->vlgrp) {
|
if (!vlan_group_get_device(adapter->vlgrp, vid)) {
|
if (adapter->hw.mng_cookie.status &
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
|
e1000_vlan_rx_add_vid(netdev, vid);
|
adapter->mng_vlan_id = vid;
|
} else {
|
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
|
}
|
|
if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
|
(vid != old_vid) &&
|
!vlan_group_get_device(adapter->vlgrp, old_vid))
|
e1000_vlan_rx_kill_vid(netdev, old_vid);
|
} else {
|
adapter->mng_vlan_id = vid;
|
}
|
}
|
}
|
#endif
|
|
/**
|
* e1000_release_hw_control - release control of the h/w to f/w
|
* @adapter: address of board private structure
|
*
|
* e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
|
* For ASF and Pass Through versions of f/w this means that the
|
* driver is no longer loaded. For AMT version (only with 82573) i
|
* of the f/w this means that the network i/f is closed.
|
*
|
**/
|
static void e1000_release_hw_control(struct e1000_adapter *adapter)
|
{
|
u32 ctrl_ext;
|
u32 swsm;
|
|
/* Let firmware taken over control of h/w */
|
switch (adapter->hw.mac.type) {
|
case e1000_82573:
|
swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
|
E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
|
swsm & ~E1000_SWSM_DRV_LOAD);
|
break;
|
case e1000_82571:
|
case e1000_82572:
|
case e1000_80003es2lan:
|
case e1000_ich8lan:
|
case e1000_ich9lan:
|
ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
|
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
|
break;
|
default:
|
break;
|
}
|
}
|
|
/**
|
* e1000_get_hw_control - get control of the h/w from f/w
|
* @adapter: address of board private structure
|
*
|
* e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
|
* For ASF and Pass Through versions of f/w this means that
|
* the driver is loaded. For AMT version (only with 82573)
|
* of the f/w this means that the network i/f is open.
|
*
|
**/
|
static void e1000_get_hw_control(struct e1000_adapter *adapter)
|
{
|
u32 ctrl_ext;
|
u32 swsm;
|
|
/* Let firmware know the driver has taken over */
|
switch (adapter->hw.mac.type) {
|
case e1000_82573:
|
swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
|
E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
|
swsm | E1000_SWSM_DRV_LOAD);
|
break;
|
case e1000_82571:
|
case e1000_82572:
|
case e1000_80003es2lan:
|
case e1000_ich8lan:
|
case e1000_ich9lan:
|
ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
|
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
|
break;
|
default:
|
break;
|
}
|
}
|
|
static void e1000_init_manageability(struct e1000_adapter *adapter)
|
{
|
}
|
|
static void e1000_release_manageability(struct e1000_adapter *adapter)
|
{
|
}
|
|
/**
|
* e1000_configure - configure the hardware for RX and TX
|
* @adapter: private board structure
|
**/
|
static void e1000_configure(struct e1000_adapter *adapter)
|
{
|
struct net_device *netdev = adapter->netdev;
|
int i;
|
|
e1000_set_multi(netdev);
|
|
#ifdef NETIF_F_HW_VLAN_TX
|
e1000_restore_vlan(adapter);
|
#endif
|
e1000_init_manageability(adapter);
|
|
e1000_configure_tx(adapter);
|
e1000_setup_rctl(adapter);
|
e1000_configure_rx(adapter);
|
/* call E1000_DESC_UNUSED which always leaves
|
* at least 1 descriptor unused to make sure
|
* next_to_use != next_to_clean */
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
struct e1000_rx_ring *ring = &adapter->rx_ring[i];
|
adapter->alloc_rx_buf(adapter, ring,
|
E1000_DESC_UNUSED(ring));
|
}
|
|
#ifdef CONFIG_E1000_MQ
|
e1000_setup_queue_mapping(adapter);
|
#endif
|
|
// adapter->tx_queue_len = netdev->tx_queue_len;
|
}
|
|
static void e1000_napi_enable_all(struct e1000_adapter *adapter)
|
{
|
#ifdef CONFIG_E1000_NAPI
|
int i;
|
for (i = 0; i < adapter->num_rx_queues; i++)
|
napi_enable(&adapter->rx_ring[i].napi);
|
#endif
|
}
|
|
static void e1000_napi_disable_all(struct e1000_adapter *adapter)
|
{
|
#ifdef CONFIG_E1000_NAPI
|
int i;
|
for (i = 0; i < adapter->num_rx_queues; i++)
|
napi_disable(&adapter->rx_ring[i].napi);
|
#endif
|
}
|
|
int e1000_up(struct e1000_adapter *adapter)
|
{
|
/* hardware has been reset, we need to reload some things */
|
e1000_configure(adapter);
|
|
clear_bit(__E1000_DOWN, &adapter->state);
|
|
e1000_napi_enable_all(adapter);
|
|
e1000_irq_enable(adapter);
|
|
/* fire a link change interrupt to start the watchdog */
|
// E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
|
return 0;
|
}
|
|
static void e1000_down_and_stop(struct e1000_adapter *adapter)
|
{
|
/* signal that we're down so the interrupt handler does not
|
* reschedule our watchdog timer */
|
set_bit(__E1000_DOWN, &adapter->state);
|
|
cancel_work_sync(&adapter->reset_task);
|
cancel_delayed_work_sync(&adapter->watchdog_task);
|
cancel_delayed_work_sync(&adapter->phy_info_task);
|
cancel_delayed_work_sync(&adapter->fifo_stall_task);
|
}
|
|
void e1000_down(struct e1000_adapter *adapter)
|
{
|
struct net_device *netdev = adapter->netdev;
|
u32 tctl, rctl;
|
|
e1000_down_and_stop(adapter);
|
|
/* disable receives in the hardware */
|
rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
|
/* flush and sleep below */
|
|
#ifdef NETIF_F_LLTX
|
rtnetif_stop_queue(netdev);
|
#else
|
rtnetif_tx_disable(netdev);
|
#endif
|
|
/* disable transmits in the hardware */
|
tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
|
tctl &= ~E1000_TCTL_EN;
|
E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
|
/* flush both disables and wait for them to finish */
|
E1000_WRITE_FLUSH(&adapter->hw);
|
msleep(10);
|
|
e1000_napi_disable_all(adapter);
|
|
e1000_irq_disable(adapter);
|
|
// netdev->tx_queue_len = adapter->tx_queue_len;
|
rtnetif_carrier_off(netdev);
|
adapter->link_speed = 0;
|
adapter->link_duplex = 0;
|
|
e1000_reset(adapter);
|
e1000_clean_all_tx_rings(adapter);
|
e1000_clean_all_rx_rings(adapter);
|
}
|
|
void e1000_reinit_locked(struct e1000_adapter *adapter)
|
{
|
WARN_ON(in_interrupt());
|
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
|
msleep(1);
|
e1000_down(adapter);
|
e1000_up(adapter);
|
clear_bit(__E1000_RESETTING, &adapter->state);
|
}
|
|
void e1000_reset(struct e1000_adapter *adapter)
|
{
|
struct e1000_mac_info *mac = &adapter->hw.mac;
|
struct e1000_fc_info *fc = &adapter->hw.fc;
|
u32 pba = 0, tx_space, min_tx_space, min_rx_space;
|
bool legacy_pba_adjust = FALSE;
|
u16 hwm;
|
|
/* Repartition Pba for greater than 9k mtu
|
* To take effect CTRL.RST is required.
|
*/
|
|
switch (mac->type) {
|
case e1000_82542:
|
case e1000_82543:
|
case e1000_82544:
|
case e1000_82540:
|
case e1000_82541:
|
case e1000_82541_rev_2:
|
legacy_pba_adjust = TRUE;
|
pba = E1000_PBA_48K;
|
break;
|
case e1000_82545:
|
case e1000_82545_rev_3:
|
case e1000_82546:
|
case e1000_82546_rev_3:
|
pba = E1000_PBA_48K;
|
break;
|
case e1000_82547:
|
case e1000_82547_rev_2:
|
legacy_pba_adjust = TRUE;
|
pba = E1000_PBA_30K;
|
break;
|
case e1000_82571:
|
case e1000_82572:
|
case e1000_80003es2lan:
|
pba = E1000_PBA_38K;
|
break;
|
case e1000_82573:
|
pba = E1000_PBA_20K;
|
break;
|
case e1000_ich8lan:
|
pba = E1000_PBA_8K;
|
break;
|
case e1000_ich9lan:
|
#define E1000_PBA_10K 0x000A
|
pba = E1000_PBA_10K;
|
break;
|
case e1000_undefined:
|
case e1000_num_macs:
|
break;
|
}
|
|
if (legacy_pba_adjust == TRUE) {
|
if (adapter->max_frame_size > E1000_RXBUFFER_8192)
|
pba -= 8; /* allocate more FIFO for Tx */
|
|
if (mac->type == e1000_82547) {
|
adapter->tx_fifo_head = 0;
|
adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
|
adapter->tx_fifo_size =
|
(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
|
atomic_set(&adapter->tx_fifo_stall, 0);
|
}
|
} else if (adapter->max_frame_size > ETH_FRAME_LEN + ETHERNET_FCS_SIZE) {
|
/* adjust PBA for jumbo frames */
|
E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
|
|
/* To maintain wire speed transmits, the Tx FIFO should be
|
* large enough to accommodate two full transmit packets,
|
* rounded up to the next 1KB and expressed in KB. Likewise,
|
* the Rx FIFO should be large enough to accommodate at least
|
* one full receive packet and is similarly rounded up and
|
* expressed in KB. */
|
pba = E1000_READ_REG(&adapter->hw, E1000_PBA);
|
/* upper 16 bits has Tx packet buffer allocation size in KB */
|
tx_space = pba >> 16;
|
/* lower 16 bits has Rx packet buffer allocation size in KB */
|
pba &= 0xffff;
|
/* the tx fifo also stores 16 bytes of information about the tx
|
* but don't include ethernet FCS because hardware appends it */
|
min_tx_space = (adapter->max_frame_size +
|
sizeof(struct e1000_tx_desc) -
|
ETHERNET_FCS_SIZE) * 2;
|
min_tx_space = ALIGN(min_tx_space, 1024);
|
min_tx_space >>= 10;
|
/* software strips receive CRC, so leave room for it */
|
min_rx_space = adapter->max_frame_size;
|
min_rx_space = ALIGN(min_rx_space, 1024);
|
min_rx_space >>= 10;
|
|
/* If current Tx allocation is less than the min Tx FIFO size,
|
* and the min Tx FIFO size is less than the current Rx FIFO
|
* allocation, take space away from current Rx allocation */
|
if (tx_space < min_tx_space &&
|
((min_tx_space - tx_space) < pba)) {
|
pba = pba - (min_tx_space - tx_space);
|
|
/* PCI/PCIx hardware has PBA alignment constraints */
|
switch (mac->type) {
|
case e1000_82545 ... e1000_82546_rev_3:
|
pba &= ~(E1000_PBA_8K - 1);
|
break;
|
default:
|
break;
|
}
|
|
/* if short on rx space, rx wins and must trump tx
|
* adjustment or use Early Receive if available */
|
if (pba < min_rx_space) {
|
switch (mac->type) {
|
case e1000_82573:
|
case e1000_ich9lan:
|
/* ERT enabled in e1000_configure_rx */
|
break;
|
default:
|
pba = min_rx_space;
|
break;
|
}
|
}
|
}
|
}
|
|
E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
|
|
/* flow control settings */
|
/* The high water mark must be low enough to fit one full frame
|
* (or the size used for early receive) above it in the Rx FIFO.
|
* Set it to the lower of:
|
* - 90% of the Rx FIFO size, and
|
* - the full Rx FIFO size minus the early receive size (for parts
|
* with ERT support assuming ERT set to E1000_ERT_2048), or
|
* - the full Rx FIFO size minus one full frame */
|
hwm = min(((pba << 10) * 9 / 10),
|
((mac->type == e1000_82573 || mac->type == e1000_ich9lan) ?
|
(u16)((pba << 10) - (E1000_ERT_2048 << 3)) :
|
((pba << 10) - adapter->max_frame_size)));
|
|
fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
|
fc->low_water = fc->high_water - 8;
|
|
if (mac->type == e1000_80003es2lan)
|
fc->pause_time = 0xFFFF;
|
else
|
fc->pause_time = E1000_FC_PAUSE_TIME;
|
fc->send_xon = 1;
|
fc->type = fc->original_type;
|
|
/* Allow time for pending master requests to run */
|
e1000_reset_hw(&adapter->hw);
|
|
/* For 82573 and ICHx if AMT is enabled, let the firmware know
|
* that the network interface is in control */
|
if (((adapter->hw.mac.type == e1000_82573) ||
|
(adapter->hw.mac.type == e1000_ich8lan) ||
|
(adapter->hw.mac.type == e1000_ich9lan)) &&
|
e1000_check_mng_mode(&adapter->hw))
|
e1000_get_hw_control(adapter);
|
|
if (mac->type >= e1000_82544)
|
E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
|
|
if (e1000_init_hw(&adapter->hw))
|
DPRINTK(PROBE, ERR, "Hardware Error\n");
|
#ifdef NETIF_F_HW_VLAN_TX
|
e1000_update_mng_vlan(adapter);
|
#endif
|
/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
|
if (mac->type >= e1000_82544 &&
|
mac->type <= e1000_82547_rev_2 &&
|
mac->autoneg == 1 &&
|
adapter->hw.phy.autoneg_advertised == ADVERTISE_1000_FULL) {
|
u32 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
|
/* clear phy power management bit if we are in gig only mode,
|
* which if enabled will attempt negotiation to 100Mb, which
|
* can cause a loss of link at power off or driver unload */
|
ctrl &= ~E1000_CTRL_SWDPIN3;
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
|
}
|
|
#if defined(CONFIG_PPC64) || defined(CONFIG_PPC)
|
#define E1000_GCR_DISABLE_TIMEOUT_MECHANISM 0x80000000
|
if (adapter->hw.mac.type == e1000_82571) {
|
/* work around pSeries hardware by disabling timeouts */
|
u32 gcr = E1000_READ_REG(&adapter->hw, E1000_GCR);
|
gcr |= E1000_GCR_DISABLE_TIMEOUT_MECHANISM;
|
E1000_WRITE_REG(&adapter->hw, E1000_GCR, gcr);
|
}
|
#endif
|
|
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
|
E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
|
|
e1000_reset_adaptive(&adapter->hw);
|
e1000_get_phy_info(&adapter->hw);
|
|
if (!(adapter->flags & E1000_FLAG_SMART_POWER_DOWN) &&
|
(mac->type == e1000_82571 || mac->type == e1000_82572)) {
|
u16 phy_data = 0;
|
/* speed up time to link by disabling smart power down, ignore
|
* the return value of this function because there is nothing
|
* different we would do if it failed */
|
e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
|
&phy_data);
|
phy_data &= ~IGP02E1000_PM_SPD;
|
e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
|
phy_data);
|
}
|
|
e1000_release_manageability(adapter);
|
}
|
|
/**
|
* e1000_probe - Device Initialization Routine
|
* @pdev: PCI device information struct
|
* @ent: entry in e1000_pci_tbl
|
*
|
* Returns 0 on success, negative on failure
|
*
|
* e1000_probe initializes an adapter identified by a pci_dev structure.
|
* The OS initialization, configuring of the adapter private structure,
|
* and a hardware reset occur.
|
**/
|
static int e1000_probe(struct pci_dev *pdev,
|
const struct pci_device_id *ent)
|
{
|
struct net_device *netdev;
|
struct e1000_adapter *adapter;
|
|
static int cards_found = 0;
|
static int global_quad_port_a = 0; /* global ksp3 port a indication */
|
int i, err, pci_using_dac;
|
u16 eeprom_data = 0;
|
u16 eeprom_apme_mask = E1000_EEPROM_APME;
|
|
if (cards[cards_found++] == 0)
|
{
|
return -ENODEV;
|
}
|
|
if ((err = pci_enable_device(pdev)))
|
return err;
|
|
if (!(err = dma_set_mask(&pdev->dev, DMA_64BIT_MASK)) &&
|
!(err = dma_set_coherent_mask(&pdev->dev, DMA_64BIT_MASK))) {
|
pci_using_dac = 1;
|
} else {
|
if ((err = dma_set_mask(&pdev->dev, DMA_32BIT_MASK)) &&
|
(err = dma_set_coherent_mask(&pdev->dev, DMA_32BIT_MASK))) {
|
E1000_ERR("No usable DMA configuration, aborting\n");
|
goto err_dma;
|
}
|
pci_using_dac = 0;
|
}
|
|
if ((err = pci_request_regions(pdev, e1000_driver_name)))
|
goto err_pci_reg;
|
|
pci_set_master(pdev);
|
|
err = -ENOMEM;
|
#ifdef CONFIG_E1000_MQ
|
netdev = rt_alloc_etherdev(sizeof(struct e1000_adapter) +
|
(sizeof(struct net_device_subqueue) *
|
E1000_MAX_TX_QUEUES), 16);
|
#else
|
netdev = rt_alloc_etherdev(sizeof(struct e1000_adapter),
|
2 * E1000_DEFAULT_RXD + E1000_DEFAULT_TXD);
|
#endif
|
if (!netdev)
|
goto err_alloc_etherdev;
|
|
memset(netdev->priv, 0, sizeof(struct e1000_adapter));
|
rt_rtdev_connect(netdev, &RTDEV_manager);
|
|
// SET_NETDEV_DEV(netdev, &pdev->dev);
|
netdev->vers = RTDEV_VERS_2_0;
|
|
pci_set_drvdata(pdev, netdev);
|
adapter = netdev->priv;
|
adapter->netdev = netdev;
|
adapter->pdev = pdev;
|
adapter->hw.back = adapter;
|
adapter->msg_enable = (1 << local_debug) - 1;
|
|
err = -EIO;
|
adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, BAR_0),
|
pci_resource_len(pdev, BAR_0));
|
if (!adapter->hw.hw_addr)
|
goto err_ioremap;
|
|
for (i = BAR_1; i <= BAR_5; i++) {
|
if (pci_resource_len(pdev, i) == 0)
|
continue;
|
if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
|
adapter->hw.io_base = pci_resource_start(pdev, i);
|
break;
|
}
|
}
|
|
netdev->open = &e1000_open;
|
netdev->stop = &e1000_close;
|
netdev->hard_start_xmit = &e1000_xmit_frame;
|
#ifdef CONFIG_E1000_MQ
|
netdev->hard_start_subqueue_xmit = &e1000_subqueue_xmit_frame;
|
#endif
|
#ifdef HAVE_TX_TIMEOUT
|
netdev->tx_timeout = &e1000_tx_timeout;
|
netdev->watchdog_timeo = 5 * HZ;
|
#endif
|
#ifdef NETIF_F_HW_VLAN_TX
|
netdev->vlan_rx_register = e1000_vlan_rx_register;
|
netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
|
netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
|
#endif
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
netdev->poll_controller = e1000_netpoll;
|
#endif
|
strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
|
|
adapter->bd_number = cards_found;
|
|
/* setup the private structure */
|
if ((err = e1000_sw_init(adapter)))
|
goto err_sw_init;
|
|
err = -EIO;
|
/* Flash BAR mapping must happen after e1000_sw_init
|
* because it depends on mac.type */
|
if (((adapter->hw.mac.type == e1000_ich8lan) ||
|
(adapter->hw.mac.type == e1000_ich9lan)) &&
|
(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
|
adapter->hw.flash_address = ioremap(pci_resource_start(pdev, 1),
|
pci_resource_len(pdev, 1));
|
if (!adapter->hw.flash_address)
|
goto err_flashmap;
|
}
|
|
if ((err = e1000_init_mac_params(&adapter->hw)))
|
goto err_hw_init;
|
|
if ((err = e1000_init_nvm_params(&adapter->hw)))
|
goto err_hw_init;
|
|
if ((err = e1000_init_phy_params(&adapter->hw)))
|
goto err_hw_init;
|
|
e1000_get_bus_info(&adapter->hw);
|
|
e1000_init_script_state_82541(&adapter->hw, TRUE);
|
e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
|
|
adapter->hw.phy.autoneg_wait_to_complete = FALSE;
|
adapter->hw.mac.adaptive_ifs = FALSE;
|
|
/* Copper options */
|
|
if (adapter->hw.phy.media_type == e1000_media_type_copper) {
|
adapter->hw.phy.mdix = AUTO_ALL_MODES;
|
adapter->hw.phy.disable_polarity_correction = FALSE;
|
adapter->hw.phy.ms_type = E1000_MASTER_SLAVE;
|
}
|
|
if (e1000_check_reset_block(&adapter->hw))
|
DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
|
|
#ifdef MAX_SKB_FRAGS
|
if (adapter->hw.mac.type >= e1000_82543) {
|
#ifdef NETIF_F_HW_VLAN_TX
|
netdev->features = NETIF_F_SG |
|
NETIF_F_HW_CSUM |
|
NETIF_F_HW_VLAN_TX |
|
NETIF_F_HW_VLAN_RX |
|
NETIF_F_HW_VLAN_FILTER;
|
if ((adapter->hw.mac.type == e1000_ich8lan) ||
|
(adapter->hw.mac.type == e1000_ich9lan))
|
netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
|
#else
|
netdev->features = NETIF_F_SG | NETIF_F_HW_CSUM;
|
#endif
|
}
|
|
#ifdef NETIF_F_TSO
|
if ((adapter->hw.mac.type >= e1000_82544) &&
|
(adapter->hw.mac.type != e1000_82547)) {
|
adapter->flags |= E1000_FLAG_HAS_TSO;
|
netdev->features |= NETIF_F_TSO;
|
}
|
|
#ifdef NETIF_F_TSO6
|
if (adapter->hw.mac.type > e1000_82547_rev_2) {
|
adapter->flags |= E1000_FLAG_HAS_TSO6;
|
netdev->features |= NETIF_F_TSO6;
|
}
|
#endif
|
#endif
|
if (pci_using_dac)
|
netdev->features |= NETIF_F_HIGHDMA;
|
|
#endif
|
#ifdef NETIF_F_LLTX
|
netdev->features |= NETIF_F_LLTX;
|
#endif
|
|
/* Hardware features, flags and workarounds */
|
if (adapter->hw.mac.type >= e1000_82571) {
|
adapter->flags |= E1000_FLAG_INT_ASSERT_AUTO_MASK;
|
adapter->flags |= E1000_FLAG_HAS_MSI;
|
adapter->flags |= E1000_FLAG_HAS_MANC2H;
|
}
|
|
if (adapter->hw.mac.type >= e1000_82540) {
|
adapter->flags |= E1000_FLAG_HAS_SMBUS;
|
adapter->flags |= E1000_FLAG_HAS_INTR_MODERATION;
|
}
|
|
if (adapter->hw.mac.type == e1000_82543)
