/* rtnet/drivers/eepro100-rt.c: An Intel i82557-559 Real-Time-Ethernet driver for Linux. */
|
/*
|
RTnet porting 2002 by Jan Kiszka <Jan.Kiszka@web.de>
|
Originally written 1996-1999 by Donald Becker.
|
|
The driver also contains updates by different kernel developers
|
(see incomplete list below).
|
Current maintainer is Andrey V. Savochkin <saw@saw.sw.com.sg>.
|
Please use this email address and linux-kernel mailing list for bug reports.
|
|
This software may be used and distributed according to the terms
|
of the GNU General Public License, incorporated herein by reference.
|
|
This driver is for the Intel EtherExpress Pro100 (Speedo3) design.
|
It should work with all i82557/558/559 boards.
|
|
Version history:
|
1998 Apr - 2000 Feb Andrey V. Savochkin <saw@saw.sw.com.sg>
|
Serious fixes for multicast filter list setting, TX timeout routine;
|
RX ring refilling logic; other stuff
|
2000 Feb Jeff Garzik <jgarzik@mandrakesoft.com>
|
Convert to new PCI driver interface
|
2000 Mar 24 Dragan Stancevic <visitor@valinux.com>
|
Disabled FC and ER, to avoid lockups when when we get FCP interrupts.
|
2000 Jul 17 Goutham Rao <goutham.rao@intel.com>
|
PCI DMA API fixes, adding pci_dma_sync_single calls where neccesary
|
|
2002 May 16 Jan Kiszka <Jan.Kiszka@web.de>
|
Ported to RTnet (RTAI version)
|
*/
|
|
static const char *version =
|
"eepro100-rt.c:1.36-RTnet-0.8 2002-2006 Jan Kiszka <Jan.Kiszka@web.de>\n"
|
"eepro100-rt.c: based on eepro100.c 1.36 by D. Becker, A. V. Savochkin and others\n";
|
|
/* A few user-configurable values that apply to all boards.
|
First set is undocumented and spelled per Intel recommendations. */
|
|
static int txfifo = 8; /* Tx FIFO threshold in 4 byte units, 0-15 */
|
static int rxfifo = 8; /* Rx FIFO threshold, default 32 bytes. */
|
/* Tx/Rx DMA burst length, 0-127, 0 == no preemption, tx==128 -> disabled. */
|
static int txdmacount = 128;
|
static int rxdmacount /* = 0 */;
|
|
/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
|
static int max_interrupt_work = 20;
|
|
/* Maximum number of multicast addresses to filter (vs. rx-all-multicast) */
|
static int multicast_filter_limit = 64;
|
|
/* 'options' is used to pass a transceiver override or full-duplex flag
|
e.g. "options=16" for FD, "options=32" for 100mbps-only. */
|
static int full_duplex[] = {-1, -1, -1, -1, -1, -1, -1, -1};
|
static int options[] = {-1, -1, -1, -1, -1, -1, -1, -1};
|
static int local_debug = -1; /* The debug level */
|
|
/* A few values that may be tweaked. */
|
/* The ring sizes should be a power of two for efficiency. */
|
#define TX_RING_SIZE 32
|
#define RX_RING_SIZE 8 /* RX_RING_SIZE*2 rtskbs will be preallocated */
|
/* How much slots multicast filter setup may take.
|
Do not descrease without changing set_rx_mode() implementaion. */
|
#define TX_MULTICAST_SIZE 2
|
#define TX_MULTICAST_RESERV (TX_MULTICAST_SIZE*2)
|
/* Actual number of TX packets queued, must be
|
<= TX_RING_SIZE-TX_MULTICAST_RESERV. */
|
#define TX_QUEUE_LIMIT (TX_RING_SIZE-TX_MULTICAST_RESERV)
|
/* Hysteresis marking queue as no longer full. */
|
#define TX_QUEUE_UNFULL (TX_QUEUE_LIMIT-4)
|
|
/* Operational parameters that usually are not changed. */
|
|
/* Time in jiffies before concluding the transmitter is hung. */
|
#define TX_TIMEOUT (2*HZ)
|
/* Size of an pre-allocated Rx buffer: <Ethernet MTU> + slack.*/
|
#define PKT_BUF_SZ VLAN_ETH_FRAME_LEN
|
|
#if !defined(__OPTIMIZE__) || !defined(__KERNEL__)
|
#warning You must compile this file with the correct options!
|
#warning See the last lines of the source file.
|
#error You must compile this driver with "-O".