|
adapter->flags |= E1000_FLAG_BAD_TX_CARRIER_STATS_FD;
|
|
/* In rare occasions, ESB2 systems would end up started without
|
* the RX unit being turned on. */
|
if (adapter->hw.mac.type == e1000_80003es2lan)
|
adapter->flags |= E1000_FLAG_RX_NEEDS_RESTART;
|
|
adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
|
|
/* before reading the NVM, reset the controller to
|
* put the device in a known good starting state */
|
|
e1000_reset_hw(&adapter->hw);
|
|
/* make sure we don't intercept ARP packets until we're up */
|
e1000_release_manageability(adapter);
|
|
/* make sure the NVM is good */
|
|
if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
|
DPRINTK(PROBE, ERR, "The NVM Checksum Is Not Valid\n");
|
err = -EIO;
|
goto err_eeprom;
|
}
|
|
/* copy the MAC address out of the NVM */
|
|
if (e1000_read_mac_addr(&adapter->hw))
|
DPRINTK(PROBE, ERR, "NVM Read Error\n");
|
memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
|
#ifdef ETHTOOL_GPERMADDR
|
memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
|
|
if (!is_valid_ether_addr(netdev->perm_addr)) {
|
#else
|
if (!is_valid_ether_addr(netdev->dev_addr)) {
|
#endif
|
DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
|
err = -EIO;
|
goto err_eeprom;
|
}
|
|
INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog_task);
|
INIT_DELAYED_WORK(&adapter->fifo_stall_task,
|
e1000_82547_tx_fifo_stall_task);
|
INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
|
INIT_WORK(&adapter->reset_task, e1000_reset_task);
|
|
e1000_check_options(adapter);
|
|
/* Initial Wake on LAN setting
|
* If APM wake is enabled in the EEPROM,
|
* enable the ACPI Magic Packet filter
|
*/
|
|
switch (adapter->hw.mac.type) {
|
case e1000_82542:
|
case e1000_82543:
|
break;
|
case e1000_82544:
|
e1000_read_nvm(&adapter->hw,
|
NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
|
eeprom_apme_mask = E1000_EEPROM_82544_APM;
|
break;
|
case e1000_ich8lan:
|
case e1000_ich9lan:
|
/* APME bit in EEPROM is mapped to WUC.APME */
|
eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
|
eeprom_apme_mask = E1000_WUC_APME;
|
break;
|
case e1000_82546:
|
case e1000_82546_rev_3:
|
case e1000_82571:
|
case e1000_80003es2lan:
|
if (adapter->hw.bus.func == 1) {
|
e1000_read_nvm(&adapter->hw,
|
NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
|
break;
|
}
|
fallthrough;
|
default:
|
e1000_read_nvm(&adapter->hw,
|
NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
|
break;
|
}
|
if (eeprom_data & eeprom_apme_mask)
|
adapter->eeprom_wol |= E1000_WUFC_MAG;
|
|
/* now that we have the eeprom settings, apply the special cases
|
* where the eeprom may be wrong or the board simply won't support
|
* wake on lan on a particular port */
|
switch (pdev->device) {
|
case E1000_DEV_ID_82546GB_PCIE:
|
case E1000_DEV_ID_82571EB_SERDES_QUAD:
|
adapter->eeprom_wol = 0;
|
break;
|
case E1000_DEV_ID_82546EB_FIBER:
|
case E1000_DEV_ID_82546GB_FIBER:
|
case E1000_DEV_ID_82571EB_FIBER:
|
/* Wake events only supported on port A for dual fiber
|
* regardless of eeprom setting */
|
if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
|
E1000_STATUS_FUNC_1)
|
adapter->eeprom_wol = 0;
|
break;
|
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
|
case E1000_DEV_ID_82571EB_QUAD_COPPER:
|
case E1000_DEV_ID_82571EB_QUAD_FIBER:
|
case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
|
case E1000_DEV_ID_82571PT_QUAD_COPPER:
|
/* if quad port adapter, disable WoL on all but port A */
|
if (global_quad_port_a != 0)
|
adapter->eeprom_wol = 0;
|
else
|
adapter->flags |= E1000_FLAG_QUAD_PORT_A;
|
/* Reset for multiple quad port adapters */
|
if (++global_quad_port_a == 4)
|
global_quad_port_a = 0;
|
break;
|
}
|
|
/* initialize the wol settings based on the eeprom settings */
|
adapter->wol = adapter->eeprom_wol;
|
|
/* print bus type/speed/width info */
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
|
((hw->bus.type == e1000_bus_type_pcix) ? "-X" :
|
(hw->bus.type == e1000_bus_type_pci_express ? " Express":"")),
|
((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
|
(hw->bus.speed == e1000_bus_speed_133) ? "133MHz" :
|
(hw->bus.speed == e1000_bus_speed_120) ? "120MHz" :
|
(hw->bus.speed == e1000_bus_speed_100) ? "100MHz" :
|
(hw->bus.speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
|
((hw->bus.width == e1000_bus_width_64) ? "64-bit" :
|
(hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
|
(hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
|
"32-bit"));
|
}
|
|
for (i = 0; i < 6; i++)
|
printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
|
|
/* reset the hardware with the new settings */
|
e1000_reset(adapter);
|
|
/* If the controller is 82573 or ICH and f/w is AMT, do not set
|
* DRV_LOAD until the interface is up. For all other cases,
|
* let the f/w know that the h/w is now under the control
|
* of the driver. */
|
if (((adapter->hw.mac.type != e1000_82573) &&
|
(adapter->hw.mac.type != e1000_ich8lan) &&
|
(adapter->hw.mac.type != e1000_ich9lan)) ||
|
!e1000_check_mng_mode(&adapter->hw))
|
e1000_get_hw_control(adapter);
|
|
/* tell the stack to leave us alone until e1000_open() is called */
|
rtnetif_carrier_off(netdev);
|
rtnetif_stop_queue(netdev);
|
|
strcpy(netdev->name, "rteth%d");
|
err = rt_register_rtnetdev(netdev);
|
if (err)
|
goto err_register;
|
|
DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
|
|
cards_found++;
|
return 0;
|
|
err_register:
|
err_hw_init:
|
e1000_release_hw_control(adapter);
|
err_eeprom:
|
if (!e1000_check_reset_block(&adapter->hw))
|
e1000_phy_hw_reset(&adapter->hw);
|
|
if (adapter->hw.flash_address)
|
iounmap(adapter->hw.flash_address);
|
|
e1000_remove_device(&adapter->hw);
|
err_flashmap:
|
kfree(adapter->tx_ring);
|
kfree(adapter->rx_ring);
|
err_sw_init:
|
iounmap(adapter->hw.hw_addr);
|
err_ioremap:
|
rtdev_free(netdev);
|
err_alloc_etherdev:
|
pci_release_regions(pdev);
|
err_pci_reg:
|
err_dma:
|
pci_disable_device(pdev);
|
return err;
|
}
|
|
/**
|
* e1000_remove - Device Removal Routine
|
* @pdev: PCI device information struct
|
*
|
* e1000_remove is called by the PCI subsystem to alert the driver
|
* that it should release a PCI device. The could be caused by a
|
* Hot-Plug event, or because the driver is going to be removed from
|
* memory.
|
**/
|
static void e1000_remove(struct pci_dev *pdev)
|
{
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
e1000_down_and_stop(adapter);
|
|
e1000_release_manageability(adapter);
|
|
/* Release control of h/w to f/w. If f/w is AMT enabled, this
|
* would have already happened in close and is redundant. */
|
e1000_release_hw_control(adapter);
|
|
rt_unregister_rtnetdev(netdev);
|
|
if (!e1000_check_reset_block(&adapter->hw))
|
e1000_phy_hw_reset(&adapter->hw);
|
|
e1000_remove_device(&adapter->hw);
|
|
kfree(adapter->tx_ring);
|
kfree(adapter->rx_ring);
|
|
iounmap(adapter->hw.hw_addr);
|
if (adapter->hw.flash_address)
|
iounmap(adapter->hw.flash_address);
|
pci_release_regions(pdev);
|
|
rtdev_free(netdev);
|
|
pci_disable_device(pdev);
|
}
|
|
/**
|
* e1000_sw_init - Initialize general software structures (struct e1000_adapter)
|
* @adapter: board private structure to initialize
|
*
|
* e1000_sw_init initializes the Adapter private data structure.
|
* Fields are initialized based on PCI device information and
|
* OS network device settings (MTU size).
|
**/
|
static int e1000_sw_init(struct e1000_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
struct net_device *netdev = adapter->netdev;
|
struct pci_dev *pdev = adapter->pdev;
|
#ifdef CONFIG_E1000_NAPI
|
int i;
|
#endif
|
|
/* PCI config space info */
|
|
hw->vendor_id = pdev->vendor;
|
hw->device_id = pdev->device;
|
hw->subsystem_vendor_id = pdev->subsystem_vendor;
|
hw->subsystem_device_id = pdev->subsystem_device;
|
|
pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
|
|
pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
|
|
adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
|
adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
|
adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETHERNET_FCS_SIZE;
|
adapter->min_frame_size = ETH_ZLEN + ETHERNET_FCS_SIZE;
|
|
/* Initialize the hardware-specific values */
|
if (e1000_setup_init_funcs(hw, FALSE)) {
|
DPRINTK(PROBE, ERR, "Hardware Initialization Failure\n");
|
return -EIO;
|
}
|
|
#ifdef CONFIG_E1000_MQ
|
/* Number of supported queues.
|
* TODO: It's assumed num_rx_queues >= num_tx_queues, since multi-rx
|
* queues are much more interesting. Is it worth coding for the
|
* possibility (however improbable) of num_tx_queues > num_rx_queues?
|
*/
|
switch (hw->mac.type) {
|
case e1000_82571:
|
case e1000_82572:
|
case e1000_82573:
|
case e1000_80003es2lan:
|
adapter->num_tx_queues = 2;
|
adapter->num_rx_queues = 2;
|
break;
|
case e1000_ich8lan:
|
case e1000_ich9lan:
|
if ((adapter->hw.device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
|
(adapter->hw.device_id == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
|
(adapter->hw.device_id == E1000_DEV_ID_ICH9_IGP_AMT)) {
|
adapter->num_tx_queues = 2;
|
adapter->num_rx_queues = 2;
|
break;
|
}
|
fallthrough; /* remaining ICH SKUs do not support MQ */
|
default:
|
/* All hardware before 82571 only have 1 queue each for Rx/Tx.
|
* However, the 82571 family does not have MSI-X, so multi-
|
* queue isn't enabled.
|
* It'd be wise not to mess with this default case. :) */
|
adapter->num_tx_queues = 1;
|
adapter->num_rx_queues = 1;
|
netdev->egress_subqueue_count = 0;
|
break;
|
}
|
adapter->num_rx_queues = min(adapter->num_rx_queues, num_online_cpus());
|
adapter->num_tx_queues = min(adapter->num_tx_queues, num_online_cpus());
|
|
if ((adapter->num_tx_queues > 1) || (adapter->num_rx_queues > 1)) {
|
netdev->egress_subqueue = (struct net_device_subqueue *)
|
((void *)adapter +
|
sizeof(struct e1000_adapter));
|
netdev->egress_subqueue_count = adapter->num_tx_queues;
|
DPRINTK(DRV, INFO, "Multiqueue Enabled: RX queues = %u, "
|
"TX queues = %u\n", adapter->num_rx_queues,
|
adapter->num_tx_queues);
|
}
|
#else
|
adapter->num_tx_queues = 1;
|
adapter->num_rx_queues = 1;
|
#endif
|
|
if (e1000_alloc_queues(adapter)) {
|
DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
|
return -ENOMEM;
|
}
|
|
#ifdef CONFIG_E1000_NAPI
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
struct e1000_rx_ring *rx_ring = &adapter->rx_ring[i];
|
netif_napi_add(adapter->netdev, &rx_ring->napi, e1000_poll, 64);
|
}
|
rtdm_lock_init(&adapter->tx_queue_lock);
|
#ifdef CONFIG_E1000_MQ
|
for (i = 0; i < adapter->num_tx_queues; i++)
|
rtdm_lock_init(&adapter->tx_ring[i].tx_queue_lock);
|
#endif
|
#endif
|
|
/* Explicitly disable IRQ since the NIC can be in any state. */
|
atomic_set(&adapter->irq_sem, 0);
|
e1000_irq_disable(adapter);
|
|
rtdm_lock_init(&adapter->stats_lock);
|
|
set_bit(__E1000_DOWN, &adapter->state);
|
return 0;
|
}
|
|
/**
|
* e1000_alloc_queues - Allocate memory for all rings
|
* @adapter: board private structure to initialize
|
**/
|
static int e1000_alloc_queues(struct e1000_adapter *adapter)
|
{
|
adapter->tx_ring = kcalloc(adapter->num_tx_queues,
|
sizeof(struct e1000_tx_ring), GFP_KERNEL);
|
if (!adapter->tx_ring)
|
return -ENOMEM;
|
|
adapter->rx_ring = kcalloc(adapter->num_rx_queues,
|
sizeof(struct e1000_rx_ring), GFP_KERNEL);
|
if (!adapter->rx_ring) {
|
kfree(adapter->tx_ring);
|
return -ENOMEM;
|
}
|
|
#ifdef CONFIG_E1000_MQ
|
adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
|
#endif
|
|
return E1000_SUCCESS;
|
}
|
|
#ifdef CONFIG_E1000_MQ
|
static void e1000_setup_queue_mapping(struct e1000_adapter *adapter)
|
{
|
int i, cpu;
|
|
lock_cpu_hotplug();
|
i = 0;
|
for_each_online_cpu(cpu) {
|
*per_cpu_ptr(adapter->cpu_tx_ring, cpu) =
|
&adapter->tx_ring[i % adapter->num_tx_queues];
|
i++;
|
}
|
unlock_cpu_hotplug();
|
}
|
#endif
|
|
/**
|
* e1000_intr_msi_test - Interrupt Handler
|
* @irq: interrupt number
|
* @data: pointer to a network interface device structure
|
**/
|
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
|
{
|
struct net_device *netdev = data;
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
u32 icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
|
DPRINTK(HW,INFO, "icr is %08X\n", icr);
|
if (icr & E1000_ICR_RXSEQ) {
|
adapter->flags |= E1000_FLAG_HAS_MSI;
|
wmb();
|
}
|
|
return IRQ_HANDLED;
|
}
|
|
/**
|
* e1000_test_msi_interrupt - Returns 0 for successful test
|
* @adapter: board private struct
|
*
|
* code flow taken from tg3.c
|
**/
|
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
|
{
|
struct net_device *netdev = adapter->netdev;
|
int err;
|
|
/* poll_enable hasn't been called yet, so don't need disable */
|
/* clear any pending events */
|
E1000_READ_REG(&adapter->hw, E1000_ICR);
|
|
/* free the real vector and request a test handler */
|
e1000_free_irq(adapter);
|
|
err = pci_enable_msi(adapter->pdev);
|
err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
|
netdev->name, netdev);
|
if (err) {
|
pci_disable_msi(adapter->pdev);
|
goto msi_test_failed;
|
}
|
|
/* our temporary test variable */
|
adapter->flags &= ~E1000_FLAG_HAS_MSI;
|
wmb();
|
|
e1000_irq_enable(adapter);
|
|
/* fire an unusual interrupt on the test handler */
|
E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_RXSEQ);
|
E1000_WRITE_FLUSH(&adapter->hw);
|
msleep(50);
|
|
e1000_irq_disable(adapter);
|
|
rmb();
|
if (!(adapter->flags & E1000_FLAG_HAS_MSI)) {
|
adapter->flags |= E1000_FLAG_HAS_MSI;
|
err = -EIO;
|
DPRINTK(HW, INFO, "MSI interrupt test failed!\n");
|
}
|
|
free_irq(adapter->pdev->irq, netdev);
|
pci_disable_msi(adapter->pdev);
|
|
if (err == -EIO)
|
goto msi_test_failed;
|
|
/* okay so the test worked, restore settings */
|
DPRINTK(HW, INFO, "MSI interrupt test succeeded!\n");
|
msi_test_failed:
|
/* restore the original vector, even if it failed */
|
e1000_request_irq(adapter);
|
return err;
|
}
|
|
/**
|
* e1000_test_msi - Returns 0 if MSI test succeeds and INTx mode is restored
|
* @adapter: board private struct
|
*
|
* code flow taken from tg3.c, called with e1000 interrupts disabled.
|
**/
|
static int e1000_test_msi(struct e1000_adapter *adapter)
|
{
|
int err;
|
u16 pci_cmd;
|
|
if (!(adapter->flags & E1000_FLAG_MSI_ENABLED) ||
|
!(adapter->flags & E1000_FLAG_HAS_MSI))
|
return 0;
|
|
/* disable SERR in case the MSI write causes a master abort */
|
pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
|
pci_write_config_word(adapter->pdev, PCI_COMMAND,
|
pci_cmd & ~PCI_COMMAND_SERR);
|
|
err = e1000_test_msi_interrupt(adapter);
|
|
/* restore previous setting of command word */
|
pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
|
|
/* success ! */
|
if (!err)
|
return 0;
|
|
/* EIO means MSI test failed */
|
if (err != -EIO)
|
return err;
|
|
/* back to INTx mode */
|
DPRINTK(PROBE, WARNING, "MSI interrupt test failed, using legacy "
|
"interrupt.\n");
|
|
e1000_free_irq(adapter);
|
adapter->flags &= ~E1000_FLAG_HAS_MSI;
|
|
err = e1000_request_irq(adapter);
|
|
return err;
|
}
|
|
/**
|
* e1000_open - Called when a network interface is made active
|
* @netdev: network interface device structure
|
*
|
* Returns 0 on success, negative value on failure
|
*
|
* The open entry point is called when a network interface is made
|
* active by the system (IFF_UP). At this point all resources needed
|
* for transmit and receive operations are allocated, the interrupt
|
* handler is registered with the OS, the watchdog timer is started,
|
* and the stack is notified that the interface is ready.
|
**/
|
static int e1000_open(struct net_device *netdev)
|
{
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
int err;
|
/* disallow open during test */
|
if (test_bit(__E1000_TESTING, &adapter->state))
|
return -EBUSY;
|
|
/* allocate transmit descriptors */
|
err = e1000_setup_all_tx_resources(adapter);
|
if (err)
|
goto err_setup_tx;
|
|
/* allocate receive descriptors */
|
err = e1000_setup_all_rx_resources(adapter);
|
if (err)
|
goto err_setup_rx;
|
|
if (adapter->hw.phy.media_type == e1000_media_type_copper) {
|
e1000_power_up_phy(&adapter->hw);
|
e1000_setup_link(&adapter->hw);
|
}
|
|
#ifdef NETIF_F_HW_VLAN_TX
|
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
|
if ((adapter->hw.mng_cookie.status &
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) {
|
e1000_update_mng_vlan(adapter);
|
}
|
#endif
|
|
/* For 82573 and ICHx if AMT is enabled, let the firmware know
|
* that the network interface is now open */
|
if (((adapter->hw.mac.type == e1000_82573) ||
|
(adapter->hw.mac.type == e1000_ich8lan) ||
|
(adapter->hw.mac.type == e1000_ich9lan)) &&
|
e1000_check_mng_mode(&adapter->hw))
|
e1000_get_hw_control(adapter);
|
|
/* before we allocate an interrupt, we must be ready to handle it.
|
* Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
|
* as soon as we call pci_request_irq, so we have to setup our
|
* clean_rx handler before we do so. */
|
e1000_configure(adapter);
|
|
|
err = e1000_request_irq(adapter);
|
if (err)
|
goto err_req_irq;
|
|
/* work around PCIe errata with MSI interrupts causing some chipsets to
|
* ignore e1000 MSI messages, which means we need to test our MSI
|
* interrupt now */
|
err = e1000_test_msi(adapter);
|
if (err) {
|
DPRINTK(PROBE, ERR, "Interrupt allocation failed\n");
|
goto err_req_irq;
|
}
|
|
/* From here on the code is the same as e1000_up() */
|
clear_bit(__E1000_DOWN, &adapter->state);
|
|
e1000_napi_enable_all(adapter);
|
|
schedule_delayed_work(&adapter->watchdog_task, 1);
|
e1000_irq_enable(adapter);
|
|
/* fire a link status change interrupt to start the watchdog */
|
E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
|
|
return E1000_SUCCESS;
|
|
err_req_irq:
|
e1000_release_hw_control(adapter);
|
/* Power down the PHY so no link is implied when interface is down *
|
* The PHY cannot be powered down if any of the following is TRUE *
|
* (a) WoL is enabled
|
* (b) AMT is active
|
* (c) SoL/IDER session is active */
|
if (!adapter->wol && adapter->hw.mac.type >= e1000_82540 &&
|
adapter->hw.phy.media_type == e1000_media_type_copper)
|
e1000_power_down_phy(&adapter->hw);
|
e1000_free_all_rx_resources(adapter);
|
err_setup_rx:
|
e1000_free_all_tx_resources(adapter);
|
err_setup_tx:
|
e1000_reset(adapter);
|
|
return err;
|
}
|
|
/**
|
* e1000_close - Disables a network interface
|
* @netdev: network interface device structure
|
*
|
* Returns 0, this is not allowed to fail
|
*
|
* The close entry point is called when an interface is de-activated
|
* by the OS. The hardware is still under the drivers control, but
|
* needs to be disabled. A global MAC reset is issued to stop the
|
* hardware, and all transmit and receive resources are freed.