|
#endif
|
|
#include <linux/version.h>
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
#include <linux/string.h>
|
#include <linux/errno.h>
|
#include <linux/ioport.h>
|
#include <linux/slab.h>
|
#include <linux/interrupt.h>
|
#include <linux/pci.h>
|
#include <linux/spinlock.h>
|
#include <linux/init.h>
|
#include <linux/mii.h>
|
#include <linux/delay.h>
|
#include <linux/uaccess.h>
|
|
#include <asm/bitops.h>
|
#include <asm/io.h>
|
|
#include <linux/netdevice.h>
|
#include <linux/etherdevice.h>
|
#include <linux/skbuff.h>
|
#include <linux/ethtool.h>
|
#include <linux/delay.h>
|
|
// *** RTnet ***
|
#include <linux/if_vlan.h>
|
#include <rtnet_port.h>
|
|
#define MAX_UNITS 8
|
|
static int cards[MAX_UNITS] = { [0 ... (MAX_UNITS-1)] = 1 };
|
module_param_array(cards, int, NULL, 0444);
|
MODULE_PARM_DESC(cards, "array of cards to be supported (e.g. 1,0,1)");
|
// *** RTnet ***
|
|
MODULE_AUTHOR("Maintainer: Jan Kiszka <Jan.Kiszka@web.de>");
|
MODULE_DESCRIPTION("Intel i82557/i82558/i82559 PCI EtherExpressPro driver");
|
MODULE_LICENSE("GPL");
|
module_param_named(debug, local_debug, int, 0444);
|
module_param_array(options, int, NULL, 0444);
|
module_param_array(full_duplex, int, NULL, 0444);
|
module_param(txfifo, int, 0444);
|
module_param(rxfifo, int, 0444);
|
module_param(txdmacount, int, 0444);
|
module_param(rxdmacount, int, 0444);
|
module_param(max_interrupt_work, int, 0444);
|
module_param(multicast_filter_limit, int, 0444);
|
MODULE_PARM_DESC(debug, "eepro100 debug level (0-6)");
|
MODULE_PARM_DESC(options, "eepro100: Bits 0-3: tranceiver type, bit 4: full duplex, bit 5: 100Mbps");
|
MODULE_PARM_DESC(full_duplex, "eepro100 full duplex setting(s) (1)");
|
MODULE_PARM_DESC(txfifo, "eepro100 Tx FIFO threshold in 4 byte units, (0-15)");
|
MODULE_PARM_DESC(rxfifo, "eepro100 Rx FIFO threshold in 4 byte units, (0-15)");
|
MODULE_PARM_DESC(txdmaccount, "eepro100 Tx DMA burst length; 128 - disable (0-128)");
|
MODULE_PARM_DESC(rxdmaccount, "eepro100 Rx DMA burst length; 128 - disable (0-128)");
|
MODULE_PARM_DESC(max_interrupt_work, "eepro100 maximum events handled per interrupt");
|
MODULE_PARM_DESC(multicast_filter_limit, "eepro100 maximum number of filtered multicast addresses");
|
|
#define RUN_AT(x) (jiffies + (x))
|
|
// *** RTnet - no power management ***
|
#undef pci_set_power_state
|
#define pci_set_power_state null_set_power_state
|
static inline int null_set_power_state(struct pci_dev *dev, int state)
|
{
|
return 0;
|
}
|
// *** RTnet ***
|
|
#define netdevice_start(dev)
|
#define netdevice_stop(dev)
|
#define netif_set_tx_timeout(dev, tf, tm) \
|
do { \
|
(dev)->tx_timeout = (tf); \
|
(dev)->watchdog_timeo = (tm); \
|
} while(0)
|
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_DRV_EEPRO100_DBG
|
static int speedo_debug = 1;
|
#else
|
#define speedo_debug 0
|
#endif
|
|
/*
|
Theory of Operation
|
|
I. Board Compatibility
|
|
This device driver is designed for the Intel i82557 "Speedo3" chip, Intel's
|
single-chip fast Ethernet controller for PCI, as used on the Intel
|
EtherExpress Pro 100 adapter.
|
|
II. Board-specific settings
|
|
PCI bus devices are configured by the system at boot time, so no jumpers
|
need to be set on the board. The system BIOS should be set to assign the
|
PCI INTA signal to an otherwise unused system IRQ line. While it's
|
possible to share PCI interrupt lines, it negatively impacts performance and
|
only recent kernels support it.