|
**/
|
static int e1000_close(struct net_device *netdev)
|
{
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
|
e1000_down(adapter);
|
/* Power down the PHY so no link is implied when interface is down *
|
* The PHY cannot be powered down if any of the following is TRUE *
|
* (a) WoL is enabled
|
* (b) AMT is active
|
* (c) SoL/IDER session is active */
|
if (!adapter->wol && adapter->hw.mac.type >= e1000_82540 &&
|
adapter->hw.phy.media_type == e1000_media_type_copper)
|
e1000_power_down_phy(&adapter->hw);
|
e1000_free_irq(adapter);
|
|
e1000_free_all_tx_resources(adapter);
|
e1000_free_all_rx_resources(adapter);
|
|
#ifdef NETIF_F_HW_VLAN_TX
|
/* kill manageability vlan ID if supported, but not if a vlan with
|
* the same ID is registered on the host OS (let 8021q kill it) */
|
if ((adapter->hw.mng_cookie.status &
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
|
!(adapter->vlgrp &&
|
vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
|
e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
|
}
|
#endif
|
|
/* For 82573 and ICHx if AMT is enabled, let the firmware know
|
* that the network interface is now closed */
|
if (((adapter->hw.mac.type == e1000_82573) ||
|
(adapter->hw.mac.type == e1000_ich8lan) ||
|
(adapter->hw.mac.type == e1000_ich9lan)) &&
|
e1000_check_mng_mode(&adapter->hw))
|
e1000_release_hw_control(adapter);
|
|
return 0;
|
}
|
|
/**
|
* e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
|
* @adapter: address of board private structure
|
* @start: address of beginning of memory
|
* @len: length of memory
|
**/
|
static bool e1000_check_64k_bound(struct e1000_adapter *adapter,
|
void *start, unsigned long len)
|
{
|
unsigned long begin = (unsigned long) start;
|
unsigned long end = begin + len;
|
|
/* First rev 82545 and 82546 need to not allow any memory
|
* write location to cross 64k boundary due to errata 23 */
|
if (adapter->hw.mac.type == e1000_82545 ||
|
adapter->hw.mac.type == e1000_82546) {
|
return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
|
}
|
|
return TRUE;
|
}
|
|
/**
|
* e1000_setup_tx_resources - allocate Tx resources (Descriptors)
|
* @adapter: board private structure
|
* @tx_ring: tx descriptor ring (for a specific queue) to setup
|
*
|
* Return 0 on success, negative on failure
|
**/
|
static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *tx_ring)
|
{
|
struct pci_dev *pdev = adapter->pdev;
|
int size;
|
|
size = sizeof(struct e1000_buffer) * tx_ring->count;
|
tx_ring->buffer_info = vmalloc(size);
|
if (!tx_ring->buffer_info) {
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate memory for the transmit descriptor ring\n");
|
return -ENOMEM;
|
}
|
memset(tx_ring->buffer_info, 0, size);
|
|
/* round up to nearest 4K */
|
|
tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
|
tx_ring->size = ALIGN(tx_ring->size, 4096);
|
|
tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
|
&tx_ring->dma, GFP_ATOMIC);
|
if (!tx_ring->desc) {
|
setup_tx_desc_die:
|
vfree(tx_ring->buffer_info);
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate memory for the transmit descriptor ring\n");
|
return -ENOMEM;
|
}
|
|
/* Fix for errata 23, can't cross 64kB boundary */
|
if (!e1000_check_64k_bound(adapter, tx_ring->desc, tx_ring->size)) {
|
void *olddesc = tx_ring->desc;
|
dma_addr_t olddma = tx_ring->dma;
|
DPRINTK(TX_ERR, ERR, "tx_ring align check failed: %u bytes "
|
"at %p\n", tx_ring->size, tx_ring->desc);
|
/* Try again, without freeing the previous */
|
tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
|
&tx_ring->dma, GFP_ATOMIC);
|
/* Failed allocation, critical failure */
|
if (!tx_ring->desc) {
|
dma_free_coherent(&pdev->dev, tx_ring->size, olddesc,
|
olddma);
|
goto setup_tx_desc_die;
|
}
|
|
if (!e1000_check_64k_bound(adapter, tx_ring->desc,
|
tx_ring->size)) {
|
/* give up */
|
dma_free_coherent(&pdev->dev, tx_ring->size,
|
tx_ring->desc, tx_ring->dma);
|
dma_free_coherent(&pdev->dev, tx_ring->size, olddesc,
|
olddma);
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate aligned memory "
|
"for the transmit descriptor ring\n");
|
vfree(tx_ring->buffer_info);
|
return -ENOMEM;
|
} else {
|
/* Free old allocation, new allocation was successful */
|
dma_free_coherent(&pdev->dev, tx_ring->size, olddesc,
|
olddma);
|
}
|
}
|
memset(tx_ring->desc, 0, tx_ring->size);
|
|
tx_ring->next_to_use = 0;
|
tx_ring->next_to_clean = 0;
|
rtdm_lock_init(&tx_ring->tx_lock);
|
|
return 0;
|
}
|
|
/**
|
* e1000_setup_all_tx_resources - wrapper to allocate Tx resources
|
* @adapter: board private structure
|
*
|
* this allocates tx resources for all queues, return 0 on success, negative
|
* on failure
|
**/
|
int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
|
{
|
int i, err = 0;
|
|
for (i = 0; i < adapter->num_tx_queues; i++) {
|
err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
|
if (err) {
|
DPRINTK(PROBE, ERR,
|
"Allocation for Tx Queue %u failed\n", i);
|
for (i-- ; i >= 0; i--)
|
e1000_free_tx_resources(adapter,
|
&adapter->tx_ring[i]);
|
break;
|
}
|
}
|
|
return err;
|
}
|
|
/**
|
* e1000_configure_tx - Configure 8254x Transmit Unit after Reset
|
* @adapter: board private structure
|
*
|
* Configure the Tx unit of the MAC after a reset.
|
**/
|
static void e1000_configure_tx(struct e1000_adapter *adapter)
|
{
|
u64 tdba;
|
struct e1000_hw *hw = &adapter->hw;
|
u32 tdlen, tctl, tipg, tarc;
|
u32 ipgr1, ipgr2;
|
int i;
|
|
/* Setup the HW Tx Head and Tail descriptor pointers */
|
for (i = 0; i < adapter->num_tx_queues; i++) {
|
tdba = adapter->tx_ring[i].dma;
|
tdlen = adapter->tx_ring[i].count * sizeof(struct e1000_tx_desc);
|
E1000_WRITE_REG(hw, E1000_TDBAL(i), (tdba & 0x00000000ffffffffULL));
|
E1000_WRITE_REG(hw, E1000_TDBAH(i), (tdba >> 32));
|
E1000_WRITE_REG(hw, E1000_TDLEN(i), tdlen);
|
E1000_WRITE_REG(hw, E1000_TDH(i), 0);
|
E1000_WRITE_REG(hw, E1000_TDT(i), 0);
|
adapter->tx_ring[i].tdh = E1000_REGISTER(hw, E1000_TDH(i));
|
adapter->tx_ring[i].tdt = E1000_REGISTER(hw, E1000_TDT(i));
|
}
|
|
|
/* Set the default values for the Tx Inter Packet Gap timer */
|
if (adapter->hw.mac.type <= e1000_82547_rev_2 &&
|
(hw->phy.media_type == e1000_media_type_fiber ||
|
hw->phy.media_type == e1000_media_type_internal_serdes))
|
tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
|
else
|
tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
|
|
switch (hw->mac.type) {
|
case e1000_82542:
|
tipg = DEFAULT_82542_TIPG_IPGT;
|
ipgr1 = DEFAULT_82542_TIPG_IPGR1;
|
ipgr2 = DEFAULT_82542_TIPG_IPGR2;
|
break;
|
case e1000_80003es2lan:
|
ipgr1 = DEFAULT_82543_TIPG_IPGR1;
|
ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
|
break;
|
default:
|
ipgr1 = DEFAULT_82543_TIPG_IPGR1;
|
ipgr2 = DEFAULT_82543_TIPG_IPGR2;
|
break;
|
}
|
tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
|
tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
|
E1000_WRITE_REG(hw, E1000_TIPG, tipg);
|
|
/* Set the Tx Interrupt Delay register */
|
|
E1000_WRITE_REG(hw, E1000_TIDV, adapter->tx_int_delay);
|
if (adapter->flags & E1000_FLAG_HAS_INTR_MODERATION)
|
E1000_WRITE_REG(hw, E1000_TADV, adapter->tx_abs_int_delay);
|
|
/* Program the Transmit Control Register */
|
|
tctl = E1000_READ_REG(hw, E1000_TCTL);
|
tctl &= ~E1000_TCTL_CT;
|
tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
|
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
|
|
if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
|
tarc = E1000_READ_REG(hw, E1000_TARC(0));
|
/* set the speed mode bit, we'll clear it if we're not at
|
* gigabit link later */
|
#define SPEED_MODE_BIT (1 << 21)
|
tarc |= SPEED_MODE_BIT;
|
E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
|
} else if (hw->mac.type == e1000_80003es2lan) {
|
tarc = E1000_READ_REG(hw, E1000_TARC(0));
|
tarc |= 1;
|
E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
|
tarc = E1000_READ_REG(hw, E1000_TARC(1));
|
tarc |= 1;
|
E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
|
}
|
|
e1000_config_collision_dist(hw);
|
|
/* Setup Transmit Descriptor Settings for eop descriptor */
|
adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
|
|
/* only set IDE if we are delaying interrupts using the timers */
|
if (adapter->tx_int_delay)
|
adapter->txd_cmd |= E1000_TXD_CMD_IDE;
|
|
if (hw->mac.type < e1000_82543)
|
adapter->txd_cmd |= E1000_TXD_CMD_RPS;
|
else
|
adapter->txd_cmd |= E1000_TXD_CMD_RS;
|
|
/* Cache if we're 82544 running in PCI-X because we'll
|
* need this to apply a workaround later in the send path. */
|
if (hw->mac.type == e1000_82544 &&
|
hw->bus.type == e1000_bus_type_pcix)
|
adapter->pcix_82544 = 1;
|
|
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
|
|
}
|
|
/**
|
* e1000_setup_rx_resources - allocate Rx resources (Descriptors)
|
* @adapter: board private structure
|
* @rx_ring: rx descriptor ring (for a specific queue) to setup
|
*
|
* Returns 0 on success, negative on failure
|
**/
|
static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring)
|
{
|
struct pci_dev *pdev = adapter->pdev;
|
int size, desc_len;
|
|
size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
|
rx_ring->buffer_info = vmalloc(size);
|
if (!rx_ring->buffer_info) {
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate memory for the receive descriptor ring\n");
|
return -ENOMEM;
|
}
|
memset(rx_ring->buffer_info, 0, size);
|
|
rx_ring->ps_page = kcalloc(rx_ring->count, sizeof(struct e1000_ps_page),
|
GFP_KERNEL);
|
if (!rx_ring->ps_page) {
|
vfree(rx_ring->buffer_info);
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate memory for the receive descriptor ring\n");
|
return -ENOMEM;
|
}
|
|
rx_ring->ps_page_dma = kcalloc(rx_ring->count,
|
sizeof(struct e1000_ps_page_dma),
|
GFP_KERNEL);
|
if (!rx_ring->ps_page_dma) {
|
vfree(rx_ring->buffer_info);
|
kfree(rx_ring->ps_page);
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate memory for the receive descriptor ring\n");
|
return -ENOMEM;
|
}
|
|
if (adapter->hw.mac.type <= e1000_82547_rev_2)
|
desc_len = sizeof(struct e1000_rx_desc);
|
else
|
desc_len = sizeof(union e1000_rx_desc_packet_split);
|
|
/* Round up to nearest 4K */
|
|
rx_ring->size = rx_ring->count * desc_len;
|
rx_ring->size = ALIGN(rx_ring->size, 4096);
|
|
rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
|
&rx_ring->dma, GFP_ATOMIC);
|
|
if (!rx_ring->desc) {
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate memory for the receive descriptor ring\n");
|
setup_rx_desc_die:
|
vfree(rx_ring->buffer_info);
|
kfree(rx_ring->ps_page);
|
kfree(rx_ring->ps_page_dma);
|
return -ENOMEM;
|
}
|
|
/* Fix for errata 23, can't cross 64kB boundary */
|
if (!e1000_check_64k_bound(adapter, rx_ring->desc, rx_ring->size)) {
|
void *olddesc = rx_ring->desc;
|
dma_addr_t olddma = rx_ring->dma;
|
DPRINTK(RX_ERR, ERR, "rx_ring align check failed: %u bytes "
|
"at %p\n", rx_ring->size, rx_ring->desc);
|
/* Try again, without freeing the previous */
|
rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
|
&rx_ring->dma, GFP_ATOMIC);
|
/* Failed allocation, critical failure */
|
if (!rx_ring->desc) {
|
dma_free_coherent(&pdev->dev, rx_ring->size, olddesc,
|
olddma);
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate memory "
|
"for the receive descriptor ring\n");
|
goto setup_rx_desc_die;
|
}
|
|
if (!e1000_check_64k_bound(adapter, rx_ring->desc,
|
rx_ring->size)) {
|
/* give up */
|
dma_free_coherent(&pdev->dev, rx_ring->size,
|
rx_ring->desc, rx_ring->dma);
|
dma_free_coherent(&pdev->dev, rx_ring->size, olddesc,
|
olddma);
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate aligned memory "
|
"for the receive descriptor ring\n");
|
goto setup_rx_desc_die;
|
} else {
|
/* Free old allocation, new allocation was successful */
|
dma_free_coherent(&pdev->dev, rx_ring->size, olddesc,
|
olddma);
|
}
|
}
|
memset(rx_ring->desc, 0, rx_ring->size);
|
|
/* set up ring defaults */
|
rx_ring->next_to_clean = 0;
|
rx_ring->next_to_use = 0;
|
rx_ring->rx_skb_top = NULL;
|
rx_ring->adapter = adapter;
|
|
return 0;
|
}
|
|
/**
|
* e1000_setup_all_rx_resources - wrapper to allocate Rx resources
|
* @adapter: board private structure
|
*
|
* this allocates rx resources for all queues, return 0 on success, negative
|
* on failure
|
**/
|
int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
|
{
|
int i, err = 0;
|
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
|
if (err) {
|
DPRINTK(PROBE, ERR,
|
"Allocation for Rx Queue %u failed\n", i);
|
for (i-- ; i >= 0; i--)
|
e1000_free_rx_resources(adapter,
|
&adapter->rx_ring[i]);
|
break;
|
}
|
}
|
|
return err;
|
}
|
|
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
|
(((S) & (PAGE_SIZE - 1)) ? 1 : 0))
|
/**
|
* e1000_setup_rctl - configure the receive control registers
|
* @adapter: Board private structure
|
**/
|
static void e1000_setup_rctl(struct e1000_adapter *adapter)
|
{
|
u32 rctl, rfctl;
|
u32 psrctl = 0;
|
#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
|
u32 pages = 0;
|
#endif
|
|
rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
|
|
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
|
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
|
(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
|
|
/* disable the stripping of CRC because it breaks
|
* BMC firmware connected over SMBUS
|
if (adapter->hw.mac.type > e1000_82543)
|
rctl |= E1000_RCTL_SECRC;
|
*/
|
|
if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
|
rctl |= E1000_RCTL_SBP;
|
else
|
rctl &= ~E1000_RCTL_SBP;
|
|
if (adapter->netdev->mtu <= ETH_DATA_LEN)
|
rctl &= ~E1000_RCTL_LPE;
|
else
|
rctl |= E1000_RCTL_LPE;
|
|
/* Setup buffer sizes */
|
rctl &= ~E1000_RCTL_SZ_4096;
|
rctl |= E1000_RCTL_BSEX;
|
switch (adapter->rx_buffer_len) {
|
case E1000_RXBUFFER_256:
|
rctl |= E1000_RCTL_SZ_256;
|
rctl &= ~E1000_RCTL_BSEX;
|
break;
|
case E1000_RXBUFFER_512:
|
rctl |= E1000_RCTL_SZ_512;
|
rctl &= ~E1000_RCTL_BSEX;
|
break;
|
case E1000_RXBUFFER_1024:
|
rctl |= E1000_RCTL_SZ_1024;
|
rctl &= ~E1000_RCTL_BSEX;
|
break;
|
case E1000_RXBUFFER_2048:
|
default:
|
rctl |= E1000_RCTL_SZ_2048;
|
rctl &= ~E1000_RCTL_BSEX;
|
break;
|
case E1000_RXBUFFER_4096:
|
rctl |= E1000_RCTL_SZ_4096;
|
break;
|
case E1000_RXBUFFER_8192:
|
rctl |= E1000_RCTL_SZ_8192;
|
break;
|
case E1000_RXBUFFER_16384:
|
rctl |= E1000_RCTL_SZ_16384;
|
break;
|
}
|
|
#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
|
/* 82571 and greater support packet-split where the protocol
|
* header is placed in skb->data and the packet data is
|
* placed in pages hanging off of skb_shinfo(skb)->nr_frags.
|
* In the case of a non-split, skb->data is linearly filled,
|
* followed by the page buffers. Therefore, skb->data is
|
* sized to hold the largest protocol header.
|
*/
|
/* allocations using alloc_page take too long for regular MTU
|
* so only enable packet split for jumbo frames */
|
pages = PAGE_USE_COUNT(adapter->netdev->mtu);
|
if ((adapter->hw.mac.type >= e1000_82571) && (pages <= 3) &&
|
PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
|
adapter->rx_ps_pages = pages;
|
else
|
adapter->rx_ps_pages = 0;
|
#endif
|
|
if (adapter->rx_ps_pages) {
|
/* Configure extra packet-split registers */
|
rfctl = E1000_READ_REG(&adapter->hw, E1000_RFCTL);
|
rfctl |= E1000_RFCTL_EXTEN;
|
/* disable packet split support for IPv6 extension headers,
|
* because some malformed IPv6 headers can hang the RX */
|
rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
|
E1000_RFCTL_NEW_IPV6_EXT_DIS);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RFCTL, rfctl);
|
|
/* disable the stripping of CRC because it breaks
|
* BMC firmware connected over SMBUS */
|
rctl |= E1000_RCTL_DTYP_PS /* | E1000_RCTL_SECRC */;
|
|
psrctl |= adapter->rx_ps_bsize0 >>
|
E1000_PSRCTL_BSIZE0_SHIFT;
|
|
switch (adapter->rx_ps_pages) {
|
case 3:
|
psrctl |= PAGE_SIZE <<
|
E1000_PSRCTL_BSIZE3_SHIFT;
|
fallthrough;
|
case 2:
|
psrctl |= PAGE_SIZE <<
|
E1000_PSRCTL_BSIZE2_SHIFT;
|
fallthrough;
|
case 1:
|
psrctl |= PAGE_SIZE >>
|
E1000_PSRCTL_BSIZE1_SHIFT;
|
break;
|
}
|
|
E1000_WRITE_REG(&adapter->hw, E1000_PSRCTL, psrctl);
|
}
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
|
adapter->flags &= ~E1000_FLAG_RX_RESTART_NOW;
|
}
|
|
/**
|
* e1000_configure_rx - Configure 8254x Receive Unit after Reset
|
* @adapter: board private structure
|
*
|
* Configure the Rx unit of the MAC after a reset.