|
|
III. Driver operation
|
|
IIIA. General
|
The Speedo3 is very similar to other Intel network chips, that is to say
|
"apparently designed on a different planet". This chips retains the complex
|
Rx and Tx descriptors and multiple buffers pointers as previous chips, but
|
also has simplified Tx and Rx buffer modes. This driver uses the "flexible"
|
Tx mode, but in a simplified lower-overhead manner: it associates only a
|
single buffer descriptor with each frame descriptor.
|
|
Despite the extra space overhead in each receive skbuff, the driver must use
|
the simplified Rx buffer mode to assure that only a single data buffer is
|
associated with each RxFD. The driver implements this by reserving space
|
for the Rx descriptor at the head of each Rx skbuff.
|
|
The Speedo-3 has receive and command unit base addresses that are added to
|
almost all descriptor pointers. The driver sets these to zero, so that all
|
pointer fields are absolute addresses.
|
|
The System Control Block (SCB) of some previous Intel chips exists on the
|
chip in both PCI I/O and memory space. This driver uses the I/O space
|
registers, but might switch to memory mapped mode to better support non-x86
|
processors.
|
|
IIIB. Transmit structure
|
|
The driver must use the complex Tx command+descriptor mode in order to
|
have a indirect pointer to the skbuff data section. Each Tx command block
|
(TxCB) is associated with two immediately appended Tx Buffer Descriptor
|
(TxBD). A fixed ring of these TxCB+TxBD pairs are kept as part of the
|
speedo_private data structure for each adapter instance.
|
|
The newer i82558 explicitly supports this structure, and can read the two
|
TxBDs in the same PCI burst as the TxCB.
|
|
This ring structure is used for all normal transmit packets, but the
|
transmit packet descriptors aren't long enough for most non-Tx commands such
|
as CmdConfigure. This is complicated by the possibility that the chip has
|
already loaded the link address in the previous descriptor. So for these
|
commands we convert the next free descriptor on the ring to a NoOp, and point
|
that descriptor's link to the complex command.
|
|
An additional complexity of these non-transmit commands are that they may be
|
added asynchronous to the normal transmit queue, so we disable interrupts
|
whenever the Tx descriptor ring is manipulated.
|
|
A notable aspect of these special configure commands is that they do
|
work with the normal Tx ring entry scavenge method. The Tx ring scavenge
|
is done at interrupt time using the 'dirty_tx' index, and checking for the
|
command-complete bit. While the setup frames may have the NoOp command on the
|
Tx ring marked as complete, but not have completed the setup command, this
|
is not a problem. The tx_ring entry can be still safely reused, as the
|
tx_skbuff[] entry is always empty for config_cmd and mc_setup frames.
|
|
Commands may have bits set e.g. CmdSuspend in the command word to either
|
suspend or stop the transmit/command unit. This driver always flags the last
|
command with CmdSuspend, erases the CmdSuspend in the previous command, and
|
then issues a CU_RESUME.
|
Note: Watch out for the potential race condition here: imagine
|
erasing the previous suspend
|
the chip processes the previous command
|
the chip processes the final command, and suspends
|
doing the CU_RESUME
|
the chip processes the next-yet-valid post-final-command.
|
So blindly sending a CU_RESUME is only safe if we do it immediately after
|
after erasing the previous CmdSuspend, without the possibility of an
|
intervening delay. Thus the resume command is always within the
|
interrupts-disabled region. This is a timing dependence, but handling this
|
condition in a timing-independent way would considerably complicate the code.
|
|
Note: In previous generation Intel chips, restarting the command unit was a
|
notoriously slow process. This is presumably no longer true.
|
|
IIIC. Receive structure
|
|
Because of the bus-master support on the Speedo3 this driver uses the new
|
SKBUFF_RX_COPYBREAK scheme, rather than a fixed intermediate receive buffer.
|
This scheme allocates full-sized skbuffs as receive buffers. The value
|
SKBUFF_RX_COPYBREAK is used as the copying breakpoint: it is chosen to
|
trade-off the memory wasted by passing the full-sized skbuff to the queue
|
layer for all frames vs. the copying cost of copying a frame to a
|
correctly-sized skbuff.
|
|
For small frames the copying cost is negligible (esp. considering that we
|
are pre-loading the cache with immediately useful header information), so we
|
allocate a new, minimally-sized skbuff. For large frames the copying cost
|
is non-trivial, and the larger copy might flush the cache of useful data, so
|
we pass up the skbuff the packet was received into.
|
|
IV. Notes
|
|
Thanks to Steve Williams of Intel for arranging the non-disclosure agreement
|
that stated that I could disclose the information. But I still resent
|
having to sign an Intel NDA when I'm helping Intel sell their own product!