|
**/
|
static void e1000_configure_rx(struct e1000_adapter *adapter)
|
{
|
u64 rdba;
|
struct e1000_hw *hw = &adapter->hw;
|
u32 rdlen, rctl, rxcsum, ctrl_ext;
|
int i;
|
|
if (adapter->rx_ps_pages) {
|
/* this is a 32 byte descriptor */
|
rdlen = adapter->rx_ring[0].count *
|
sizeof(union e1000_rx_desc_packet_split);
|
adapter->clean_rx = e1000_clean_rx_irq_ps;
|
adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
|
#ifdef CONFIG_E1000_NAPI
|
} else if (adapter->netdev->mtu > MAXIMUM_ETHERNET_VLAN_SIZE) {
|
rdlen = adapter->rx_ring[0].count *
|
sizeof(struct e1000_rx_desc);
|
adapter->clean_rx = e1000_clean_jumbo_rx_irq;
|
adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
|
#endif
|
} else {
|
rdlen = adapter->rx_ring[0].count *
|
sizeof(struct e1000_rx_desc);
|
adapter->clean_rx = e1000_clean_rx_irq;
|
adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
|
}
|
|
/* disable receives while setting up the descriptors */
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
|
E1000_WRITE_FLUSH(hw);
|
mdelay(10);
|
|
/* set the Receive Delay Timer Register */
|
E1000_WRITE_REG(hw, E1000_RDTR, adapter->rx_int_delay);
|
|
if (adapter->flags & E1000_FLAG_HAS_INTR_MODERATION) {
|
E1000_WRITE_REG(hw, E1000_RADV, adapter->rx_abs_int_delay);
|
if (adapter->itr_setting != 0)
|
E1000_WRITE_REG(hw, E1000_ITR,
|
1000000000 / (adapter->itr * 256));
|
}
|
|
if (hw->mac.type >= e1000_82571) {
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
/* Reset delay timers after every interrupt */
|
ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
|
#ifdef CONFIG_E1000_NAPI
|
/* Auto-Mask interrupts upon ICR access */
|
ctrl_ext |= E1000_CTRL_EXT_IAME;
|
E1000_WRITE_REG(hw, E1000_IAM, 0xffffffff);
|
#endif
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
|
E1000_WRITE_FLUSH(hw);
|
}
|
|
/* Setup the HW Rx Head and Tail Descriptor Pointers and
|
* the Base and Length of the Rx Descriptor Ring */
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
rdba = adapter->rx_ring[i].dma;
|
E1000_WRITE_REG(hw, E1000_RDBAL(i), (rdba & 0x00000000ffffffffULL));
|
E1000_WRITE_REG(hw, E1000_RDBAH(i), (rdba >> 32));
|
E1000_WRITE_REG(hw, E1000_RDLEN(i), rdlen);
|
E1000_WRITE_REG(hw, E1000_RDH(i), 0);
|
E1000_WRITE_REG(hw, E1000_RDT(i), 0);
|
adapter->rx_ring[i].rdh = E1000_REGISTER(hw, E1000_RDH(i));
|
adapter->rx_ring[i].rdt = E1000_REGISTER(hw, E1000_RDT(i));
|
}
|
|
#ifdef CONFIG_E1000_MQ
|
if (adapter->num_rx_queues > 1) {
|
u32 random[10];
|
u32 reta, mrqc;
|
int i;
|
|
get_random_bytes(&random[0], 40);
|
|
switch (adapter->num_rx_queues) {
|
default:
|
reta = 0x00800080;
|
mrqc = E1000_MRQC_ENABLE_RSS_2Q;
|
break;
|
}
|
|
/* Fill out redirection table */
|
for (i = 0; i < 32; i++)
|
E1000_WRITE_REG_ARRAY(hw, E1000_RETA, i, reta);
|
/* Fill out hash function seeds */
|
for (i = 0; i < 10; i++)
|
E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK, i, random[i]);
|
|
mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
|
E1000_MRQC_RSS_FIELD_IPV4_TCP);
|
|
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
|
|
/* Multiqueue and packet checksumming are mutually exclusive. */
|
rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
|
rxcsum |= E1000_RXCSUM_PCSD;
|
E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
|
} else if (hw->mac.type >= e1000_82543) {
|
#else
|
if (hw->mac.type >= e1000_82543) {
|
#endif /* CONFIG_E1000_MQ */
|
/* Enable 82543 Receive Checksum Offload for TCP and UDP */
|
rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
|
if (adapter->rx_csum == TRUE) {
|
rxcsum |= E1000_RXCSUM_TUOFL;
|
|
/* Enable 82571 IPv4 payload checksum for UDP fragments
|
* Must be used in conjunction with packet-split. */
|
if ((hw->mac.type >= e1000_82571) &&
|
(adapter->rx_ps_pages)) {
|
rxcsum |= E1000_RXCSUM_IPPCSE;
|
}
|
} else {
|
rxcsum &= ~E1000_RXCSUM_TUOFL;
|
/* don't need to clear IPPCSE as it defaults to 0 */
|
}
|
E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
|
}
|
|
/* Enable early receives on supported devices, only takes effect when
|
* packet size is equal or larger than the specified value (in 8 byte
|
* units), e.g. using jumbo frames when setting to E1000_ERT_2048 */
|
if ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_ich9lan) &&
|
(adapter->netdev->mtu > ETH_DATA_LEN))
|
E1000_WRITE_REG(hw, E1000_ERT, E1000_ERT_2048);
|
|
/* Enable Receives */
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
}
|
|
/**
|
* e1000_free_tx_resources - Free Tx Resources per Queue
|
* @adapter: board private structure
|
* @tx_ring: Tx descriptor ring for a specific queue
|
*
|
* Free all transmit software resources
|
**/
|
static void e1000_free_tx_resources(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *tx_ring)
|
{
|
struct pci_dev *pdev = adapter->pdev;
|
|
e1000_clean_tx_ring(adapter, tx_ring);
|
|
vfree(tx_ring->buffer_info);
|
tx_ring->buffer_info = NULL;
|
|
dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
|
tx_ring->dma);
|
|
tx_ring->desc = NULL;
|
}
|
|
/**
|
* e1000_free_all_tx_resources - Free Tx Resources for All Queues
|
* @adapter: board private structure
|
*
|
* Free all transmit software resources
|
**/
|
void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
|
{
|
int i;
|
|
for (i = 0; i < adapter->num_tx_queues; i++)
|
e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
|
}
|
|
static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
|
struct e1000_buffer *buffer_info)
|
{
|
if (buffer_info->dma) {
|
dma_unmap_page(&adapter->pdev->dev,
|
buffer_info->dma,
|
buffer_info->length,
|
DMA_TO_DEVICE);
|
buffer_info->dma = 0;
|
}
|
if (buffer_info->skb) {
|
kfree_rtskb(buffer_info->skb);
|
buffer_info->skb = NULL;
|
}
|
/* buffer_info must be completely set up in the transmit path */
|
}
|
|
/**
|
* e1000_clean_tx_ring - Free Tx Buffers
|
* @adapter: board private structure
|
* @tx_ring: ring to be cleaned
|
**/
|
static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *tx_ring)
|
{
|
struct e1000_buffer *buffer_info;
|
unsigned long size;
|
unsigned int i;
|
|
/* Free all the Tx ring sk_buffs */
|
|
for (i = 0; i < tx_ring->count; i++) {
|
buffer_info = &tx_ring->buffer_info[i];
|
e1000_unmap_and_free_tx_resource(adapter, buffer_info);
|
}
|
|
size = sizeof(struct e1000_buffer) * tx_ring->count;
|
memset(tx_ring->buffer_info, 0, size);
|
|
/* Zero out the descriptor ring */
|
|
memset(tx_ring->desc, 0, tx_ring->size);
|
|
tx_ring->next_to_use = 0;
|
tx_ring->next_to_clean = 0;
|
tx_ring->last_tx_tso = 0;
|
|
writel(0, adapter->hw.hw_addr + tx_ring->tdh);
|
writel(0, adapter->hw.hw_addr + tx_ring->tdt);
|
}
|
|
/**
|
* e1000_clean_all_tx_rings - Free Tx Buffers for all queues
|
* @adapter: board private structure
|
**/
|
static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
|
{
|
int i;
|
|
for (i = 0; i < adapter->num_tx_queues; i++)
|
e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
|
}
|
|
/**
|
* e1000_free_rx_resources - Free Rx Resources
|
* @adapter: board private structure
|
* @rx_ring: ring to clean the resources from
|
*
|
* Free all receive software resources
|
**/
|
static void e1000_free_rx_resources(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring)
|
{
|
struct pci_dev *pdev = adapter->pdev;
|
|
e1000_clean_rx_ring(adapter, rx_ring);
|
|
vfree(rx_ring->buffer_info);
|
rx_ring->buffer_info = NULL;
|
kfree(rx_ring->ps_page);
|
rx_ring->ps_page = NULL;
|
kfree(rx_ring->ps_page_dma);
|
rx_ring->ps_page_dma = NULL;
|
|
dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
|
rx_ring->dma);
|
|
rx_ring->desc = NULL;
|
}
|
|
/**
|
* e1000_free_all_rx_resources - Free Rx Resources for All Queues
|
* @adapter: board private structure
|
*
|
* Free all receive software resources
|
**/
|
void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
|
{
|
int i;
|
|
for (i = 0; i < adapter->num_rx_queues; i++)
|
e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
|
}
|
|
/**
|
* e1000_clean_rx_ring - Free Rx Buffers per Queue
|
* @adapter: board private structure
|
* @rx_ring: ring to free buffers from
|
**/
|
static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring)
|
{
|
struct e1000_rx_buffer *buffer_info;
|
struct e1000_ps_page *ps_page;
|
struct e1000_ps_page_dma *ps_page_dma;
|
struct pci_dev *pdev = adapter->pdev;
|
unsigned long size;
|
unsigned int i, j;
|
|
/* Free all the Rx ring sk_buffs */
|
for (i = 0; i < rx_ring->count; i++) {
|
buffer_info = &rx_ring->buffer_info[i];
|
if (buffer_info->dma &&
|
adapter->clean_rx == e1000_clean_rx_irq) {
|
dma_unmap_single(&pdev->dev, buffer_info->dma,
|
adapter->rx_buffer_len,
|
DMA_FROM_DEVICE);
|
#ifdef CONFIG_E1000_NAPI
|
} else if (buffer_info->dma &&
|
adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
|
dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
|
DMA_FROM_DEVICE);
|
#endif
|
} else if (buffer_info->dma &&
|
adapter->clean_rx == e1000_clean_rx_irq_ps) {
|
dma_unmap_single(&pdev->dev, buffer_info->dma,
|
adapter->rx_ps_bsize0,
|
DMA_FROM_DEVICE);
|
}
|
buffer_info->dma = 0;
|
if (buffer_info->page) {
|
put_page(buffer_info->page);
|
buffer_info->page = NULL;
|
}
|
if (buffer_info->skb) {
|
kfree_rtskb(buffer_info->skb);
|
buffer_info->skb = NULL;
|
}
|
ps_page = &rx_ring->ps_page[i];
|
ps_page_dma = &rx_ring->ps_page_dma[i];
|
for (j = 0; j < adapter->rx_ps_pages; j++) {
|
if (!ps_page->ps_page[j]) break;
|
dma_unmap_page(&pdev->dev,
|
ps_page_dma->ps_page_dma[j],
|
PAGE_SIZE, DMA_FROM_DEVICE);
|
ps_page_dma->ps_page_dma[j] = 0;
|
put_page(ps_page->ps_page[j]);
|
ps_page->ps_page[j] = NULL;
|
}
|
}
|
|
#ifdef CONFIG_E1000_NAPI
|
/* there also may be some cached data from a chained receive */
|
if (rx_ring->rx_skb_top) {
|
kfree_rtskb(rx_ring->rx_skb_top);
|
rx_ring->rx_skb_top = NULL;
|
}
|
#endif
|
|
size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
|
memset(rx_ring->buffer_info, 0, size);
|
size = sizeof(struct e1000_ps_page) * rx_ring->count;
|
memset(rx_ring->ps_page, 0, size);
|
size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
|
memset(rx_ring->ps_page_dma, 0, size);
|
|
/* Zero out the descriptor ring */
|
|
memset(rx_ring->desc, 0, rx_ring->size);
|
|
rx_ring->next_to_clean = 0;
|
rx_ring->next_to_use = 0;
|
|
writel(0, adapter->hw.hw_addr + rx_ring->rdh);
|
writel(0, adapter->hw.hw_addr + rx_ring->rdt);
|
}
|
|
/**
|
* e1000_clean_all_rx_rings - Free Rx Buffers for all queues
|
* @adapter: board private structure
|
**/
|
static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
|
{
|
int i;
|
|
for (i = 0; i < adapter->num_rx_queues; i++)
|
e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
|
}
|
|
/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
|
* and memory write and invalidate disabled for certain operations
|
*/
|
#if 0
|
static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
|
{
|
struct net_device *netdev = adapter->netdev;
|
u32 rctl;
|
|
if (adapter->hw.mac.type != e1000_82542)
|
return;
|
if (adapter->hw.revision_id != E1000_REVISION_2)
|
return;
|
|
e1000_pci_clear_mwi(&adapter->hw);
|
|
rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
rctl |= E1000_RCTL_RST;
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
|
E1000_WRITE_FLUSH(&adapter->hw);
|
mdelay(5);
|
|
if (rtnetif_running(netdev))
|
e1000_clean_all_rx_rings(adapter);
|
}
|
|
static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
|
{
|
struct net_device *netdev = adapter->netdev;
|
u32 rctl;
|
|
if (adapter->hw.mac.type != e1000_82542)
|
return;
|
if (adapter->hw.revision_id != E1000_REVISION_2)
|
return;
|
|
rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
rctl &= ~E1000_RCTL_RST;
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
|
E1000_WRITE_FLUSH(&adapter->hw);
|
mdelay(5);
|
|
if (adapter->hw.bus.pci_cmd_word & PCI_COMMAND_INVALIDATE)
|
e1000_pci_set_mwi(&adapter->hw);
|
|
if (rtnetif_running(netdev)) {
|
/* No need to loop, because 82542 supports only 1 queue */
|
struct e1000_rx_ring *ring = &adapter->rx_ring[0];
|
e1000_configure_rx(adapter);
|
adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
|
}
|
}
|
|
/**
|
* e1000_set_mac - Change the Ethernet Address of the NIC
|
* @netdev: network interface device structure
|
* @p: pointer to an address structure
|
*
|
* Returns 0 on success, negative on failure
|
**/
|
static int e1000_set_mac(struct net_device *netdev, void *p)
|
{
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
struct sockaddr *addr = p;
|
|
if (!is_valid_ether_addr(addr->sa_data))
|
return -EADDRNOTAVAIL;
|
|
/* 82542 2.0 needs to be in reset to write receive address registers */
|
|
if (adapter->hw.mac.type == e1000_82542)
|
e1000_enter_82542_rst(adapter);
|
|
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
|
memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
|
|
e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
|
|
/* With 82571 controllers, LAA may be overwritten (with the default)
|
* due to controller reset from the other port. */
|
if (adapter->hw.mac.type == e1000_82571) {
|
/* activate the work around */
|
e1000_set_laa_state_82571(&adapter->hw, TRUE);
|
|
/* Hold a copy of the LAA in RAR[14] This is done so that
|
* between the time RAR[0] gets clobbered and the time it
|
* gets fixed (in e1000_watchdog), the actual LAA is in one
|
* of the RARs and no incoming packets directed to this port
|
* are dropped. Eventually the LAA will be in RAR[0] and
|
* RAR[14] */
|
e1000_rar_set(&adapter->hw,
|
adapter->hw.mac.addr,
|
adapter->hw.mac.rar_entry_count - 1);
|
}
|
|
if (adapter->hw.mac.type == e1000_82542)
|
e1000_leave_82542_rst(adapter);
|
|
return 0;
|
}
|
#endif
|
|
/**
|
* e1000_set_multi - Multicast and Promiscuous mode set
|
* @netdev: network interface device structure
|
*
|
* The set_multi entry point is called whenever the multicast address
|
* list or the network interface flags are updated. This routine is
|
* responsible for configuring the hardware for proper multicast,
|
* promiscuous mode, and all-multi behavior.
|
**/
|
static void e1000_set_multi(struct net_device *netdev)
|
{
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
struct e1000_hw *hw = &adapter->hw;
|
u32 rctl;
|
|
/* Check for Promiscuous and All Multicast modes */
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
if (netdev->flags & IFF_PROMISC) {
|
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
|
} else if (netdev->flags & IFF_ALLMULTI) {
|
rctl |= E1000_RCTL_MPE;
|
rctl &= ~E1000_RCTL_UPE;
|
} else {
|
rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
|
}
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
}
|
|
/* Need to wait a few seconds after link up to get diagnostic information from
|
* the phy */
|
static void e1000_update_phy_info_task(struct work_struct *work)
|
{
|
struct e1000_adapter *adapter = container_of(work,
|
struct e1000_adapter,
|
phy_info_task.work);
|
e1000_get_phy_info(&adapter->hw);
|
}
|
|
/**
|
* e1000_82547_tx_fifo_stall_task - task to complete work
|
* @work: work struct contained inside adapter struct
|
**/
|
static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
|
{
|
struct e1000_adapter *adapter = container_of(work,
|
struct e1000_adapter,
|
fifo_stall_task.work);
|
struct net_device *netdev = adapter->netdev;
|
u32 tctl;
|
|
if (atomic_read(&adapter->tx_fifo_stall)) {
|
if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
|
E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
|
(E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
|
E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
|
(E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
|
E1000_READ_REG(&adapter->hw, E1000_TDFHS))) {
|
tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
|
E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
|
tctl & ~E1000_TCTL_EN);
|
E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
|
adapter->tx_head_addr);
|
E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
|
adapter->tx_head_addr);
|
E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
|
adapter->tx_head_addr);
|
E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
|
adapter->tx_head_addr);
|
E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
|
E1000_WRITE_FLUSH(&adapter->hw);
|
|
adapter->tx_fifo_head = 0;
|
atomic_set(&adapter->tx_fifo_stall, 0);
|
rtnetif_wake_queue(netdev);
|
} else if (!test_bit(__E1000_DOWN, &adapter->state))
|
schedule_delayed_work(&adapter->fifo_stall_task, 1);
|
}
|
}
|
|
static bool e1000_has_link(struct e1000_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
bool link_active = FALSE;
|
s32 ret_val = 0;
|
|
/* get_link_status is set on LSC (link status) interrupt or
|
* rx sequence error interrupt. get_link_status will stay
|
* false until the e1000_check_for_link establishes link
|
* for copper adapters ONLY
|
*/
|
switch (hw->phy.media_type) {
|
case e1000_media_type_copper:
|
if (hw->mac.get_link_status) {
|
ret_val = e1000_check_for_link(hw);
|
link_active = !hw->mac.get_link_status;
|
} else {
|
link_active = TRUE;
|
}
|
break;
|
case e1000_media_type_fiber:
|
ret_val = e1000_check_for_link(hw);
|
link_active = !!(E1000_READ_REG(hw, E1000_STATUS) &
|
E1000_STATUS_LU);
|
break;
|
case e1000_media_type_internal_serdes:
|
ret_val = e1000_check_for_link(hw);
|
link_active = adapter->hw.mac.serdes_has_link;
|
break;
|
default:
|
case e1000_media_type_unknown:
|
break;
|
}
|
|
if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
|
(E1000_READ_REG(&adapter->hw, E1000_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
|
/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
|
DPRINTK(LINK, INFO,
|
"Gigabit has been disabled, downgrading speed\n");
|
}
|
|
return link_active;
|
}
|
|
static void e1000_enable_receives(struct e1000_adapter *adapter)
|
{
|
/* make sure the receive unit is started */
|
if ((adapter->flags & E1000_FLAG_RX_NEEDS_RESTART) &&
|
(adapter->flags & E1000_FLAG_RX_RESTART_NOW)) {
|
struct e1000_hw *hw = &adapter->hw;
|
u32 rctl = E1000_READ_REG(hw, E1000_RCTL);
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
|
adapter->flags &= ~E1000_FLAG_RX_RESTART_NOW;
|
}
|
}
|
|
static void e1000_watchdog_task(struct work_struct *work)
|
{
|
struct e1000_adapter *adapter = container_of(work,
|
struct e1000_adapter,
|
watchdog_task.work);
|
|
struct net_device *netdev = adapter->netdev;
|
struct e1000_mac_info *mac = &adapter->hw.mac;
|
struct e1000_tx_ring *tx_ring;
|
u32 link, tctl;
|
int i, tx_pending = 0;
|
|
link = e1000_has_link(adapter);
|
if ((rtnetif_carrier_ok(netdev)) && link) {
|
e1000_enable_receives(adapter);
|
goto link_up;
|
}
|
|
if (mac->type == e1000_82573) {
|
e1000_enable_tx_pkt_filtering(&adapter->hw);
|
#ifdef NETIF_F_HW_VLAN_TX
|
if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
|
e1000_update_mng_vlan(adapter);
|
#endif
|
}
|
|
if (link) {
|
if (!rtnetif_carrier_ok(netdev)) {
|
u32 ctrl;
|
bool txb2b = 1;
|
#ifdef SIOCGMIIPHY
|
/* update snapshot of PHY registers on LSC */
|
e1000_phy_read_status(adapter);
|
#endif
|
e1000_get_speed_and_duplex(&adapter->hw,
|
&adapter->link_speed,
|
&adapter->link_duplex);
|
|
ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
|
DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
|
"Flow Control: %s\n",
|
adapter->link_speed,
|
adapter->link_duplex == FULL_DUPLEX ?
|
"Full Duplex" : "Half Duplex",
|
((ctrl & E1000_CTRL_TFCE) && (ctrl &
|
E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
|
E1000_CTRL_RFCE) ? "RX" : ((ctrl &
|
E1000_CTRL_TFCE) ? "TX" : "None" )));
|
|
/* tweak tx_queue_len according to speed/duplex
|
* and adjust the timeout factor */
|
//netdev->tx_queue_len = adapter->tx_queue_len;
|
adapter->tx_timeout_factor = 1;
|
switch (adapter->link_speed) {
|
case SPEED_10:
|
txb2b = 0;
|
//netdev->tx_queue_len = 10;
|
adapter->tx_timeout_factor = 16;
|
break;
|
case SPEED_100:
|
txb2b = 0;
|
//netdev->tx_queue_len = 100;
|
/* maybe add some timeout factor ? */
|
break;
|
}
|
|
if ((mac->type == e1000_82571 ||
|
mac->type == e1000_82572) &&
|
txb2b == 0) {
|
u32 tarc0;
|
tarc0 = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
|
tarc0 &= ~SPEED_MODE_BIT;
|
E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc0);
|
}
|
|
#ifdef NETIF_F_TSO
|
/* disable TSO for pcie and 10/100 speeds, to avoid
|
* some hardware issues */
|
if (!(adapter->flags & E1000_FLAG_TSO_FORCE) &&
|
adapter->hw.bus.type == e1000_bus_type_pci_express){
|
switch (adapter->link_speed) {
|
case SPEED_10:
|
case SPEED_100:
|
DPRINTK(PROBE,INFO,
|
"10/100 speed: disabling TSO\n");
|
netdev->features &= ~NETIF_F_TSO;
|
#ifdef NETIF_F_TSO6
|
netdev->features &= ~NETIF_F_TSO6;
|
#endif
|
break;
|
case SPEED_1000:
|
netdev->features |= NETIF_F_TSO;
|
#ifdef NETIF_F_TSO6
|
netdev->features |= NETIF_F_TSO6;
|
#endif
|
break;
|
default:
|
/* oops */
|
break;
|
}
|
}
|
#endif
|
|
/* enable transmits in the hardware, need to do this
|
* after setting TARC0 */
|
tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
|
tctl |= E1000_TCTL_EN;
|
E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
|
|
rtnetif_carrier_on(netdev);
|
rtnetif_wake_queue(netdev);
|
#ifdef CONFIG_E1000_MQ
|
if (netif_is_multiqueue(netdev))
|
for (i = 0; i < adapter->num_tx_queues; i++)
|
netif_wake_subqueue(netdev, i);
|
#endif
|
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
schedule_delayed_work(&adapter->phy_info_task,
|
2 * HZ);
|
adapter->smartspeed = 0;
|
}
|
} else {
|
if (rtnetif_carrier_ok(netdev)) {
|
adapter->link_speed = 0;
|
adapter->link_duplex = 0;
|
DPRINTK(LINK, INFO, "NIC Link is Down\n");
|
rtnetif_carrier_off(netdev);
|
rtnetif_stop_queue(netdev);
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
schedule_delayed_work(&adapter->phy_info_task,
|
2 * HZ);
|
|
/* 80003ES2LAN workaround--
|
* For packet buffer work-around on link down event;
|
* disable receives in the ISR and
|
* reset device here in the watchdog
|
*/
|
if (adapter->flags & E1000_FLAG_RX_NEEDS_RESTART)
|
/* reset device */
|
schedule_work(&adapter->reset_task);
|
}
|
|
e1000_smartspeed(adapter);
|
}
|
|
link_up:
|
e1000_update_stats(adapter);
|
|
mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
|
adapter->tpt_old = adapter->stats.tpt;
|
mac->collision_delta = adapter->stats.colc - adapter->colc_old;
|
adapter->colc_old = adapter->stats.colc;
|
|
adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
|
adapter->gorc_old = adapter->stats.gorc;
|
adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
|
adapter->gotc_old = adapter->stats.gotc;
|
|
e1000_update_adaptive(&adapter->hw);
|
|
if (!rtnetif_carrier_ok(netdev)) {
|
for (i = 0 ; i < adapter->num_tx_queues ; i++) {
|
tx_ring = &adapter->tx_ring[i];
|
tx_pending |= (E1000_DESC_UNUSED(tx_ring) + 1 <
|
tx_ring->count);
|
}
|
if (tx_pending) {
|
/* We've lost link, so the controller stops DMA,
|
* but we've got queued Tx work that's never going
|
* to get done, so reset controller to flush Tx.
|
* (Do the reset outside of interrupt context). */
|
adapter->tx_timeout_count++;
|
schedule_work(&adapter->reset_task);
|
}
|
}
|
|
/* Cause software interrupt to ensure rx ring is cleaned */
|
E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_RXDMT0);
|
|
/* Force detection of hung controller every watchdog period */
|
adapter->detect_tx_hung = TRUE;
|
|
/* With 82571 controllers, LAA may be overwritten due to controller
|
* reset from the other port. Set the appropriate LAA in RAR[0] */
|
if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
|
e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
|
|
/* Reschedule the task */
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
|
}
|
|
enum latency_range {
|
lowest_latency = 0,
|
low_latency = 1,
|
bulk_latency = 2,
|
latency_invalid = 255
|
};
|
|
/**
|
* e1000_update_itr - update the dynamic ITR value based on statistics
|
* @adapter: pointer to adapter
|
* @itr_setting: current adapter->itr
|
* @packets: the number of packets during this measurement interval
|
* @bytes: the number of bytes during this measurement interval
|
*
|
* Stores a new ITR value based on packets and byte
|
* counts during the last interrupt. The advantage of per interrupt
|
* computation is faster updates and more accurate ITR for the current
|
* traffic pattern. Constants in this function were computed
|
* based on theoretical maximum wire speed and thresholds were set based
|
* on testing data as well as attempting to minimize response time
|
* while increasing bulk throughput.
|
* this functionality is controlled by the InterruptThrottleRate module
|
* parameter (see e1000_param.c)
|
**/
|
#if 0
|
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
|
u16 itr_setting, int packets,
|
int bytes)
|
{
|
unsigned int retval = itr_setting;
|
|
if (unlikely(!(adapter->flags & E1000_FLAG_HAS_INTR_MODERATION)))
|
goto update_itr_done;
|
|
if (packets == 0)
|
goto update_itr_done;
|
|
switch (itr_setting) {
|
case lowest_latency:
|
/* handle TSO and jumbo frames */
|
if (bytes/packets > 8000)
|
retval = bulk_latency;
|
else if ((packets < 5) && (bytes > 512)) {
|
retval = low_latency;
|
}
|
break;
|
case low_latency: /* 50 usec aka 20000 ints/s */
|
if (bytes > 10000) {
|
/* this if handles the TSO accounting */
|
if (bytes/packets > 8000) {
|
retval = bulk_latency;
|
} else if ((packets < 10) || ((bytes/packets) > 1200)) {
|
retval = bulk_latency;
|
} else if ((packets > 35)) {
|
retval = lowest_latency;
|
}
|
} else if (bytes/packets > 2000) {
|
retval = bulk_latency;
|
} else if (packets <= 2 && bytes < 512) {
|
retval = lowest_latency;
|
}
|
break;
|
case bulk_latency: /* 250 usec aka 4000 ints/s */
|
if (bytes > 25000) {
|
if (packets > 35) {
|
retval = low_latency;
|
}
|
} else if (bytes < 6000) {
|
retval = low_latency;
|
}
|
break;
|
}
|
|
update_itr_done:
|
return retval;
|
}
|
#endif
|
|
static void e1000_set_itr(struct e1000_adapter *adapter)
|
{
|
}
|
|
#define E1000_TX_FLAGS_CSUM 0x00000001
|
#define E1000_TX_FLAGS_VLAN 0x00000002
|
#define E1000_TX_FLAGS_TSO 0x00000004
|
#define E1000_TX_FLAGS_IPV4 0x00000008
|
#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
|
#define E1000_TX_FLAGS_VLAN_SHIFT 16
|
|
static int e1000_tso(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
|
{
|
#ifdef NETIF_F_TSO
|
struct e1000_context_desc *context_desc;
|
struct e1000_buffer *buffer_info;
|
unsigned int i;
|
u32 cmd_length = 0;
|
u16 ipcse = 0, tucse, mss;
|
u8 ipcss, ipcso, tucss, tucso, hdr_len;
|
int err;
|
|
if (skb_is_gso(skb)) {
|
if (skb_header_cloned(skb)) {
|
err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
|
if (err)
|
return err;
|
}
|
|
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
|
mss = skb_shinfo(skb)->gso_size;
|
if (skb->protocol == htons(ETH_P_IP)) {
|
struct iphdr *iph = ip_hdr(skb);
|
iph->tot_len = 0;
|
iph->check = 0;
|
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
|
iph->daddr, 0,
|
IPPROTO_TCP,
|
0);
|
cmd_length = E1000_TXD_CMD_IP;
|
ipcse = skb_transport_offset(skb) - 1;
|
#ifdef NETIF_F_TSO6
|
} else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
|
ipv6_hdr(skb)->payload_len = 0;
|
tcp_hdr(skb)->check =
|
~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
|
&ipv6_hdr(skb)->daddr,
|
0, IPPROTO_TCP, 0);
|
ipcse = 0;
|
#endif
|
}
|
ipcss = skb_network_offset(skb);
|
ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
|
tucss = skb_transport_offset(skb);
|
tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
|
tucse = 0;
|
|
cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
|
E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
|
|
i = tx_ring->next_to_use;
|
context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
|
buffer_info = &tx_ring->buffer_info[i];
|
|
context_desc->lower_setup.ip_fields.ipcss = ipcss;
|
context_desc->lower_setup.ip_fields.ipcso = ipcso;
|
context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
|
context_desc->upper_setup.tcp_fields.tucss = tucss;
|
context_desc->upper_setup.tcp_fields.tucso = tucso;
|
context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
|
context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
|
context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
|
context_desc->cmd_and_length = cpu_to_le32(cmd_length);
|
|
buffer_info->time_stamp = jiffies;
|
buffer_info->next_to_watch = i;
|
|
if (++i == tx_ring->count) i = 0;
|
tx_ring->next_to_use = i;
|
|
return TRUE;
|
}
|
#endif
|
|
return FALSE;
|
}
|
|
static bool e1000_tx_csum(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *tx_ring,
|
struct sk_buff *skb)
|
{
|
struct e1000_context_desc *context_desc;
|
struct e1000_buffer *buffer_info;
|
unsigned int i;
|
// u8 css;
|
u32 cmd_len = E1000_TXD_CMD_DEXT;
|
|
if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
|
return FALSE;
|
|
switch (skb->protocol) {
|
case __constant_htons(ETH_P_IP):
|
break;
|
default:
|
if (unlikely(net_ratelimit())) {
|
DPRINTK(PROBE, WARNING, "checksum_partial proto=%x!\n",
|
skb->protocol);
|
}
|
break;
|
}
|
|
// css = skb_transport_offset(skb);
|
|
i = tx_ring->next_to_use;
|
buffer_info = &tx_ring->buffer_info[i];
|
context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
|
|
context_desc->lower_setup.ip_config = 0;
|
context_desc->cmd_and_length = cpu_to_le32(cmd_len);
|
|
buffer_info->time_stamp = jiffies;
|
buffer_info->next_to_watch = i;
|
|
if (unlikely(++i == tx_ring->count)) i = 0;
|
tx_ring->next_to_use = i;
|
|
return TRUE;
|
}
|
|
#define E1000_MAX_TXD_PWR 12
|
#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
|
|
static int e1000_tx_map(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *tx_ring,
|
struct sk_buff *skb, unsigned int first,
|
unsigned int max_per_txd, unsigned int nr_frags,
|
unsigned int mss)
|
{
|
struct e1000_buffer *buffer_info;
|
unsigned int len = skb->len;
|
unsigned int offset = 0, size, count = 0, i;
|
#ifdef MAX_SKB_FRAGS
|
unsigned int f;
|
len -= skb->data_len;
|
#endif
|
|
i = tx_ring->next_to_use;
|
|
while (len) {
|
buffer_info = &tx_ring->buffer_info[i];
|
size = min(len, max_per_txd);
|
#ifdef NETIF_F_TSO
|
/* Workaround for Controller erratum --
|
* descriptor for non-tso packet in a linear SKB that follows a
|
* tso gets written back prematurely before the data is fully
|
* DMA'd to the controller */
|
if (tx_ring->last_tx_tso && !skb_is_gso(skb)) {
|
tx_ring->last_tx_tso = 0;
|
if (!skb->data_len)
|
size -= 4;
|
}
|
|
/* Workaround for premature desc write-backs
|
* in TSO mode. Append 4-byte sentinel desc */
|
if (unlikely(mss && !nr_frags && size == len && size > 8))
|
size -= 4;
|
#endif
|
/* work-around for errata 10 and it applies
|
* to all controllers in PCI-X mode
|
* The fix is to make sure that the first descriptor of a
|
* packet is smaller than 2048 - 16 - 16 (or 2016) bytes
|
*/
|
if (unlikely((adapter->hw.bus.type == e1000_bus_type_pcix) &&
|
(size > 2015) && count == 0))
|
size = 2015;
|
|
/* Workaround for potential 82544 hang in PCI-X. Avoid
|
* terminating buffers within evenly-aligned dwords. */
|
if (unlikely(adapter->pcix_82544 &&
|
!((unsigned long)(skb->data + offset + size - 1) & 4) &&
|
size > 4))
|
size -= 4;
|
|
buffer_info->length = size;
|
/* set time_stamp *before* dma to help avoid a possible race */
|
buffer_info->time_stamp = jiffies;
|
buffer_info->dma =
|
dma_map_single(&adapter->pdev->dev,
|
skb->data + offset,
|
size,
|
DMA_TO_DEVICE);
|
buffer_info->next_to_watch = i;
|
|
len -= size;
|
offset += size;
|
count++;
|
if (unlikely(++i == tx_ring->count)) i = 0;
|
}
|
|
#ifdef MAX_SKB_FRAGS
|
for (f = 0; f < nr_frags; f++) {
|
struct skb_frag_struct *frag;
|
|
frag = &skb_shinfo(skb)->frags[f];
|
len = frag->size;
|
offset = frag->page_offset;
|
|
while (len) {
|
buffer_info = &tx_ring->buffer_info[i];
|
size = min(len, max_per_txd);
|
#ifdef NETIF_F_TSO
|
/* Workaround for premature desc write-backs
|
* in TSO mode. Append 4-byte sentinel desc */
|
if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
|
size -= 4;
|
#endif
|
/* Workaround for potential 82544 hang in PCI-X.
|
* Avoid terminating buffers within evenly-aligned
|
* dwords. */
|
if (unlikely(adapter->pcix_82544 &&
|
!((unsigned long)(frag->page+offset+size-1) & 4) &&
|
size > 4))
|
size -= 4;
|
|
buffer_info->length = size;
|
buffer_info->time_stamp = jiffies;
|
buffer_info->dma =
|
dma_map_page(&adapter->pdev->dev,
|
frag->page,
|
offset,
|
size,
|
DMA_TO_DEVICE);
|
buffer_info->next_to_watch = i;
|
|
len -= size;
|
offset += size;
|
count++;
|
if (unlikely(++i == tx_ring->count)) i = 0;
|
}
|
}
|
#endif
|
|
i = (i == 0) ? tx_ring->count - 1 : i - 1;
|
tx_ring->buffer_info[i].skb = skb;
|
tx_ring->buffer_info[first].next_to_watch = i;
|
|
return count;
|
}
|
|
static void e1000_tx_queue(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *tx_ring,
|
int tx_flags, int count, nanosecs_abs_t *xmit_stamp)
|
{
|
struct e1000_tx_desc *tx_desc = NULL;
|
struct e1000_buffer *buffer_info;
|
u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
|
unsigned int i;
|
rtdm_lockctx_t context;
|
|
if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
|
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
|
E1000_TXD_CMD_TSE;
|
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
|
|
if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
|
txd_upper |= E1000_TXD_POPTS_IXSM << 8;
|
}
|
|
if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
|
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
|
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
|
}
|
|
if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
|
txd_lower |= E1000_TXD_CMD_VLE;
|
txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
|
}
|
|
i = tx_ring->next_to_use;
|
|
while (count--) {
|
buffer_info = &tx_ring->buffer_info[i];
|
tx_desc = E1000_TX_DESC(*tx_ring, i);
|
tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
|
tx_desc->lower.data =
|
cpu_to_le32(txd_lower | buffer_info->length);
|
tx_desc->upper.data = cpu_to_le32(txd_upper);
|
if (unlikely(++i == tx_ring->count)) i = 0;
|
}
|
|
tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
|
|
rtdm_lock_irqsave(context);
|
|
if (xmit_stamp)
|
*xmit_stamp = cpu_to_be64(rtdm_clock_read() + *xmit_stamp);
|
|
/* Force memory writes to complete before letting h/w
|
* know there are new descriptors to fetch. (Only
|
* applicable for weak-ordered memory model archs,
|
* such as IA-64). */
|
wmb();
|
|
tx_ring->next_to_use = i;
|
writel(i, adapter->hw.hw_addr + tx_ring->tdt);
|
|
rtdm_lock_irqrestore(context);
|
/* we need this if more than one processor can write to our tail
|
* at a time, it synchronizes IO on IA64/Altix systems */
|
mmiowb();
|
}
|
|
#define E1000_FIFO_HDR 0x10
|
#define E1000_82547_PAD_LEN 0x3E0
|
|
/**
|
* 82547 workaround to avoid controller hang in half-duplex environment.
|
* The workaround is to avoid queuing a large packet that would span
|
* the internal Tx FIFO ring boundary by notifying the stack to resend
|
* the packet at a later time. This gives the Tx FIFO an opportunity to
|
* flush all packets. When that occurs, we reset the Tx FIFO pointers
|
* to the beginning of the Tx FIFO.
|
**/
|
static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
|
struct sk_buff *skb)
|
{
|
u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
|
u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
|
|
skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
|
|
if (adapter->link_duplex != HALF_DUPLEX)
|
goto no_fifo_stall_required;
|
|
if (atomic_read(&adapter->tx_fifo_stall))
|
return 1;
|
|
if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
|
atomic_set(&adapter->tx_fifo_stall, 1);
|
return 1;
|
}
|
|
no_fifo_stall_required:
|
adapter->tx_fifo_head += skb_fifo_len;
|
if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
|
adapter->tx_fifo_head -= adapter->tx_fifo_size;
|
return 0;
|
}
|
|
#define MINIMUM_DHCP_PACKET_SIZE 282
|
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
|
struct sk_buff *skb)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
u16 length, offset;
|
#ifdef NETIF_F_HW_VLAN_TX
|
if (vlan_tx_tag_present(skb)) {
|
if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
|
&& (adapter->hw.mng_cookie.status &
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
|
return 0;
|
}
|
#endif
|
if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
|
struct ethhdr *eth = (struct ethhdr *) skb->data;
|
if ((htons(ETH_P_IP) == eth->h_proto)) {
|
const struct iphdr *ip =
|
(struct iphdr *)((u8 *)skb->data+14);
|
if (IPPROTO_UDP == ip->protocol) {
|
struct udphdr *udp =
|
(struct udphdr *)((u8 *)ip +
|
(ip->ihl << 2));
|
if (ntohs(udp->dest) == 67) {
|
offset = (u8 *)udp + 8 - skb->data;
|
length = skb->len - offset;
|
|
return e1000_mng_write_dhcp_info(hw,
|
(u8 *)udp + 8,
|
length);
|
}
|
}
|
}
|
}
|
return 0;
|
}
|
|
static int __e1000_maybe_stop_tx(struct net_device *netdev,
|
struct e1000_tx_ring *tx_ring, int size)
|
{
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
rtnetif_stop_queue(netdev);
|
/* Herbert's original patch had:
|
* smp_mb__after_netif_stop_queue();
|
* but since that doesn't exist yet, just open code it. */
|
smp_mb();
|
|
/* We need to check again in a case another CPU has just
|
* made room available. */
|
if (likely(E1000_DESC_UNUSED(tx_ring) < size))
|
return -EBUSY;
|
|
/* A reprieve! */
|
rtnetif_start_queue(netdev);
|
++adapter->restart_queue;
|
return 0;
|
}
|
|
static int e1000_maybe_stop_tx(struct net_device *netdev,
|
struct e1000_tx_ring *tx_ring, int size)
|
{
|
if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
|
return 0;
|
return __e1000_maybe_stop_tx(netdev, tx_ring, size);
|
}
|
|
#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
|
static int e1000_xmit_frame_ring(struct sk_buff *skb,
|
struct net_device *netdev,
|
struct e1000_tx_ring *tx_ring)
|
{
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
|
unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
|
unsigned int tx_flags = 0;
|
unsigned int len = skb->len;
|
unsigned long irq_flags;
|
unsigned int nr_frags = 0;
|
unsigned int mss = 0;
|
int count = 0;
|
int tso;
|
#ifdef MAX_SKB_FRAGS
|
unsigned int f;
|
len -= skb->data_len;
|
#endif
|
|
if (test_bit(__E1000_DOWN, &adapter->state)) {
|
kfree_rtskb(skb);
|
return NETDEV_TX_OK;
|
}
|
|
if (unlikely(skb->len <= 0)) {
|
kfree_rtskb(skb);
|
return NETDEV_TX_OK;
|
}
|
|
|
/* 82571 and newer doesn't need the workaround that limited descriptor
|
* length to 4kB */
|
if (adapter->hw.mac.type >= e1000_82571)
|
max_per_txd = 8192;
|
|
#ifdef NETIF_F_TSO
|
mss = skb_shinfo(skb)->gso_size;
|
/* The controller does a simple calculation to
|
* make sure there is enough room in the FIFO before
|
* initiating the DMA for each buffer. The calc is:
|
* 4 = ceil(buffer len/mss). To make sure we don't
|
* overrun the FIFO, adjust the max buffer len if mss
|
* drops. */
|
if (mss) {
|
u8 hdr_len;
|
max_per_txd = min(mss << 2, max_per_txd);
|
max_txd_pwr = fls(max_per_txd) - 1;
|
|
/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
|
* points to just header, pull a few bytes of payload from
|
* frags into skb->data */
|
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
|
if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
|
switch (adapter->hw.mac.type) {
|
unsigned int pull_size;
|
case e1000_82544:
|
/* Make sure we have room to chop off 4 bytes,
|
* and that the end alignment will work out to
|
* this hardware's requirements
|
* NOTE: this is a TSO only workaround
|
* if end byte alignment not correct move us
|
* into the next dword */
|
if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
|
break;
|
fallthrough;
|
case e1000_82571:
|
case e1000_82572:
|
case e1000_82573:
|
case e1000_ich8lan:
|
case e1000_ich9lan:
|
pull_size = min((unsigned int)4, skb->data_len);
|
if (!__pskb_pull_tail(skb, pull_size)) {
|
DPRINTK(DRV, ERR,
|
"__pskb_pull_tail failed.\n");
|
kfree_rtskb(skb);
|
return NETDEV_TX_OK;
|
}
|
len = skb->len - skb->data_len;
|
break;
|
default:
|
/* do nothing */
|
break;
|
}
|
}
|
}
|
|
/* reserve a descriptor for the offload context */
|
if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
|
count++;
|
count++;
|
#else
|
if (skb->ip_summed == CHECKSUM_PARTIAL)
|
count++;
|
#endif
|
|
#ifdef NETIF_F_TSO
|
/* Controller Erratum workaround */
|
if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
|
count++;
|
#endif
|
|
count += TXD_USE_COUNT(len, max_txd_pwr);
|
|
if (adapter->pcix_82544)
|
count++;
|
|
/* work-around for errata 10 and it applies to all controllers
|
* in PCI-X mode, so add one more descriptor to the count
|
*/
|
if (unlikely((adapter->hw.bus.type == e1000_bus_type_pcix) &&
|
(len > 2015)))
|
count++;
|
|
#ifdef MAX_SKB_FRAGS
|
nr_frags = skb_shinfo(skb)->nr_frags;
|
for (f = 0; f < nr_frags; f++)
|
count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
|
max_txd_pwr);
|
if (adapter->pcix_82544)
|
count += nr_frags;
|
|
#endif
|
|
if (adapter->hw.mac.tx_pkt_filtering &&
|
(adapter->hw.mac.type == e1000_82573))
|
e1000_transfer_dhcp_info(adapter, skb);
|
|
rtdm_lock_get_irqsave(&tx_ring->tx_lock, irq_flags);
|
|
/* need: count + 2 desc gap to keep tail from touching
|
* head, otherwise try next time */
|
if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
|
rtdm_lock_put_irqrestore(&tx_ring->tx_lock, irq_flags);
|
rtdm_printk("FATAL: rt_e1000 ran into tail close to head situation!\n");
|
return NETDEV_TX_BUSY;
|
}
|
|
if (unlikely(adapter->hw.mac.type == e1000_82547)) {
|
if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
|
rtnetif_stop_queue(netdev);
|
rtdm_lock_put_irqrestore(&tx_ring->tx_lock, irq_flags);
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
schedule_delayed_work(&adapter->fifo_stall_task,
|
1);
|
rtdm_printk("FATAL: rt_e1000 ran into tail 82547 controller bug!\n");
|
return NETDEV_TX_BUSY;
|
}
|
}
|
|
#ifndef NETIF_F_LLTX
|
rtdm_lock_put_irqrestore(&tx_ring->tx_lock, irq_flags);
|
|
#endif
|
#ifdef NETIF_F_HW_VLAN_TX
|
if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
|
tx_flags |= E1000_TX_FLAGS_VLAN;
|
tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
|
}
|
#endif
|
|
first = tx_ring->next_to_use;
|
|
tso = e1000_tso(adapter, tx_ring, skb);
|
if (tso < 0) {
|
kfree_rtskb(skb);
|
#ifdef NETIF_F_LLTX
|
rtdm_lock_put_irqrestore(&tx_ring->tx_lock, irq_flags);
|
#endif
|
return NETDEV_TX_OK;
|
}
|
|
if (likely(tso)) {
|
tx_ring->last_tx_tso = 1;
|
tx_flags |= E1000_TX_FLAGS_TSO;
|
} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
|
tx_flags |= E1000_TX_FLAGS_CSUM;
|
|
/* Old method was to assume IPv4 packet by default if TSO was enabled.
|
* 82571 hardware supports TSO capabilities for IPv6 as well...
|
* no longer assume, we must. */
|
if (likely(skb->protocol == htons(ETH_P_IP)))
|
tx_flags |= E1000_TX_FLAGS_IPV4;
|
|
e1000_tx_queue(adapter, tx_ring, tx_flags,
|
e1000_tx_map(adapter, tx_ring, skb, first,
|
max_per_txd, nr_frags, mss),
|
skb->xmit_stamp);
|
|
// netdev->trans_start = jiffies;
|
|
/* Make sure there is space in the ring for the next send. */
|
// e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
|
|
#ifdef NETIF_F_LLTX
|
rtdm_lock_put_irqrestore(&tx_ring->tx_lock, irq_flags);
|
#endif
|
return NETDEV_TX_OK;
|
}
|
|
static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
|
{
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
struct e1000_tx_ring *tx_ring = adapter->tx_ring;
|
|
/* This goes back to the question of how to logically map a tx queue
|
* to a flow. Right now, performance is impacted slightly negatively
|
* if using multiple tx queues. If the stack breaks away from a
|
* single qdisc implementation, we can look at this again. */
|
return (e1000_xmit_frame_ring(skb, netdev, tx_ring));
|
}
|
|
#ifdef CONFIG_E1000_MQ
|
static int e1000_subqueue_xmit_frame(struct sk_buff *skb,
|
struct net_device *netdev, int queue)
|
{
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
struct e1000_tx_ring *tx_ring = &adapter->tx_ring[queue];
|
|
return (e1000_xmit_frame_ring(skb, netdev, tx_ring));
|
}
|
#endif
|
|
|
/**
|
* e1000_tx_timeout - Respond to a Tx Hang
|
* @netdev: network interface device structure
|
**/
|
#if 0
|
static void e1000_tx_timeout(struct net_device *netdev)
|
{
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
/* Do the reset outside of interrupt context */
|
adapter->tx_timeout_count++;
|
schedule_work(&adapter->reset_task);
|
}
|
#endif
|
|
static void e1000_reset_task(struct work_struct *work)
|
{
|
struct e1000_adapter *adapter;
|
adapter = container_of(work, struct e1000_adapter, reset_task);
|
|
e1000_reinit_locked(adapter);
|
}
|
|
#if 0
|
/**
|
* e1000_get_stats - Get System Network Statistics
|
* @netdev: network interface device structure
|
*
|
* Returns the address of the device statistics structure.
|
* The statistics are actually updated from the timer callback.