|
|
*/
|
|
static int speedo_found1(struct pci_dev *pdev, long ioaddr, int fnd_cnt, int acpi_idle_state);
|
|
enum pci_flags_bit {
|
PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4,
|
PCI_ADDR0=0x10<<0, PCI_ADDR1=0x10<<1, PCI_ADDR2=0x10<<2, PCI_ADDR3=0x10<<3,
|
};
|
|
static inline unsigned int io_inw(unsigned long port)
|
{
|
return inw(port);
|
}
|
static inline void io_outw(unsigned int val, unsigned long port)
|
{
|
outw(val, port);
|
}
|
|
#ifndef USE_IO
|
/* Currently alpha headers define in/out macros.
|
Undefine them. 2000/03/30 SAW */
|
#undef inb
|
#undef inw
|
#undef inl
|
#undef outb
|
#undef outw
|
#undef outl
|
#define inb(addr) readb((void *)(addr))
|
#define inw(addr) readw((void *)(addr))
|
#define inl(addr) readl((void *)(addr))
|
#define outb(val, addr) writeb(val, (void *)(addr))
|
#define outw(val, addr) writew(val, (void *)(addr))
|
#define outl(val, addr) writel(val, (void *)(addr))
|
#endif
|
|
/* How to wait for the command unit to accept a command.
|
Typically this takes 0 ticks. */
|
static inline void wait_for_cmd_done(long cmd_ioaddr)
|
{
|
int wait = 1000;
|
do udelay(1) ;
|
while(inb(cmd_ioaddr) && --wait >= 0);
|
#ifdef CONFIG_XENO_DRIVERS_NET_DRV_EEPRO100_DBG
|
if (wait < 0)
|
printk(KERN_ALERT "eepro100: wait_for_cmd_done timeout!\n");
|
#endif
|
}
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_DRV_EEPRO100_CMDSTATS
|
static inline int rt_wait_for_cmd_done(long cmd_ioaddr, const char *cmd)
|
{
|
int wait = CONFIG_XENO_DRIVERS_NET_DRV_EEPRO100_CMDTIMEOUT;
|
rtmd_time_t t0, t1;
|
|
t0 = rtdm_clock_read();
|
while (inb(cmd_ioaddr) != 0) {
|
if (wait-- == 0) {
|
rtdm_printk(KERN_ALERT "eepro100: rt_wait_for_cmd_done(%s) "
|
"timeout!\n", cmd);
|
return 1;
|
}
|
rtdm_task_busy_sleep(1000);
|
}
|
return 0;
|
}
|
#else
|
static inline int rt_wait_for_cmd_done(long cmd_ioaddr, const char *cmd)
|
{
|
int wait = CONFIG_XENO_DRIVERS_NET_DRV_EEPRO100_CMDTIMEOUT;
|
|
while (inb(cmd_ioaddr) != 0) {
|
if (wait-- == 0)
|
return 1;
|
rtdm_task_busy_sleep(1000);
|
}
|
return 0;
|
}
|
#endif
|
|
/* Offsets to the various registers.
|
All accesses need not be longword aligned. */
|
enum speedo_offsets {
|
SCBStatus = 0, SCBCmd = 2, /* Rx/Command Unit command and status. */
|
SCBPointer = 4, /* General purpose pointer. */
|
SCBPort = 8, /* Misc. commands and operands. */
|
SCBflash = 12, SCBeeprom = 14, /* EEPROM and flash memory control. */
|
SCBCtrlMDI = 16, /* MDI interface control. */
|
SCBEarlyRx = 20, /* Early receive byte count. */
|
};
|
/* Commands that can be put in a command list entry. */
|
enum commands {
|
CmdNOp = 0, CmdIASetup = 0x10000, CmdConfigure = 0x20000,
|
CmdMulticastList = 0x30000, CmdTx = 0x40000, CmdTDR = 0x50000,
|
CmdDump = 0x60000, CmdDiagnose = 0x70000,
|
CmdSuspend = 0x40000000, /* Suspend after completion. */
|
CmdIntr = 0x20000000, /* Interrupt after completion. */
|
CmdTxFlex = 0x00080000, /* Use "Flexible mode" for CmdTx command. */
|
};
|
/* Clear CmdSuspend (1<<30) avoiding interference with the card access to the
|
status bits. Previous driver versions used separate 16 bit fields for
|
commands and statuses. --SAW
|
*/
|
#if defined(__alpha__)
|
# define clear_suspend(cmd) clear_bit(30, &(cmd)->cmd_status);
|
#else
|
# if defined(__LITTLE_ENDIAN)
|
# define clear_suspend(cmd) ((__u16 *)&(cmd)->cmd_status)[1] &= ~0x4000
|
# elif defined(__BIG_ENDIAN)
|
# define clear_suspend(cmd) ((__u16 *)&(cmd)->cmd_status)[1] &= ~0x0040
|
# else
|
# error Unsupported byteorder
|
# endif
|
#endif
|
|
enum SCBCmdBits {
|
SCBMaskCmdDone=0x8000, SCBMaskRxDone=0x4000, SCBMaskCmdIdle=0x2000,
|
SCBMaskRxSuspend=0x1000, SCBMaskEarlyRx=0x0800, SCBMaskFlowCtl=0x0400,
|
SCBTriggerIntr=0x0200, SCBMaskAll=0x0100,
|
/* The rest are Rx and Tx commands. */
|
CUStart=0x0010, CUResume=0x0020, CUStatsAddr=0x0040, CUShowStats=0x0050,
|
CUCmdBase=0x0060, /* CU Base address (set to zero) . */
|
CUDumpStats=0x0070, /* Dump then reset stats counters. */
|
RxStart=0x0001, RxResume=0x0002, RxAbort=0x0004, RxAddrLoad=0x0006,
|
RxResumeNoResources=0x0007,
|
};
|
|
enum SCBPort_cmds {
|
PortReset=0, PortSelfTest=1, PortPartialReset=2, PortDump=3,
|
};
|
|
/* The Speedo3 Rx and Tx frame/buffer descriptors. */
|
struct descriptor { /* A generic descriptor. */
|
s32 cmd_status; /* All command and status fields. */
|
u32 link; /* struct descriptor * */
|
unsigned char params[0];
|
};
|
|
/* The Speedo3 Rx and Tx buffer descriptors. */
|
struct RxFD { /* Receive frame descriptor. */
|
s32 status;
|
u32 link; /* struct RxFD * */
|
u32 rx_buf_addr; /* void * */
|
u32 count;
|
};
|
|
/* Selected elements of the Tx/RxFD.status word. */
|
enum RxFD_bits {
|
RxComplete=0x8000, RxOK=0x2000,
|
RxErrCRC=0x0800, RxErrAlign=0x0400, RxErrTooBig=0x0200, RxErrSymbol=0x0010,
|
RxEth2Type=0x0020, RxNoMatch=0x0004, RxNoIAMatch=0x0002,
|
TxUnderrun=0x1000, StatusComplete=0x8000,
|
};
|
|
#define CONFIG_DATA_SIZE 22
|
struct TxFD { /* Transmit frame descriptor set. */
|
s32 status;
|
u32 link; /* void * */
|
u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
|
s32 count; /* # of TBD (=1), Tx start thresh., etc. */
|
/* This constitutes two "TBD" entries -- we only use one. */
|
#define TX_DESCR_BUF_OFFSET 16
|
u32 tx_buf_addr0; /* void *, frame to be transmitted. */
|
s32 tx_buf_size0; /* Length of Tx frame. */
|
u32 tx_buf_addr1; /* void *, frame to be transmitted. */
|
s32 tx_buf_size1; /* Length of Tx frame. */
|
/* the structure must have space for at least CONFIG_DATA_SIZE starting
|
* from tx_desc_addr field */
|
};
|
|
/* Multicast filter setting block. --SAW */
|
struct speedo_mc_block {
|
struct speedo_mc_block *next;
|
unsigned int tx;
|
dma_addr_t frame_dma;
|
unsigned int len;
|
struct descriptor frame __attribute__ ((__aligned__(16)));
|
};
|
|
/* Elements of the dump_statistics block. This block must be lword aligned. */
|
struct speedo_stats {
|
u32 tx_good_frames;
|
u32 tx_coll16_errs;
|
u32 tx_late_colls;
|
u32 tx_underruns;
|
u32 tx_lost_carrier;
|
u32 tx_deferred;
|
u32 tx_one_colls;
|
u32 tx_multi_colls;
|
u32 tx_total_colls;
|
u32 rx_good_frames;
|
u32 rx_crc_errs;
|
u32 rx_align_errs;
|
u32 rx_resource_errs;
|
u32 rx_overrun_errs;
|
u32 rx_colls_errs;
|
u32 rx_runt_errs;
|
u32 done_marker;
|
};
|
|
enum Rx_ring_state_bits {
|
RrNoMem=1, RrPostponed=2, RrNoResources=4, RrOOMReported=8,
|
};
|
|
/* Do not change the position (alignment) of the first few elements!