|
**/
|
static struct net_device_stats * e1000_get_stats(struct net_device *netdev)
|
{
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
/* only return the current stats */
|
return &adapter->net_stats;
|
}
|
|
/**
|
* e1000_change_mtu - Change the Maximum Transfer Unit
|
* @netdev: network interface device structure
|
* @new_mtu: new value for maximum frame size
|
*
|
* Returns 0 on success, negative on failure
|
**/
|
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
|
{
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
int max_frame = new_mtu + ETH_HLEN + ETHERNET_FCS_SIZE;
|
u16 eeprom_data = 0;
|
|
if ((max_frame < ETH_ZLEN + ETHERNET_FCS_SIZE) ||
|
(max_frame > MAX_JUMBO_FRAME_SIZE)) {
|
DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
|
return -EINVAL;
|
}
|
|
/* Adapter-specific max frame size limits. */
|
switch (adapter->hw.mac.type) {
|
case e1000_undefined:
|
case e1000_82542:
|
case e1000_ich8lan:
|
if (max_frame > ETH_FRAME_LEN + ETHERNET_FCS_SIZE) {
|
DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
|
return -EINVAL;
|
}
|
break;
|
case e1000_82573:
|
/* Jumbo Frames not supported if:
|
* - this is not an 82573L device
|
* - ASPM is enabled in any way (0x1A bits 3:2) */
|
e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1, &eeprom_data);
|
if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
|
(eeprom_data & NVM_WORD1A_ASPM_MASK)) {
|
if (max_frame > ETH_FRAME_LEN + ETHERNET_FCS_SIZE) {
|
DPRINTK(PROBE, ERR,
|
"Jumbo Frames not supported.\n");
|
return -EINVAL;
|
}
|
break;
|
}
|
/* ERT will be enabled later to enable wire speed receives */
|
|
/* fall through to get support */
|
case e1000_ich9lan:
|
if ((adapter->hw.phy.type == e1000_phy_ife) &&
|
(max_frame > ETH_FRAME_LEN + ETHERNET_FCS_SIZE)) {
|
DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
|
return -EINVAL;
|
}
|
/* fall through to get support */
|
case e1000_82571:
|
case e1000_82572:
|
case e1000_80003es2lan:
|
#define MAX_STD_JUMBO_FRAME_SIZE 9234
|
if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
|
DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
|
return -EINVAL;
|
}
|
break;
|
default:
|
/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
|
break;
|
}
|
|
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
|
msleep(1);
|
/* e1000_down has a dependency on max_frame_size */
|
adapter->max_frame_size = max_frame;
|
if (rtnetif_running(netdev))
|
e1000_down(adapter);
|
|
/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
|
* means we reserve 2 more, this pushes us to allocate from the next
|
* larger slab size.
|
* i.e. RXBUFFER_2048 --> size-4096 slab
|
* however with the new *_jumbo_rx* routines, jumbo receives will use
|
* fragmented skbs */
|
|
if (max_frame <= E1000_RXBUFFER_256)
|
adapter->rx_buffer_len = E1000_RXBUFFER_256;
|
else if (max_frame <= E1000_RXBUFFER_512)
|
adapter->rx_buffer_len = E1000_RXBUFFER_512;
|
else if (max_frame <= E1000_RXBUFFER_1024)
|
adapter->rx_buffer_len = E1000_RXBUFFER_1024;
|
else if (max_frame <= E1000_RXBUFFER_2048)
|
adapter->rx_buffer_len = E1000_RXBUFFER_2048;
|
#ifdef CONFIG_E1000_NAPI
|
else
|
adapter->rx_buffer_len = E1000_RXBUFFER_4096;
|
#else
|
else if (max_frame <= E1000_RXBUFFER_4096)
|
adapter->rx_buffer_len = E1000_RXBUFFER_4096;
|
else if (max_frame <= E1000_RXBUFFER_8192)
|
adapter->rx_buffer_len = E1000_RXBUFFER_8192;
|
else if (max_frame <= E1000_RXBUFFER_16384)
|
adapter->rx_buffer_len = E1000_RXBUFFER_16384;
|
#endif
|
|
/* adjust allocation if LPE protects us, and we aren't using SBP */
|
if (!e1000_tbi_sbp_enabled_82543(&adapter->hw) &&
|
((max_frame == ETH_FRAME_LEN + ETHERNET_FCS_SIZE) ||
|
(max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
|
adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
|
|
DPRINTK(PROBE, INFO, "changing MTU from %d to %d\n",
|
netdev->mtu, new_mtu);
|
netdev->mtu = new_mtu;
|
|
if (rtnetif_running(netdev))
|
e1000_up(adapter);
|
else
|
e1000_reset(adapter);
|
|
clear_bit(__E1000_RESETTING, &adapter->state);
|
|
return 0;
|
}
|
#endif
|
|
/**
|
* e1000_update_stats - Update the board statistics counters
|
* @adapter: board private structure
|
**/
|
void e1000_update_stats(struct e1000_adapter *adapter)
|
{
|
}
|
#ifdef SIOCGMIIPHY
|
|
/**
|
* e1000_phy_read_status - Update the PHY register status snapshot
|
* @adapter: board private structure
|
**/
|
static void e1000_phy_read_status(struct e1000_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
struct e1000_phy_regs *phy = &adapter->phy_regs;
|
int ret_val = E1000_SUCCESS;
|
unsigned long irq_flags;
|
|
|
rtdm_lock_get_irqsave(&adapter->stats_lock, irq_flags);
|
|
if (E1000_READ_REG(hw, E1000_STATUS)& E1000_STATUS_LU) {
|
ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy->bmcr);
|
ret_val |= e1000_read_phy_reg(hw, PHY_STATUS, &phy->bmsr);
|
ret_val |= e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
|
&phy->advertise);
|
ret_val |= e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy->lpa);
|
ret_val |= e1000_read_phy_reg(hw, PHY_AUTONEG_EXP,
|
&phy->expansion);
|
ret_val |= e1000_read_phy_reg(hw, PHY_1000T_CTRL,
|
&phy->ctrl1000);
|
ret_val |= e1000_read_phy_reg(hw, PHY_1000T_STATUS,
|
&phy->stat1000);
|
ret_val |= e1000_read_phy_reg(hw, PHY_EXT_STATUS,
|
&phy->estatus);
|
if (ret_val)
|
DPRINTK(DRV, WARNING, "Error reading PHY register\n");
|
} else {
|
/* Do not read PHY registers if link is not up
|
* Set values to typical power-on defaults */
|
phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
|
phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
|
BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
|
BMSR_ERCAP);
|
phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
|
ADVERTISE_ALL | ADVERTISE_CSMA);
|
phy->lpa = 0;
|
phy->expansion = EXPANSION_ENABLENPAGE;
|
phy->ctrl1000 = ADVERTISE_1000FULL;
|
phy->stat1000 = 0;
|
phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
|
}
|
|
rtdm_lock_put_irqrestore(&adapter->stats_lock, irq_flags);
|
}
|
#endif
|
|
|
/**
|
* e1000_intr_msi - Interrupt Handler
|
* @irq: interrupt number
|
* @data: pointer to a network interface device structure
|
**/
|
static int e1000_intr_msi(rtdm_irq_t *irq_handle)
|
{
|
struct rtnet_device *netdev = rtdm_irq_get_arg(irq_handle, struct rtnet_device);
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
struct e1000_hw *hw = &adapter->hw;
|
#ifndef CONFIG_E1000_NAPI
|
int i, j;
|
int rx_cleaned, tx_cleaned;
|
#endif
|
u32 icr = E1000_READ_REG(hw, E1000_ICR);
|
nanosecs_abs_t time_stamp = rtdm_clock_read();
|
|
|
|
#ifdef CONFIG_E1000_NAPI
|
/* read ICR disables interrupts using IAM, so keep up with our
|
* enable/disable accounting */
|
atomic_inc(&adapter->irq_sem);
|
#endif
|
if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
|
hw->mac.get_link_status = 1;
|
/* ICH8 workaround-- Call gig speed drop workaround on cable
|
* disconnect (LSC) before accessing any PHY registers */
|
if ((hw->mac.type == e1000_ich8lan) &&
|
(hw->phy.type == e1000_phy_igp_3) &&
|
(!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)))
|
e1000_gig_downshift_workaround_ich8lan(hw);
|
|
/* 80003ES2LAN workaround-- For packet buffer work-around on
|
* link down event; disable receives here in the ISR and reset
|
* adapter in watchdog */
|
if (rtnetif_carrier_ok(netdev) &&
|
(adapter->flags & E1000_FLAG_RX_NEEDS_RESTART)) {
|
/* disable receives */
|
u32 rctl = E1000_READ_REG(hw, E1000_RCTL);
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
|
adapter->flags |= E1000_FLAG_RX_RESTART_NOW;
|
}
|
/* guard against interrupt when we're going down */
|
//if (!test_bit(__E1000_DOWN, &adapter->state))
|
// mod_timer(&adapter->watchdog_timer, jiffies + 1);
|
}
|
|
#ifdef CONFIG_E1000_NAPI
|
/* XXX only using ring 0 for napi */
|
if (likely(netif_rx_schedule_prep(netdev, &adapter->rx_ring[0].napi))) {
|
adapter->total_tx_bytes = 0;
|
adapter->total_tx_packets = 0;
|
adapter->total_rx_bytes = 0;
|
adapter->total_rx_packets = 0;
|
__netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
|
} else {
|
atomic_dec(&adapter->irq_sem);
|
}
|
#else
|
adapter->total_tx_bytes = 0;
|
adapter->total_rx_bytes = 0;
|
adapter->total_tx_packets = 0;
|
adapter->total_rx_packets = 0;
|
adapter->data_received = 0;
|
|
for (i = 0; i < E1000_MAX_INTR; i++) {
|
rx_cleaned = 0;
|
for (j = 0; j < adapter->num_rx_queues; j++)
|
rx_cleaned |= adapter->clean_rx(adapter,
|
&adapter->rx_ring[j], &time_stamp);
|
|
tx_cleaned = 0;
|
for (j = 0 ; j < adapter->num_tx_queues ; j++)
|
tx_cleaned |= e1000_clean_tx_irq(adapter,
|
&adapter->tx_ring[j]);
|
|
if (!rx_cleaned && !tx_cleaned)
|
break;
|
}
|
|
if (likely(adapter->itr_setting & 3))
|
e1000_set_itr(adapter);
|
#endif
|
|
if (adapter->data_received)
|
rt_mark_stack_mgr(netdev);
|
|
return RTDM_IRQ_HANDLED;
|
}
|
|
/**
|
* e1000_intr - Interrupt Handler
|
* @irq: interrupt number
|
* @data: pointer to a network interface device structure
|
**/
|
static int e1000_intr(rtdm_irq_t *irq_handle)
|
{
|
struct rtnet_device *netdev = rtdm_irq_get_arg(irq_handle, struct rtnet_device);
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
struct e1000_hw *hw = &adapter->hw;
|
u32 rctl, icr = E1000_READ_REG(hw, E1000_ICR);
|
#ifndef CONFIG_E1000_NAPI
|
int i, j;
|
int rx_cleaned, tx_cleaned;
|
#endif
|
nanosecs_abs_t time_stamp = rtdm_clock_read();
|
if (unlikely(!icr))
|
return RTDM_IRQ_NONE; /* Not our interrupt */
|
|
#ifdef CONFIG_E1000_NAPI
|
/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
|
* not set, then the adapter didn't send an interrupt */
|
if ((adapter->flags & E1000_FLAG_INT_ASSERT_AUTO_MASK) &&
|
!(icr & E1000_ICR_INT_ASSERTED))
|
return IRQ_NONE;
|
|
/* Interrupt Auto-Mask...upon reading ICR,
|
* interrupts are masked. No need for the
|
* IMC write, but it does mean we should
|
* account for it ASAP. */
|
if (likely(hw->mac.type >= e1000_82571))
|
atomic_inc(&adapter->irq_sem);
|
#endif
|
|
if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
|
hw->mac.get_link_status = 1;
|
/* ICH8 workaround-- Call gig speed drop workaround on cable
|
* disconnect (LSC) before accessing any PHY registers */
|
if ((hw->mac.type == e1000_ich8lan) &&
|
(hw->phy.type == e1000_phy_igp_3) &&
|
(!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)))
|
e1000_gig_downshift_workaround_ich8lan(hw);
|
|
/* 80003ES2LAN workaround--
|
* For packet buffer work-around on link down event;
|
* disable receives here in the ISR and
|
* reset adapter in watchdog
|
*/
|
if (rtnetif_carrier_ok(netdev) &&
|
(adapter->flags & E1000_FLAG_RX_NEEDS_RESTART)) {
|
/* disable receives */
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
|
adapter->flags |= E1000_FLAG_RX_RESTART_NOW;
|
}
|
/* guard against interrupt when we're going down */
|
//if (!test_bit(__E1000_DOWN, &adapter->state))
|
// mod_timer(&adapter->watchdog_timer, jiffies + 1);
|
}
|
|
#ifdef CONFIG_E1000_NAPI
|
if (hw->mac.type < e1000_82571) {
|
/* disable interrupts, without the synchronize_irq bit */
|
atomic_inc(&adapter->irq_sem);
|
E1000_WRITE_REG(hw, E1000_IMC, ~0);
|
E1000_WRITE_FLUSH(hw);
|
}
|
/* XXX only using ring 0 for napi */
|
if (likely(netif_rx_schedule_prep(netdev, &adapter->rx_ring[0].napi))) {
|
adapter->total_tx_bytes = 0;
|
adapter->total_tx_packets = 0;
|
adapter->total_rx_bytes = 0;
|
adapter->total_rx_packets = 0;
|
__netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
|
} else {
|
atomic_dec(&adapter->irq_sem);
|
}
|
#else
|
/* Writing IMC and IMS is needed for 82547.
|
* Due to Hub Link bus being occupied, an interrupt
|
* de-assertion message is not able to be sent.
|
* When an interrupt assertion message is generated later,
|
* two messages are re-ordered and sent out.
|
* That causes APIC to think 82547 is in de-assertion
|
* state, while 82547 is in assertion state, resulting
|
* in dead lock. Writing IMC forces 82547 into
|
* de-assertion state.
|
*/
|
if (hw->mac.type == e1000_82547 || hw->mac.type == e1000_82547_rev_2) {
|
atomic_inc(&adapter->irq_sem);
|
E1000_WRITE_REG(hw, E1000_IMC, ~0);
|
}
|
|
adapter->data_received = 0;
|
adapter->total_tx_bytes = 0;
|
adapter->total_rx_bytes = 0;
|
adapter->total_tx_packets = 0;
|
adapter->total_rx_packets = 0;
|
|
for (i = 0; i < E1000_MAX_INTR; i++) {
|
rx_cleaned = 0;
|
for (j = 0; j < adapter->num_rx_queues; j++)
|
rx_cleaned |= adapter->clean_rx(adapter,
|
&adapter->rx_ring[j], &time_stamp);
|
|
tx_cleaned = 0;
|
for (j = 0 ; j < adapter->num_tx_queues ; j++)
|
tx_cleaned |= e1000_clean_tx_irq(adapter,
|
&adapter->tx_ring[j]);
|
|
if (!rx_cleaned && !tx_cleaned)
|
break;
|
}
|
|
if (likely(adapter->itr_setting & 3))
|
e1000_set_itr(adapter);
|
|
if (hw->mac.type == e1000_82547 || hw->mac.type == e1000_82547_rev_2)
|
e1000_irq_enable(adapter);
|
|
#endif
|
|
if (adapter->data_received)
|
rt_mark_stack_mgr(netdev);
|
return RTDM_IRQ_HANDLED;
|
}
|
|
#ifdef CONFIG_E1000_NAPI
|
/**
|
* e1000_poll - NAPI Rx polling callback
|
* @napi: struct associated with this polling callback
|
* @budget: amount of packets driver is allowed to process this poll
|
**/
|
static int e1000_poll(struct napi_struct *napi, int budget)
|
{
|
struct e1000_rx_ring *rx_ring = container_of(napi, struct e1000_rx_ring,
|
napi);
|
struct e1000_adapter *adapter = rx_ring->adapter;
|
struct net_device *netdev = adapter->netdev;
|
int tx_clean_complete = 1, work_done = 0;
|
int i;
|
|
/* FIXME: i think this code is un-necessary when using base netdev */
|
/* Keep link state information with original netdev */
|
if (!rtnetif_carrier_ok(netdev))
|
goto quit_polling;
|
|
/* e1000_poll is called per-cpu. This lock protects
|
* tx_ring[i] from being cleaned by multiple cpus
|
* simultaneously. A failure obtaining the lock means
|
* tx_ring[i] is currently being cleaned anyway. */
|
for (i = 0; i < adapter->num_tx_queues; i++) {
|
#ifdef CONFIG_E1000_MQ
|
if (spin_trylock(&adapter->tx_ring[i].tx_queue_lock)) {
|
tx_clean_complete &= e1000_clean_tx_irq(adapter,
|
&adapter->tx_ring[i]);
|
spin_unlock(&adapter->tx_ring[i].tx_queue_lock);
|
}
|
#else
|
if (spin_trylock(&adapter->tx_queue_lock)) {
|
tx_clean_complete &= e1000_clean_tx_irq(adapter,
|
&adapter->tx_ring[i]);
|
spin_unlock(&adapter->tx_queue_lock);
|
}
|
#endif
|
}
|
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
adapter->clean_rx(adapter, &adapter->rx_ring[i],
|
&work_done, budget);
|
}
|
|
/* If no Tx and not enough Rx work done, exit the polling mode */
|
if ((tx_clean_complete && (work_done == 0)) ||
|
!rtnetif_running(netdev)) {
|
quit_polling:
|
if (likely(adapter->itr_setting & 3))
|
e1000_set_itr(adapter);
|
netif_rx_complete(netdev, napi);
|
if (test_bit(__E1000_DOWN, &adapter->state))
|
atomic_dec(&adapter->irq_sem);
|
else
|
e1000_irq_enable(adapter);
|
return 0;
|
}
|
|
/* need to make sure the stack is aware of a tx-only poll loop */
|
if (!tx_clean_complete)
|
work_done = budget;
|
|
return work_done;
|
}
|
|
#endif
|
/**
|
* e1000_clean_tx_irq - Reclaim resources after transmit completes
|
* @adapter: board private structure
|
*
|
* the return value indicates whether actual cleaning was done, there
|
* is no guarantee that everything was cleaned
|
**/
|
static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *tx_ring)
|
{
|
struct net_device *netdev = adapter->netdev;
|
struct e1000_tx_desc *tx_desc, *eop_desc;
|
struct e1000_buffer *buffer_info;
|
unsigned int i, eop;
|
#ifdef CONFIG_E1000_NAPI
|
unsigned int count = 0;
|
#endif
|
bool cleaned = FALSE;
|
bool retval = TRUE;
|
unsigned int total_tx_bytes=0, total_tx_packets=0;
|
|
|
i = tx_ring->next_to_clean;
|
eop = tx_ring->buffer_info[i].next_to_watch;
|
eop_desc = E1000_TX_DESC(*tx_ring, eop);
|
|
while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
|
for (cleaned = FALSE; !cleaned; ) {
|
tx_desc = E1000_TX_DESC(*tx_ring, i);
|
buffer_info = &tx_ring->buffer_info[i];
|
cleaned = (i == eop);
|
|
#ifdef CONFIG_E1000_MQ
|
tx_ring->tx_stats.bytes += buffer_info->length;
|
#endif
|
if (cleaned) {
|
struct sk_buff *skb = buffer_info->skb;
|
#ifdef NETIF_F_TSO
|
unsigned int segs, bytecount;
|
segs = skb_shinfo(skb)->gso_segs ?: 1;
|
/* multiply data chunks by size of headers */
|
bytecount = ((segs - 1) * skb_headlen(skb)) +
|
skb->len;
|
total_tx_packets += segs;
|
total_tx_bytes += bytecount;
|
#else
|
total_tx_packets++;
|
total_tx_bytes += skb->len;
|
#endif
|
}
|
e1000_unmap_and_free_tx_resource(adapter, buffer_info);
|
tx_desc->upper.data = 0;
|
|
if (unlikely(++i == tx_ring->count)) i = 0;
|
}
|
|
#ifdef CONFIG_E1000_MQ
|
tx_ring->tx_stats.packets++;
|
#endif
|
eop = tx_ring->buffer_info[i].next_to_watch;
|
eop_desc = E1000_TX_DESC(*tx_ring, eop);
|
#ifdef CONFIG_E1000_NAPI
|
#define E1000_TX_WEIGHT 64
|
/* weight of a sort for tx, to avoid endless transmit cleanup */
|
if (count++ == E1000_TX_WEIGHT) {
|
retval = FALSE;
|
break;
|
}
|
#endif
|
}
|
|
tx_ring->next_to_clean = i;
|
|
#define TX_WAKE_THRESHOLD 32
|
if (unlikely(cleaned && rtnetif_carrier_ok(netdev) &&
|
E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
|
/* Make sure that anybody stopping the queue after this
|
* sees the new next_to_clean.
|
*/
|
smp_mb();
|
|
if (rtnetif_queue_stopped(netdev) &&
|
!(test_bit(__E1000_DOWN, &adapter->state))) {
|
rtnetif_wake_queue(netdev);
|
++adapter->restart_queue;
|
}
|
}
|
|
if (adapter->detect_tx_hung) {
|
/* Detect a transmit hang in hardware, this serializes the
|
* check with the clearing of time_stamp and movement of i */
|
adapter->detect_tx_hung = FALSE;
|
if (tx_ring->buffer_info[eop].dma &&
|
time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
|
(adapter->tx_timeout_factor * HZ))
|
&& !(E1000_READ_REG(&adapter->hw, E1000_STATUS) &
|
E1000_STATUS_TXOFF)) {
|
|
/* detected Tx unit hang */
|
DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
|
" Tx Queue <%lu>\n"
|
" TDH <%x>\n"
|
" TDT <%x>\n"
|
" next_to_use <%x>\n"
|
" next_to_clean <%x>\n"
|
"buffer_info[next_to_clean]\n"
|
" time_stamp <%lx>\n"
|
" next_to_watch <%x>\n"
|
" jiffies <%lx>\n"
|
" next_to_watch.status <%x>\n",
|
(unsigned long)((tx_ring - adapter->tx_ring) /
|
sizeof(struct e1000_tx_ring)),
|
readl(adapter->hw.hw_addr + tx_ring->tdh),
|
readl(adapter->hw.hw_addr + tx_ring->tdt),
|
tx_ring->next_to_use,
|
tx_ring->next_to_clean,
|
tx_ring->buffer_info[eop].time_stamp,
|
eop,
|
jiffies,
|
eop_desc->upper.fields.status);
|
rtnetif_stop_queue(netdev);
|
}
|
}
|
adapter->total_tx_bytes += total_tx_bytes;
|
adapter->total_tx_packets += total_tx_packets;
|
adapter->net_stats.tx_bytes += total_tx_bytes;
|
adapter->net_stats.tx_packets += total_tx_packets;
|
return retval;
|
}
|
|
/**
|
* e1000_rx_checksum - Receive Checksum Offload for 82543
|
* @adapter: board private structure
|
* @status_err: receive descriptor status and error fields
|
* @csum: receive descriptor csum field
|
* @sk_buff: socket buffer with received data
|
**/
|
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
|
u32 csum, struct sk_buff *skb)
|
{
|
u16 status = (u16)status_err;
|
u8 errors = (u8)(status_err >> 24);
|
skb->ip_summed = CHECKSUM_NONE;
|
|
/* 82543 or newer only */
|
if (unlikely(adapter->hw.mac.type < e1000_82543)) return;
|
/* Ignore Checksum bit is set */
|
if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
|
/* TCP/UDP checksum error bit is set */
|
if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
|
/* let the stack verify checksum errors */
|
adapter->hw_csum_err++;
|
return;
|
}
|
/* TCP/UDP Checksum has not been calculated */
|
if (adapter->hw.mac.type <= e1000_82547_rev_2) {
|
if (!(status & E1000_RXD_STAT_TCPCS))
|
return;
|
} else {
|
if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
|
return;
|
}
|
/* It must be a TCP or UDP packet with a valid checksum */
|
if (likely(status & E1000_RXD_STAT_TCPCS)) {
|
/* TCP checksum is good */
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
} else if (adapter->hw.mac.type > e1000_82547_rev_2) {
|
/* IP fragment with UDP payload */
|
/* Hardware complements the payload checksum, so we undo it
|
* and then put the value in host order for further stack use.