|
The later elements are grouped for cache locality.
|
|
Unfortunately, all the positions have been shifted since there.
|
A new re-alignment is required. 2000/03/06 SAW */
|
struct speedo_private {
|
struct TxFD *tx_ring; /* Commands (usually CmdTxPacket). */
|
struct RxFD *rx_ringp[RX_RING_SIZE]; /* Rx descriptor, used as ring. */
|
|
// *** RTnet ***
|
/* The addresses of a Tx/Rx-in-place packets/buffers. */
|
struct rtskb *tx_skbuff[TX_RING_SIZE];
|
struct rtskb *rx_skbuff[RX_RING_SIZE];
|
// *** RTnet ***
|
|
/* Mapped addresses of the rings. */
|
dma_addr_t tx_ring_dma;
|
#define TX_RING_ELEM_DMA(sp, n) ((sp)->tx_ring_dma + (n)*sizeof(struct TxFD))
|
dma_addr_t rx_ring_dma[RX_RING_SIZE];
|
struct descriptor *last_cmd; /* Last command sent. */
|
unsigned int cur_tx, dirty_tx; /* The ring entries to be free()ed. */
|
rtdm_lock_t lock; /* Group with Tx control cache line. */
|
u32 tx_threshold; /* The value for txdesc.count. */
|
struct RxFD *last_rxf; /* Last filled RX buffer. */
|
dma_addr_t last_rxf_dma;
|
unsigned int cur_rx, dirty_rx; /* The next free ring entry */
|
long last_rx_time; /* Last Rx, in jiffies, to handle Rx hang. */
|
struct net_device_stats stats;
|
struct speedo_stats *lstats;
|
dma_addr_t lstats_dma;
|
int chip_id;
|
struct pci_dev *pdev;
|
struct speedo_mc_block *mc_setup_head;/* Multicast setup frame list head. */
|
struct speedo_mc_block *mc_setup_tail;/* Multicast setup frame list tail. */
|
long in_interrupt; /* Word-aligned rtdev->interrupt */
|
unsigned char acpi_pwr;
|
signed char rx_mode; /* Current PROMISC/ALLMULTI setting. */
|
unsigned int tx_full:1; /* The Tx queue is full. */
|
unsigned int full_duplex:1; /* Full-duplex operation requested. */
|
unsigned int flow_ctrl:1; /* Use 802.3x flow control. */
|
unsigned int rx_bug:1; /* Work around receiver hang errata. */
|
unsigned char default_port:8; /* Last rtdev->if_port value. */
|
unsigned char rx_ring_state; /* RX ring status flags. */
|
unsigned short phy[2]; /* PHY media interfaces available. */
|
unsigned short advertising; /* Current PHY advertised caps. */
|
unsigned short partner; /* Link partner caps. */
|
rtdm_irq_t irq_handle;
|
};
|
|
/* The parameters for a CmdConfigure operation.
|
There are so many options that it would be difficult to document each bit.
|
We mostly use the default or recommended settings. */
|
static const char i82558_config_cmd[CONFIG_DATA_SIZE] = {
|
22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
|
0, 0x2E, 0, 0x60, 0x08, 0x88,
|
0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
|
0x31, 0x05, };
|
|
/* PHY media interface chips. */
|
enum phy_chips { NonSuchPhy=0, I82553AB, I82553C, I82503, DP83840, S80C240,
|
S80C24, I82555, DP83840A=10, };
|
#define EE_READ_CMD (6)
|
|
static int eepro100_init_one(struct pci_dev *pdev,
|
const struct pci_device_id *ent);
|
static void eepro100_remove_one (struct pci_dev *pdev);
|
|
static int do_eeprom_cmd(long ioaddr, int cmd, int cmd_len);
|
static int mdio_read(long ioaddr, int phy_id, int location);
|
static int speedo_open(struct rtnet_device *rtdev);
|
static void speedo_resume(struct rtnet_device *rtdev);
|
static void speedo_init_rx_ring(struct rtnet_device *rtdev);
|
static int speedo_start_xmit(struct rtskb *skb, struct rtnet_device *rtdev);
|
static void speedo_refill_rx_buffers(struct rtnet_device *rtdev, int force);
|
static int speedo_rx(struct rtnet_device *rtdev, int* packets, nanosecs_abs_t *time_stamp);
|
static void speedo_tx_buffer_gc(struct rtnet_device *rtdev);
|
static int speedo_interrupt(rtdm_irq_t *irq_handle);
|
static int speedo_close(struct rtnet_device *rtdev);
|
static void set_rx_mode(struct rtnet_device *rtdev);
|
static void speedo_show_state(struct rtnet_device *rtdev);
|
static struct net_device_stats *speedo_get_stats(struct rtnet_device *rtdev);
|
|
|
static inline void speedo_write_flush(long ioaddr)
|
{
|
/* Flush previous PCI writes through intermediate bridges
|
* by doing a benign read */
|
(void)readb((void *)(ioaddr + SCBStatus));
|
}
|
|
static int eepro100_init_one (struct pci_dev *pdev,
|
const struct pci_device_id *ent)
|
{
|
unsigned long ioaddr;
|
int irq;
|
int acpi_idle_state = 0, pm;
|
static int cards_found = -1;
|
|
static int did_version /* = 0 */; /* Already printed version info. */
|
if (speedo_debug > 0 && did_version++ == 0)
|
printk(version);
|
|
// *** RTnet ***
|
cards_found++;
|
if (cards[cards_found] == 0)
|
goto err_out_none;
|
// *** RTnet ***
|
|
if (!request_region(pci_resource_start(pdev, 1),
|
pci_resource_len(pdev, 1), "eepro100")) {
|
printk (KERN_ERR "eepro100: cannot reserve I/O ports\n");
|
goto err_out_none;
|
}
|
if (!request_mem_region(pci_resource_start(pdev, 0),
|
pci_resource_len(pdev, 0), "eepro100")) {
|
printk (KERN_ERR "eepro100: cannot reserve MMIO region\n");
|
goto err_out_free_pio_region;
|
}
|
|
irq = pdev->irq;
|
#ifdef USE_IO
|
ioaddr = pci_resource_start(pdev, 1);
|
if (speedo_debug > 2)
|
printk("Found Intel i82557 PCI Speedo at I/O %#lx, IRQ %d.\n",
|
ioaddr, irq);
|
#else
|
ioaddr = (unsigned long)ioremap(pci_resource_start(pdev, 0),
|
pci_resource_len(pdev, 0));
|
if (!ioaddr) {
|
printk(KERN_ERR "eepro100: cannot remap MMIO region %llx @ %llx\n",
|
(unsigned long long)pci_resource_len(pdev, 0),
|
(unsigned long long)pci_resource_start(pdev, 0));
|
goto err_out_free_mmio_region;
|
}
|
if (speedo_debug > 2)
|
printk("Found Intel i82557 PCI Speedo, MMIO at %#llx, IRQ %d.\n",
|
(unsigned long long)pci_resource_start(pdev, 0), irq);
|
#endif
|
|
/* save power state b4 pci_enable_device overwrites it */
|
pm = pci_find_capability(pdev, PCI_CAP_ID_PM);
|
if (pm) {
|
u16 pwr_command;
|
pci_read_config_word(pdev, pm + PCI_PM_CTRL, &pwr_command);
|
acpi_idle_state = pwr_command & PCI_PM_CTRL_STATE_MASK;
|
}
|
|
if (pci_enable_device(pdev))
|
goto err_out_free_mmio_region;
|
|
pci_set_master(pdev);
|
|
if (speedo_found1(pdev, ioaddr, cards_found, acpi_idle_state) != 0)
|
goto err_out_iounmap;
|
|
return 0;
|
|
err_out_iounmap: ;
|
#ifndef USE_IO
|
iounmap ((void *)ioaddr);
|
#endif
|
err_out_free_mmio_region:
|
release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
|
err_out_free_pio_region:
|
release_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1));
|
err_out_none:
|
return -ENODEV;
|
}
|
|
static int speedo_found1(struct pci_dev *pdev,
|
long ioaddr, int card_idx, int acpi_idle_state)
|
{
|
// *** RTnet ***
|
struct rtnet_device *rtdev = NULL;
|
// *** RTnet ***
|
|
struct speedo_private *sp;
|
const char *product;
|
int i, option;
|
u16 eeprom[0x100];
|
int size;
|
void *tx_ring_space;
|
dma_addr_t tx_ring_dma;
|
|
size = TX_RING_SIZE * sizeof(struct TxFD) + sizeof(struct speedo_stats);
|
tx_ring_space = dma_alloc_coherent(&pdev->dev, size, &tx_ring_dma,
|
GFP_ATOMIC);
|
if (tx_ring_space == NULL)
|
return -1;
|
|
// *** RTnet ***
|
rtdev = rt_alloc_etherdev(sizeof(struct speedo_private),
|
RX_RING_SIZE * 2 + TX_RING_SIZE);
|
if (rtdev == NULL) {
|
printk(KERN_ERR "eepro100: Could not allocate ethernet device.\n");
|
dma_free_coherent(&pdev->dev, size, tx_ring_space, tx_ring_dma);
|
return -1;
|
}
|
rtdev_alloc_name(rtdev, "rteth%d");
|
memset(rtdev->priv, 0, sizeof(struct speedo_private));
|
rt_rtdev_connect(rtdev, &RTDEV_manager);
|
rtdev->vers = RTDEV_VERS_2_0;
|
rtdev->sysbind = &pdev->dev;
|
// *** RTnet ***
|
|
if (rtdev->mem_start > 0)
|
option = rtdev->mem_start;
|
else if (card_idx >= 0 && options[card_idx] >= 0)
|
option = options[card_idx];
|
else
|
option = 0;
|
|
/* Read the station address EEPROM before doing the reset.