|
*/
|
csum = ntohl(csum ^ 0xFFFF);
|
skb->csum = csum;
|
skb->ip_summed = CHECKSUM_COMPLETE;
|
}
|
adapter->hw_csum_good++;
|
}
|
|
/**
|
* e1000_receive_skb - helper function to handle rx indications
|
* @adapter: board private structure
|
* @status: descriptor status field as written by hardware
|
* @vlan: descriptor vlan field as written by hardware (no le/be conversion)
|
* @skb: pointer to sk_buff to be indicated to stack
|
**/
|
static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
|
u16 vlan, struct sk_buff *skb)
|
{
|
#ifdef CONFIG_E1000_NAPI
|
#ifdef NETIF_F_HW_VLAN_TX
|
if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) {
|
vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
|
le16_to_cpu(vlan) &
|
E1000_RXD_SPC_VLAN_MASK);
|
} else {
|
netif_receive_skb(skb);
|
}
|
#else
|
netif_receive_skb(skb);
|
#endif
|
#else /* CONFIG_E1000_NAPI */
|
#ifdef NETIF_F_HW_VLAN_TX
|
if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) {
|
vlan_hwaccel_rx(skb, adapter->vlgrp,
|
le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK);
|
} else {
|
netif_rx(skb);
|
}
|
#else
|
rtnetif_rx(skb);
|
#endif
|
#endif /* CONFIG_E1000_NAPI */
|
}
|
|
#ifdef CONFIG_E1000_NAPI
|
/* NOTE: these new jumbo frame routines rely on NAPI because of the
|
* pskb_may_pull call, which eventually must call kmap_atomic which you cannot
|
* call from hard irq context */
|
|
/**
|
* e1000_consume_page - helper function
|
**/
|
static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
|
u16 length)
|
{
|
bi->page = NULL;
|
skb->len += length;
|
skb->data_len += length;
|
skb->truesize += length;
|
}
|
|
/**
|
* e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
|
* @adapter: board private structure
|
*
|
* the return value indicates whether actual cleaning was done, there
|
* is no guarantee that everything was cleaned
|
**/
|
static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
int *work_done, int work_to_do)
|
{
|
struct net_device *netdev = adapter->netdev;
|
struct pci_dev *pdev = adapter->pdev;
|
struct e1000_rx_desc *rx_desc, *next_rxd;
|
struct e1000_rx_buffer *buffer_info, *next_buffer;
|
unsigned long irq_flags;
|
u32 length;
|
unsigned int i;
|
int cleaned_count = 0;
|
bool cleaned = FALSE;
|
unsigned int total_rx_bytes=0, total_rx_packets=0;
|
|
i = rx_ring->next_to_clean;
|
rx_desc = E1000_RX_DESC(*rx_ring, i);
|
buffer_info = &rx_ring->buffer_info[i];
|
|
while (rx_desc->status & E1000_RXD_STAT_DD) {
|
struct sk_buff *skb;
|
u8 status;
|
|
if (*work_done >= work_to_do)
|
break;
|
(*work_done)++;
|
|
status = rx_desc->status;
|
skb = buffer_info->skb;
|
buffer_info->skb = NULL;
|
|
if (++i == rx_ring->count) i = 0;
|
next_rxd = E1000_RX_DESC(*rx_ring, i);
|
prefetch(next_rxd);
|
|
next_buffer = &rx_ring->buffer_info[i];
|
|
cleaned = TRUE;
|
cleaned_count++;
|
dma_unmap_page(&pdev->dev,
|
buffer_info->dma,
|
PAGE_SIZE,
|
DMA_FROM_DEVICE);
|
buffer_info->dma = 0;
|
|
length = le16_to_cpu(rx_desc->length);
|
|
/* errors is only valid for DD + EOP descriptors */
|
if (unlikely((status & E1000_RXD_STAT_EOP) &&
|
(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
|
u8 last_byte = *(skb->data + length - 1);
|
if (TBI_ACCEPT(&adapter->hw, status,
|
rx_desc->errors, length, last_byte,
|
adapter->min_frame_size,
|
adapter->max_frame_size)) {
|
rtdm_lock_get_irqsave(&adapter->stats_lock,
|
irq_flags);
|
e1000_tbi_adjust_stats_82543(&adapter->hw,
|
&adapter->stats,
|
length, skb->data,
|
adapter->max_frame_size);
|
rtdm_lock_put_irqrestore(&adapter->stats_lock,
|
irq_flags);
|
length--;
|
} else {
|
/* recycle both page and skb */
|
buffer_info->skb = skb;
|
/* an error means any chain goes out the window
|
* too */
|
if (rx_ring->rx_skb_top)
|
kfree_rtskb(rx_ring->rx_skb_top);
|
rx_ring->rx_skb_top = NULL;
|
goto next_desc;
|
}
|
}
|
|
#define rxtop rx_ring->rx_skb_top
|
if (!(status & E1000_RXD_STAT_EOP)) {
|
/* this descriptor is only the beginning (or middle) */
|
if (!rxtop) {
|
/* this is the beginning of a chain */
|
rxtop = skb;
|
skb_fill_page_desc(rxtop, 0, buffer_info->page,
|
0, length);
|
} else {
|
/* this is the middle of a chain */
|
skb_fill_page_desc(rxtop,
|
skb_shinfo(rxtop)->nr_frags,
|
buffer_info->page, 0, length);
|
/* re-use the skb, only consumed the page */
|
buffer_info->skb = skb;
|
}
|
e1000_consume_page(buffer_info, rxtop, length);
|
goto next_desc;
|
} else {
|
if (rxtop) {
|
/* end of the chain */
|
skb_fill_page_desc(rxtop,
|
skb_shinfo(rxtop)->nr_frags,
|
buffer_info->page, 0, length);
|
/* re-use the current skb, we only consumed the
|
* page */
|
buffer_info->skb = skb;
|
skb = rxtop;
|
rxtop = NULL;
|
e1000_consume_page(buffer_info, skb, length);
|
} else {
|
/* no chain, got EOP, this buf is the packet
|
* copybreak to save the put_page/alloc_page */
|
if (length <= copybreak &&
|
skb_tailroom(skb) >= length) {
|
u8 *vaddr;
|
vaddr = kmap_atomic(buffer_info->page,
|
KM_SKB_DATA_SOFTIRQ);
|
memcpy(skb_tail_pointer(skb), vaddr, length);
|
kunmap_atomic(vaddr,
|
KM_SKB_DATA_SOFTIRQ);
|
/* re-use the page, so don't erase
|
* buffer_info->page */
|
rtskb_put(skb, length);
|
} else {
|
skb_fill_page_desc(skb, 0,
|
buffer_info->page, 0,
|
length);
|
e1000_consume_page(buffer_info, skb,
|
length);
|
}
|
}
|
}
|
|
/* Receive Checksum Offload XXX recompute due to CRC strip? */
|
e1000_rx_checksum(adapter,
|
(u32)(status) |
|
((u32)(rx_desc->errors) << 24),
|
le16_to_cpu(rx_desc->csum), skb);
|
|
pskb_trim(skb, skb->len - 4);
|
|
/* probably a little skewed due to removing CRC */
|
total_rx_bytes += skb->len;
|
total_rx_packets++;
|
|
/* eth type trans needs skb->data to point to something */
|
if (!pskb_may_pull(skb, ETH_HLEN)) {
|
DPRINTK(DRV, ERR, "__pskb_pull_tail failed.\n");
|
kfree_rtskb(skb);
|
goto next_desc;
|
}
|
|
skb->protocol = rt_eth_type_trans(skb, netdev);
|
|
e1000_receive_skb(adapter, status, rx_desc->special, skb);
|
adapter->data_received = 1; // Set flag for the main interrupt routine
|
|
netdev->last_rx = jiffies;
|
#ifdef CONFIG_E1000_MQ
|
rx_ring->rx_stats.packets++;
|
rx_ring->rx_stats.bytes += length;
|
#endif
|
|
next_desc:
|
rx_desc->status = 0;
|
|
/* return some buffers to hardware, one at a time is too slow */
|
if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
|
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
|
cleaned_count = 0;
|
}
|
|
/* use prefetched values */
|
rx_desc = next_rxd;
|
buffer_info = next_buffer;
|
}
|
rx_ring->next_to_clean = i;
|
|
cleaned_count = E1000_DESC_UNUSED(rx_ring);
|
if (cleaned_count)
|
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
|
|
adapter->total_rx_packets += total_rx_packets;
|
adapter->total_rx_bytes += total_rx_bytes;
|
adapter->net_stats.rx_bytes += total_rx_bytes;
|
adapter->net_stats.rx_packets += total_rx_packets;
|
return cleaned;
|
}
|
#endif /* NAPI */
|
|
|
/**
|
* e1000_clean_rx_irq - Send received data up the network stack; legacy
|
* @adapter: board private structure
|
*
|
* the return value indicates whether actual cleaning was done, there
|
* is no guarantee that everything was cleaned
|
**/
|
#ifdef CONFIG_E1000_NAPI
|
static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
int *work_done, int work_to_do)
|
#else
|
static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
nanosecs_abs_t *time_stamp)
|
#endif
|
{
|
struct net_device *netdev = adapter->netdev;
|
struct pci_dev *pdev = adapter->pdev;
|
struct e1000_rx_desc *rx_desc, *next_rxd;
|
struct e1000_rx_buffer *buffer_info, *next_buffer;
|
u32 length;
|
unsigned int i;
|
int cleaned_count = 0;
|
bool cleaned = FALSE;
|
unsigned int total_rx_bytes=0, total_rx_packets=0;
|
|
// rtdm_printk("<2> e1000_clean_rx_irq %i\n", __LINE__);
|
|
i = rx_ring->next_to_clean;
|
rx_desc = E1000_RX_DESC(*rx_ring, i);
|
buffer_info = &rx_ring->buffer_info[i];
|
|
while (rx_desc->status & E1000_RXD_STAT_DD) {
|
struct sk_buff *skb;
|
u8 status;
|
|
#ifdef CONFIG_E1000_NAPI
|
if (*work_done >= work_to_do)
|
break;
|
(*work_done)++;
|
#endif
|
status = rx_desc->status;
|
skb = buffer_info->skb;
|
buffer_info->skb = NULL;
|
|
prefetch(skb->data - NET_IP_ALIGN);
|
|
if (++i == rx_ring->count) i = 0;
|
next_rxd = E1000_RX_DESC(*rx_ring, i);
|
prefetch(next_rxd);
|
|
next_buffer = &rx_ring->buffer_info[i];
|
|
cleaned = TRUE;
|
cleaned_count++;
|
dma_unmap_single(&pdev->dev,
|
buffer_info->dma,
|
adapter->rx_buffer_len,
|
DMA_FROM_DEVICE);
|
buffer_info->dma = 0;
|
|
length = le16_to_cpu(rx_desc->length);
|
|
/* !EOP means multiple descriptors were used to store a single
|
* packet, also make sure the frame isn't just CRC only */
|
if (unlikely(!(status & E1000_RXD_STAT_EOP) || (length <= 4))) {
|
/* All receives must fit into a single buffer */
|
E1000_DBG("%s: Receive packet consumed multiple"
|
" buffers\n", netdev->name);
|
/* recycle */
|
buffer_info->skb = skb;
|
goto next_desc;
|
}
|
|
if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
|
u8 last_byte = *(skb->data + length - 1);
|
if (TBI_ACCEPT(&adapter->hw, status,
|
rx_desc->errors, length, last_byte,
|
adapter->min_frame_size,
|
adapter->max_frame_size)) {
|
length--;
|
} else {
|
/* recycle */
|
buffer_info->skb = skb;
|
goto next_desc;
|
}
|
}
|
|
/* adjust length to remove Ethernet CRC, this must be
|
* done after the TBI_ACCEPT workaround above */
|
length -= 4;
|
|
/* probably a little skewed due to removing CRC */
|
total_rx_bytes += length;
|
total_rx_packets++;
|
|
rtskb_put(skb, length);
|
|
/* Receive Checksum Offload */
|
e1000_rx_checksum(adapter,
|
(u32)(status) |
|
((u32)(rx_desc->errors) << 24),
|
le16_to_cpu(rx_desc->csum), skb);
|
|
skb->protocol = rt_eth_type_trans(skb, netdev);
|
skb->time_stamp = *time_stamp;
|
|
e1000_receive_skb(adapter, status, rx_desc->special, skb);
|
adapter->data_received = 1; // Set flag for the main interrupt routine
|
|
// netdev->last_rx = jiffies;
|
#ifdef CONFIG_E1000_MQ
|
rx_ring->rx_stats.packets++;
|
rx_ring->rx_stats.bytes += length;
|
#endif
|
|
next_desc:
|
rx_desc->status = 0;
|
|
/* return some buffers to hardware, one at a time is too slow */
|
if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
|
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
|
cleaned_count = 0;
|
}
|
|
/* use prefetched values */
|
rx_desc = next_rxd;
|
buffer_info = next_buffer;
|
}
|
rx_ring->next_to_clean = i;
|
|
cleaned_count = E1000_DESC_UNUSED(rx_ring);
|
if (cleaned_count)
|
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
|
|
adapter->total_rx_packets += total_rx_packets;
|
adapter->total_rx_bytes += total_rx_bytes;
|
adapter->net_stats.rx_bytes += total_rx_bytes;
|
adapter->net_stats.rx_packets += total_rx_packets;
|
return cleaned;
|
}
|
|
/**
|
* e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
|
* @adapter: board private structure
|
*
|
* the return value indicates whether actual cleaning was done, there
|
* is no guarantee that everything was cleaned
|
**/
|
#ifdef CONFIG_E1000_NAPI
|
static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
int *work_done, int work_to_do)
|
#else
|
static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
nanosecs_abs_t *time_stamp)
|
#endif
|
{
|
#ifdef CONFIG_E1000_DISABLE_PACKET_SPLIT
|
return true;
|
|
#else
|
|
union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
|
struct net_device *netdev = adapter->netdev;
|
struct pci_dev *pdev = adapter->pdev;
|
struct e1000_rx_buffer *buffer_info, *next_buffer;
|
struct e1000_ps_page *ps_page;
|
struct e1000_ps_page_dma *ps_page_dma;
|
struct sk_buff *skb;
|
unsigned int i, j;
|
u32 length, staterr;
|
int cleaned_count = 0;
|
bool cleaned = FALSE;
|
unsigned int total_rx_bytes=0, total_rx_packets=0;
|
|
i = rx_ring->next_to_clean;
|
rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
|
staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
|
buffer_info = &rx_ring->buffer_info[i];
|
|
while (staterr & E1000_RXD_STAT_DD) {
|
ps_page = &rx_ring->ps_page[i];
|
ps_page_dma = &rx_ring->ps_page_dma[i];
|
#ifdef CONFIG_E1000_NAPI
|
if (unlikely(*work_done >= work_to_do))
|
break;
|
(*work_done)++;
|
#endif
|
skb = buffer_info->skb;
|
|
/* in the packet split case this is header only */
|
prefetch(skb->data - NET_IP_ALIGN);
|
|
if (++i == rx_ring->count) i = 0;
|
next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
|
prefetch(next_rxd);
|
|
next_buffer = &rx_ring->buffer_info[i];
|
|
cleaned = TRUE;
|
cleaned_count++;
|
dma_unmap_single(&pdev->dev, buffer_info->dma,
|
adapter->rx_ps_bsize0,
|
DMA_FROM_DEVICE);
|
buffer_info->dma = 0;
|
|
if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
|
E1000_DBG("%s: Packet Split buffers didn't pick up"
|
" the full packet\n", netdev->name);
|
dev_kfree_skb_irq(skb);
|
goto next_desc;
|
}
|
|
if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
|
dev_kfree_skb_irq(skb);
|
goto next_desc;
|
}
|
|
length = le16_to_cpu(rx_desc->wb.middle.length0);
|
|
if (unlikely(!length)) {
|
E1000_DBG("%s: Last part of the packet spanning"
|
" multiple descriptors\n", netdev->name);
|
dev_kfree_skb_irq(skb);
|
goto next_desc;
|
}
|
|
/* Good Receive */
|
rtskb_put(skb, length);
|
#ifdef CONFIG_E1000_MQ
|
rx_ring->rx_stats.packets++;
|
rx_ring->rx_stats.bytes += skb->len;
|
#endif
|
|
#ifdef CONFIG_E1000_NAPI
|
{
|
/* this looks ugly, but it seems compiler issues make it
|
more efficient than reusing j */
|
int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
|
|
/* page alloc/put takes too long and effects small packet
|
* throughput, so unsplit small packets and save the alloc/put
|
* only valid in softirq (napi) context to call kmap_* */
|
if (l1 && (l1 <= copybreak) &&
|
((length + l1) <= adapter->rx_ps_bsize0)) {
|
u8 *vaddr;
|
/* there is no documentation about how to call
|
* kmap_atomic, so we can't hold the mapping
|
* very long */
|
pci_dma_sync_single_for_cpu(pdev,
|
ps_page_dma->ps_page_dma[0],
|
PAGE_SIZE,
|
PCI_DMA_FROMDEVICE);
|
vaddr = kmap_atomic(ps_page->ps_page[0],
|
KM_SKB_DATA_SOFTIRQ);
|
memcpy(skb_tail_pointer(skb), vaddr, l1);
|
kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
|
pci_dma_sync_single_for_device(pdev,
|
ps_page_dma->ps_page_dma[0],
|
PAGE_SIZE, PCI_DMA_FROMDEVICE);
|
/* remove the CRC */
|
l1 -= 4;
|
rtskb_put(skb, l1);
|
goto copydone;
|
} /* if */
|
}
|
#endif
|
|
for (j = 0; j < adapter->rx_ps_pages; j++) {
|
if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
|
break;
|
dma_unmap_page(&pdev->dev, ps_page_dma->ps_page_dma[j],
|
PAGE_SIZE, DMA_FROM_DEVICE);
|
ps_page_dma->ps_page_dma[j] = 0;
|
skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
|
length);
|
ps_page->ps_page[j] = NULL;
|
skb->len += length;
|
skb->data_len += length;
|
skb->truesize += length;
|
}
|
|
/* strip the ethernet crc, problem is we're using pages now so
|
* this whole operation can get a little cpu intensive */
|
pskb_trim(skb, skb->len - 4);
|
|
#ifdef CONFIG_E1000_NAPI
|
copydone:
|
#endif
|
total_rx_bytes += skb->len;
|
total_rx_packets++;
|
|
e1000_rx_checksum(adapter, staterr,
|
le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
|
skb->protocol = rt_eth_type_trans(skb, netdev);
|
|
if (likely(rx_desc->wb.upper.header_status &
|
cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
|
adapter->rx_hdr_split++;
|
|
e1000_receive_skb(adapter, staterr, rx_desc->wb.middle.vlan,
|
skb);
|
netdev->last_rx = jiffies;
|
|
next_desc:
|
rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
|
buffer_info->skb = NULL;
|
|
/* return some buffers to hardware, one at a time is too slow */
|
if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
|
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
|
cleaned_count = 0;
|
}
|
|
/* use prefetched values */
|
rx_desc = next_rxd;
|
buffer_info = next_buffer;
|
|
staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
|
}
|
rx_ring->next_to_clean = i;
|
|
cleaned_count = E1000_DESC_UNUSED(rx_ring);
|
if (cleaned_count)
|
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
|
|
adapter->total_rx_packets += total_rx_packets;
|
adapter->total_rx_bytes += total_rx_bytes;
|
adapter->net_stats.rx_bytes += total_rx_bytes;
|
adapter->net_stats.rx_packets += total_rx_packets;
|
return cleaned;
|
#endif
|
}
|
|
#ifdef CONFIG_E1000_NAPI
|
/**
|
* e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
|
* @adapter: address of board private structure
|
* @rx_ring: pointer to receive ring structure
|
* @cleaned_count: number of buffers to allocate this pass
|
**/
|
static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
int cleaned_count)
|
{
|
struct net_device *netdev = adapter->netdev;
|
struct pci_dev *pdev = adapter->pdev;
|
struct e1000_rx_desc *rx_desc;
|
struct e1000_rx_buffer *buffer_info;
|
struct sk_buff *skb;
|
unsigned int i;
|
unsigned int bufsz = 256 -
|
16 /*for skb_reserve */ -
|
NET_IP_ALIGN;
|
|
i = rx_ring->next_to_use;
|
buffer_info = &rx_ring->buffer_info[i];
|
|
while (cleaned_count--) {
|
skb = buffer_info->skb;
|
if (skb) {
|
skb_trim(skb, 0);
|
goto check_page;
|
}
|
|
skb = rtnetdev_alloc_rtskb(netdev, bufsz);
|
if (unlikely(!skb)) {
|
/* Better luck next round */
|
adapter->alloc_rx_buff_failed++;
|
break;
|
}
|
|
/* Fix for errata 23, can't cross 64kB boundary */
|
if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
|
struct sk_buff *oldskb = skb;
|
DPRINTK(PROBE, ERR, "skb align check failed: %u bytes "
|
"at %p\n", bufsz, skb->data);
|
/* Try again, without freeing the previous */
|
skb = rtnetdev_alloc_rtskb(netdev, bufsz);
|
/* Failed allocation, critical failure */
|
if (!skb) {
|
kfree_rtskb(oldskb);
|
adapter->alloc_rx_buff_failed++;
|
break;
|
}
|
|
if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
|
/* give up */
|
kfree_rtskb(skb);
|
kfree_rtskb(oldskb);
|
adapter->alloc_rx_buff_failed++;
|
break; /* while !buffer_info->skb */
|
}
|
|
/* Use new allocation */
|
kfree_rtskb(oldskb);
|
}
|
/* Make buffer alignment 2 beyond a 16 byte boundary
|
* this will result in a 16 byte aligned IP header after
|
* the 14 byte MAC header is removed
|
*/
|
skb_reserve(skb, NET_IP_ALIGN);
|
|
buffer_info->skb = skb;
|
check_page:
|
/* allocate a new page if necessary */
|
if (!buffer_info->page) {
|
buffer_info->page = alloc_page(GFP_ATOMIC);
|
if (unlikely(!buffer_info->page)) {
|
adapter->alloc_rx_buff_failed++;
|
break;
|
}
|
}
|
|
if (!buffer_info->dma)
|
buffer_info->dma = dma_map_page(&pdev->dev,
|
buffer_info->page, 0,
|
PAGE_SIZE,
|
DMA_FROM_DEVICE);
|
|
rx_desc = E1000_RX_DESC(*rx_ring, i);
|
rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
|
|
if (unlikely(++i == rx_ring->count))
|
i = 0;
|
buffer_info = &rx_ring->buffer_info[i];
|
}
|
|
if (likely(rx_ring->next_to_use != i)) {
|
rx_ring->next_to_use = i;
|
if (unlikely(i-- == 0))
|
i = (rx_ring->count - 1);
|
|
/* Force memory writes to complete before letting h/w
|
* know there are new descriptors to fetch. (Only
|
* applicable for weak-ordered memory model archs,
|
* such as IA-64). */
|
wmb();
|
writel(i, adapter->hw.hw_addr + rx_ring->rdt);
|
}
|
}
|
#endif /* NAPI */
|
|
/**
|
* e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
|
* @adapter: address of board private structure
|
**/
|
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
int cleaned_count)
|
{
|
struct net_device *netdev = adapter->netdev;
|
struct pci_dev *pdev = adapter->pdev;
|
struct e1000_rx_desc *rx_desc;
|
struct e1000_rx_buffer *buffer_info;
|
struct sk_buff *skb;
|
unsigned int i;
|
unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
|
|
i = rx_ring->next_to_use;
|
buffer_info = &rx_ring->buffer_info[i];
|
|
while (cleaned_count--) {
|
skb = buffer_info->skb;
|
if (skb) {
|
rtskb_trim(skb, 0);
|
goto map_skb;
|
}
|
|
skb = rtnetdev_alloc_rtskb(netdev, bufsz);
|
if (unlikely(!skb)) {
|
/* Better luck next round */
|
adapter->alloc_rx_buff_failed++;
|
break;
|
}
|
|
/* Fix for errata 23, can't cross 64kB boundary */
|
if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
|
struct sk_buff *oldskb = skb;
|
DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
|
"at %p\n", bufsz, skb->data);
|
/* Try again, without freeing the previous */
|
skb = rtnetdev_alloc_rtskb(netdev, bufsz);
|
/* Failed allocation, critical failure */
|
if (!skb) {
|
kfree_rtskb(oldskb);
|
adapter->alloc_rx_buff_failed++;
|
break;
|
}
|
|
if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
|
/* give up */
|
kfree_rtskb(skb);
|
kfree_rtskb(oldskb);
|
adapter->alloc_rx_buff_failed++;
|
break; /* while !buffer_info->skb */
|
}
|
|
/* Use new allocation */
|
kfree_rtskb(oldskb);
|
}
|
/* Make buffer alignment 2 beyond a 16 byte boundary
|
* this will result in a 16 byte aligned IP header after
|
* the 14 byte MAC header is removed
|
*/
|
skb_reserve(skb, NET_IP_ALIGN);
|
|
buffer_info->skb = skb;
|
map_skb:
|
buffer_info->dma = dma_map_single(&pdev->dev,
|
skb->data,
|
adapter->rx_buffer_len,
|
DMA_FROM_DEVICE);
|
|
/* Fix for errata 23, can't cross 64kB boundary */
|
if (!e1000_check_64k_bound(adapter,
|
(void *)(unsigned long)buffer_info->dma,
|
adapter->rx_buffer_len)) {
|
DPRINTK(RX_ERR, ERR,
|
"dma align check failed: %u bytes at %p\n",
|
adapter->rx_buffer_len,
|
(void *)(unsigned long)buffer_info->dma);
|
kfree_rtskb(skb);
|
buffer_info->skb = NULL;
|
|
dma_unmap_single(&pdev->dev, buffer_info->dma,
|
adapter->rx_buffer_len,
|
DMA_FROM_DEVICE);
|
buffer_info->dma = 0;
|
|
adapter->alloc_rx_buff_failed++;
|
break; /* while !buffer_info->skb */
|
}
|
rx_desc = E1000_RX_DESC(*rx_ring, i);
|
rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
|
|
if (unlikely(++i == rx_ring->count))
|
i = 0;
|
buffer_info = &rx_ring->buffer_info[i];
|
}
|
|
if (likely(rx_ring->next_to_use != i)) {
|
rx_ring->next_to_use = i;
|
if (unlikely(i-- == 0))
|
i = (rx_ring->count - 1);
|
|
/* Force memory writes to complete before letting h/w
|
* know there are new descriptors to fetch. (Only
|
* applicable for weak-ordered memory model archs,
|
* such as IA-64). */
|
wmb();
|
writel(i, adapter->hw.hw_addr + rx_ring->rdt);
|
}
|
}
|
|
/**
|
* e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
|
* @adapter: address of board private structure
|
**/
|
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
int cleaned_count)
|
{
|
}
|
|
/**
|
* e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
|
* @adapter:
|
**/
|
static void e1000_smartspeed(struct e1000_adapter *adapter)
|
{
|
struct e1000_mac_info *mac = &adapter->hw.mac;
|
struct e1000_phy_info *phy = &adapter->hw.phy;
|
u16 phy_status;
|
u16 phy_ctrl;
|
|
if ((phy->type != e1000_phy_igp) || !mac->autoneg ||
|
!(phy->autoneg_advertised & ADVERTISE_1000_FULL))
|
return;
|
|
if (adapter->smartspeed == 0) {
|
/* If Master/Slave config fault is asserted twice,
|
* we assume back-to-back */
|
e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
|
if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
|
e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
|
if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
|
e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
|
if (phy_ctrl & CR_1000T_MS_ENABLE) {
|
phy_ctrl &= ~CR_1000T_MS_ENABLE;
|
e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
|
phy_ctrl);
|
adapter->smartspeed++;
|
if (!e1000_phy_setup_autoneg(&adapter->hw) &&
|
!e1000_read_phy_reg(&adapter->hw, PHY_CONTROL,
|
&phy_ctrl)) {
|
phy_ctrl |= (MII_CR_AUTO_NEG_EN |
|
MII_CR_RESTART_AUTO_NEG);
|
e1000_write_phy_reg(&adapter->hw, PHY_CONTROL,
|
phy_ctrl);
|
}
|
}
|
return;
|
} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
|
/* If still no link, perhaps using 2/3 pair cable */
|
e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
|
phy_ctrl |= CR_1000T_MS_ENABLE;
|
e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
|
if (!e1000_phy_setup_autoneg(&adapter->hw) &&
|
!e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_ctrl)) {
|
phy_ctrl |= (MII_CR_AUTO_NEG_EN |
|
MII_CR_RESTART_AUTO_NEG);
|
e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_ctrl);
|
}
|
}
|
/* Restart process after E1000_SMARTSPEED_MAX iterations */
|
if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
|
adapter->smartspeed = 0;
|
}
|
|
/**
|
* e1000_ioctl -
|
* @netdev:
|
* @ifreq:
|
* @cmd:
|
**/
|
#if 0
|
static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
|
{
|
switch (cmd) {
|
#ifdef SIOCGMIIPHY
|
case SIOCGMIIPHY:
|
case SIOCGMIIREG:
|
case SIOCSMIIREG:
|
return e1000_mii_ioctl(netdev, ifr, cmd);
|
#endif
|
#ifdef ETHTOOL_OPS_COMPAT
|
case SIOCETHTOOL:
|
return ethtool_ioctl(ifr);
|
#endif
|
default:
|
return -EOPNOTSUPP;
|
}
|
}
|
|
#ifdef SIOCGMIIPHY
|
/**
|
* e1000_mii_ioctl -
|
* @netdev:
|
* @ifreq:
|
* @cmd:
|
**/
|
static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
|
int cmd)
|
{
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
struct mii_ioctl_data *data = if_mii(ifr);
|
|
if (adapter->hw.phy.media_type != e1000_media_type_copper)
|
return -EOPNOTSUPP;
|
|
switch (cmd) {
|
case SIOCGMIIPHY:
|
data->phy_id = adapter->hw.phy.addr;
|
break;
|
case SIOCGMIIREG:
|
if (!capable(CAP_NET_ADMIN))
|
return -EPERM;
|
switch (data->reg_num & 0x1F) {
|
case MII_BMCR:
|
data->val_out = adapter->phy_regs.bmcr;
|
break;
|
case MII_BMSR:
|
data->val_out = adapter->phy_regs.bmsr;
|
break;
|
case MII_PHYSID1:
|
data->val_out = (adapter->hw.phy.id >> 16);
|
break;
|
case MII_PHYSID2:
|
data->val_out = (adapter->hw.phy.id & 0xFFFF);
|
break;
|
case MII_ADVERTISE:
|
data->val_out = adapter->phy_regs.advertise;
|
break;
|
case MII_LPA:
|
data->val_out = adapter->phy_regs.lpa;
|
break;
|
case MII_EXPANSION:
|
data->val_out = adapter->phy_regs.expansion;
|
break;
|
case MII_CTRL1000:
|
data->val_out = adapter->phy_regs.ctrl1000;
|
break;
|
case MII_STAT1000:
|
data->val_out = adapter->phy_regs.stat1000;
|
break;
|
case MII_ESTATUS:
|
data->val_out = adapter->phy_regs.estatus;
|
break;
|
default:
|
return -EIO;
|
}
|
break;
|
case SIOCSMIIREG:
|
default:
|
return -EOPNOTSUPP;
|
}
|
return E1000_SUCCESS;
|
}
|
#endif
|
#endif
|
|
void e1000_pci_set_mwi(struct e1000_hw *hw)
|
{
|
struct e1000_adapter *adapter = hw->back;
|
int ret_val = pci_set_mwi(adapter->pdev);
|
|
if (ret_val)
|
DPRINTK(PROBE, ERR, "Error in setting MWI\n");
|
}
|
|
void e1000_pci_clear_mwi(struct e1000_hw *hw)
|
{
|
struct e1000_adapter *adapter = hw->back;
|
|
pci_clear_mwi(adapter->pdev);
|
}
|
|
void e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
|
{
|
struct e1000_adapter *adapter = hw->back;
|
|
pci_read_config_word(adapter->pdev, reg, value);
|
}
|
|
void e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
|
{
|
struct e1000_adapter *adapter = hw->back;
|
|
pci_write_config_word(adapter->pdev, reg, *value);
|
}
|
|
s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
|
{
|
struct e1000_adapter *adapter = hw->back;
|
u16 cap_offset;
|
|
cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
|
if (!cap_offset)
|
return -E1000_ERR_CONFIG;
|
|
pci_read_config_word(adapter->pdev, cap_offset + reg, value);
|
|
return E1000_SUCCESS;
|
}
|
|
#ifdef NETIF_F_HW_VLAN_TX
|
static void e1000_vlan_rx_register(struct net_device *netdev,
|
struct vlan_group *grp)
|
{
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
u32 ctrl, rctl;
|
|
e1000_irq_disable(adapter);
|
adapter->vlgrp = grp;
|
|
if (grp) {
|
/* enable VLAN tag insert/strip */
|
ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
|
ctrl |= E1000_CTRL_VME;
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
|
|
if ((adapter->hw.mac.type != e1000_ich8lan) &&
|
(adapter->hw.mac.type != e1000_ich9lan)) {
|
/* enable VLAN receive filtering */
|
rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
rctl |= E1000_RCTL_VFE;
|
rctl &= ~E1000_RCTL_CFIEN;
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
|
e1000_update_mng_vlan(adapter);
|
}
|
} else {
|
/* disable VLAN tag insert/strip */
|
ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
|
ctrl &= ~E1000_CTRL_VME;
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
|
|
if ((adapter->hw.mac.type != e1000_ich8lan) &&
|
(adapter->hw.mac.type != e1000_ich9lan)) {
|
/* disable VLAN filtering */
|
rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
rctl &= ~E1000_RCTL_VFE;
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
|
if (adapter->mng_vlan_id !=
|
(u16)E1000_MNG_VLAN_NONE) {
|
e1000_vlan_rx_kill_vid(netdev,
|
adapter->mng_vlan_id);
|
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
|
}
|
}
|
}
|
|
e1000_irq_enable(adapter);
|
}
|
|
static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
|
{
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
u32 vfta, index;
|
struct net_device *v_netdev;
|
|
if ((adapter->hw.mng_cookie.status &
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
|
(vid == adapter->mng_vlan_id))
|
return;
|
/* add VID to filter table */
|
index = (vid >> 5) & 0x7F;
|
vfta = E1000_READ_REG_ARRAY(&adapter->hw, E1000_VFTA, index);
|
vfta |= (1 << (vid & 0x1F));
|
e1000_write_vfta(&adapter->hw, index, vfta);
|
/* Copy feature flags from netdev to the vlan netdev for this vid.
|
* This allows things like TSO to bubble down to our vlan device.
|
*/
|
v_netdev = vlan_group_get_device(adapter->vlgrp, vid);
|
v_netdev->features |= adapter->netdev->features;
|
vlan_group_set_device(adapter->vlgrp, vid, v_netdev);
|
}
|
|
static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
|
{
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
u32 vfta, index;
|
|
e1000_irq_disable(adapter);
|
vlan_group_set_device(adapter->vlgrp, vid, NULL);
|
e1000_irq_enable(adapter);
|
|
if ((adapter->hw.mng_cookie.status &
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
|
(vid == adapter->mng_vlan_id)) {
|
/* release control to f/w */
|
e1000_release_hw_control(adapter);
|
return;
|
}
|
|
/* remove VID from filter table */
|
index = (vid >> 5) & 0x7F;
|
vfta = E1000_READ_REG_ARRAY(&adapter->hw, E1000_VFTA, index);
|
vfta &= ~(1 << (vid & 0x1F));
|
e1000_write_vfta(&adapter->hw, index, vfta);
|
}
|
|
static void e1000_restore_vlan(struct e1000_adapter *adapter)
|
{
|
e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
|
|
if (adapter->vlgrp) {
|
u16 vid;
|
for (vid = 0; vid < VLAN_N_VID; vid++) {
|
if (!vlan_group_get_device(adapter->vlgrp, vid))
|
continue;
|
e1000_vlan_rx_add_vid(adapter->netdev, vid);
|
}
|
}
|
}
|
#endif
|
|
int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
|
{
|
struct e1000_mac_info *mac = &adapter->hw.mac;
|
|
mac->autoneg = 0;
|
|
/* Fiber NICs only allow 1000 gbps Full duplex */
|
if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
|
spddplx != (SPEED_1000 + DUPLEX_FULL)) {
|
DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
|
return -EINVAL;
|
}
|
|
switch (spddplx) {
|
case SPEED_10 + DUPLEX_HALF:
|
mac->forced_speed_duplex = ADVERTISE_10_HALF;
|
break;
|
case SPEED_10 + DUPLEX_FULL:
|
mac->forced_speed_duplex = ADVERTISE_10_FULL;
|
break;
|
case SPEED_100 + DUPLEX_HALF:
|
mac->forced_speed_duplex = ADVERTISE_100_HALF;
|
break;
|
case SPEED_100 + DUPLEX_FULL:
|
mac->forced_speed_duplex = ADVERTISE_100_FULL;
|
break;
|
case SPEED_1000 + DUPLEX_FULL:
|
mac->autoneg = 1;
|
adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
|
break;
|
case SPEED_1000 + DUPLEX_HALF: /* not supported */
|
default:
|
DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
|
return -EINVAL;
|
}
|
return 0;
|
}
|
|
#ifdef USE_REBOOT_NOTIFIER
|
/* only want to do this for 2.4 kernels? */
|
static int e1000_notify_reboot(struct notifier_block *nb,
|
unsigned long event, void *p)
|
{
|
struct pci_dev *pdev = NULL;
|
|
switch (event) {
|
case SYS_DOWN:
|
case SYS_HALT:
|
case SYS_POWER_OFF:
|
while ((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
|
if (pci_dev_driver(pdev) == &e1000_driver)
|
e1000_suspend(pdev, PMSG_SUSPEND);
|
}
|
}
|
return NOTIFY_DONE;
|
}
|
#endif
|
|
#ifdef CONFIG_PM
|
static int e1000_resume(struct pci_dev *pdev)
|
{
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
u32 err;
|
|
pci_set_power_state(pdev, PCI_D0);
|
pci_restore_state(pdev);
|
if ((err = pci_enable_device(pdev))) {
|
printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
|
return err;
|
}
|
pci_set_master(pdev);
|
|
pci_enable_wake(pdev, PCI_D3hot, 0);
|
pci_enable_wake(pdev, PCI_D3cold, 0);
|
|
if (rtnetif_running(netdev) && (err = e1000_request_irq(adapter)))
|
return err;
|
|
if (adapter->hw.phy.media_type == e1000_media_type_copper) {
|
e1000_power_up_phy(&adapter->hw);
|
e1000_setup_link(&adapter->hw);
|
}
|
e1000_reset(adapter);
|
E1000_WRITE_REG(&adapter->hw, E1000_WUS, ~0);
|
|
e1000_init_manageability(adapter);
|
|
if (rtnetif_running(netdev))
|
e1000_up(adapter);
|
|
netif_device_attach(netdev);
|
|
/* If the controller is 82573 or ICHx and f/w is AMT, do not set
|
* DRV_LOAD until the interface is up. For all other cases,
|
* let the f/w know that the h/w is now under the control
|
* of the driver. */
|
if (((adapter->hw.mac.type != e1000_82573) &&
|
(adapter->hw.mac.type != e1000_ich8lan) &&
|
(adapter->hw.mac.type != e1000_ich9lan)) ||
|
!e1000_check_mng_mode(&adapter->hw))
|
e1000_get_hw_control(adapter);
|
|
return 0;
|
}
|
#endif
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
/*
|
* Polling 'interrupt' - used by things like netconsole to send skbs
|
* without having to re-enable interrupts. It's not called while
|
* the interrupt routine is executing.
|
*/
|
static void e1000_netpoll(struct net_device *netdev)
|
{
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
int i;
|
|
disable_irq(adapter->pdev->irq);
|
e1000_intr(adapter->pdev->irq, netdev);
|
|
for (i = 0; i < adapter->num_tx_queues ; i++ )
|
e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
|
#ifndef CONFIG_E1000_NAPI
|
for (i = 0; i < adapter->num_rx_queues ; i++ )
|
adapter->clean_rx(adapter, &adapter->rx_ring[i], NULL);
|
#endif
|
enable_irq(adapter->pdev->irq);
|
}
|
#endif
|
|
#ifdef HAVE_PCI_ERS
|
/**
|
* e1000_io_error_detected - called when PCI error is detected
|
* @pdev: Pointer to PCI device
|
* @state: The current pci connection state
|
*
|
* This function is called after a PCI bus error affecting
|
* this device has been detected.
|
*/
|
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
|
pci_channel_state_t state)
|
{
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
struct e1000_adapter *adapter = netdev->priv;
|
|
netif_device_detach(netdev);
|
|
if (rtnetif_running(netdev))
|
e1000_down(adapter);
|
pci_disable_device(pdev);
|
|
/* Request a slot slot reset. */
|
return PCI_ERS_RESULT_NEED_RESET;
|
}
|
|
/**
|
* e1000_io_slot_reset - called after the pci bus has been reset.
|
* @pdev: Pointer to PCI device
|
*
|
* Restart the card from scratch, as if from a cold-boot. Implementation
|
* resembles the first-half of the e1000_resume routine.
|
*/
|
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
|
{
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
struct e1000_adapter *adapter = netdev->priv;
|
|
if (pci_enable_device(pdev)) {
|
printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
|
return PCI_ERS_RESULT_DISCONNECT;
|
}
|
pci_set_master(pdev);
|
|
pci_enable_wake(pdev, PCI_D3hot, 0);
|
pci_enable_wake(pdev, PCI_D3cold, 0);
|
|
e1000_reset(adapter);
|
E1000_WRITE_REG(&adapter->hw, E1000_WUS, ~0);
|
|
return PCI_ERS_RESULT_RECOVERED;
|
}
|
|
/**
|
* e1000_io_resume - called when traffic can start flowing again.
|
* @pdev: Pointer to PCI device
|
*
|
* This callback is called when the error recovery driver tells us that
|
* its OK to resume normal operation. Implementation resembles the
|
* second-half of the e1000_resume routine.
|
*/
|
static void e1000_io_resume(struct pci_dev *pdev)
|
{
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
struct e1000_adapter *adapter = netdev->priv;
|
|
e1000_init_manageability(adapter);
|
|
if (rtnetif_running(netdev)) {
|
if (e1000_up(adapter)) {
|
printk("e1000: can't bring device back up after reset\n");
|
return;
|
}
|
}
|
|
netif_device_attach(netdev);
|
|
/* If the controller is 82573 or ICHx and f/w is AMT, do not set
|
* DRV_LOAD until the interface is up. For all other cases,
|
* let the f/w know that the h/w is now under the control
|
* of the driver. */
|
if (((adapter->hw.mac.type != e1000_82573) &&
|
(adapter->hw.mac.type != e1000_ich8lan) &&
|
(adapter->hw.mac.type != e1000_ich9lan)) ||
|
!e1000_check_mng_mode(&adapter->hw))
|
e1000_get_hw_control(adapter);
|
|
}
|
#endif /* HAVE_PCI_ERS */
|
|
s32 e1000_alloc_zeroed_dev_spec_struct(struct e1000_hw *hw, u32 size)
|
{
|
hw->dev_spec = kmalloc(size, GFP_KERNEL);
|
|
if (!hw->dev_spec)
|
return -ENOMEM;
|
|
memset(hw->dev_spec, 0, size);
|
|
return E1000_SUCCESS;
|
}
|
|
void e1000_free_dev_spec_struct(struct e1000_hw *hw)
|
{
|
if (!hw->dev_spec)
|
return;
|
|
kfree(hw->dev_spec);
|
}
|
|
/* vim: set ts=4: */
|
/* e1000_main.c */
|