|
Nominally his should even be done before accepting the device, but
|
then we wouldn't have a device name with which to report the error.
|
The size test is for 6 bit vs. 8 bit address serial EEPROMs.
|
*/
|
{
|
unsigned long iobase;
|
int read_cmd, ee_size;
|
u16 sum;
|
int j;
|
|
/* Use IO only to avoid postponed writes and satisfy EEPROM timing
|
requirements. */
|
iobase = pci_resource_start(pdev, 1);
|
if ((do_eeprom_cmd(iobase, EE_READ_CMD << 24, 27) & 0xffe0000)
|
== 0xffe0000) {
|
ee_size = 0x100;
|
read_cmd = EE_READ_CMD << 24;
|
} else {
|
ee_size = 0x40;
|
read_cmd = EE_READ_CMD << 22;
|
}
|
|
for (j = 0, i = 0, sum = 0; i < ee_size; i++) {
|
u16 value = do_eeprom_cmd(iobase, read_cmd | (i << 16), 27);
|
eeprom[i] = value;
|
sum += value;
|
if (i < 3) {
|
rtdev->dev_addr[j++] = value;
|
rtdev->dev_addr[j++] = value >> 8;
|
}
|
}
|
if (sum != 0xBABA)
|
printk(KERN_WARNING "%s: Invalid EEPROM checksum %#4.4x, "
|
"check settings before activating this device!\n",
|
rtdev->name, sum);
|
/* Don't unregister_netdev(dev); as the EEPro may actually be
|
usable, especially if the MAC address is set later.
|
On the other hand, it may be unusable if MDI data is corrupted. */
|
}
|
|
/* Reset the chip: stop Tx and Rx processes and clear counters.
|
This takes less than 10usec and will easily finish before the next
|
action. */
|
outl(PortReset, ioaddr + SCBPort);
|
inl(ioaddr + SCBPort);
|
udelay(10);
|
|
if (eeprom[3] & 0x0100)
|
product = "OEM i82557/i82558 10/100 Ethernet";
|
else
|
product = pci_name(pdev);
|
|
printk(KERN_INFO "%s: %s, ", rtdev->name, product);
|
|
for (i = 0; i < 5; i++)
|
printk("%2.2X:", rtdev->dev_addr[i]);
|
printk("%2.2X, ", rtdev->dev_addr[i]);
|
#ifdef USE_IO
|
printk("I/O at %#3lx, ", ioaddr);
|
#endif
|
printk("IRQ %d.\n", pdev->irq);
|
|
outl(PortReset, ioaddr + SCBPort);
|
inl(ioaddr + SCBPort);
|
udelay(10);
|
|
/* Return the chip to its original power state. */
|
pci_set_power_state(pdev, acpi_idle_state);
|
|
rtdev->base_addr = ioaddr;
|
rtdev->irq = pdev->irq;
|
|
sp = rtdev->priv;
|
sp->pdev = pdev;
|
sp->acpi_pwr = acpi_idle_state;
|
sp->tx_ring = tx_ring_space;
|
sp->tx_ring_dma = tx_ring_dma;
|
sp->lstats = (struct speedo_stats *)(sp->tx_ring + TX_RING_SIZE);
|
sp->lstats_dma = TX_RING_ELEM_DMA(sp, TX_RING_SIZE);
|
|
sp->full_duplex = option >= 0 && (option & 0x10) ? 1 : 0;
|
if (card_idx >= 0) {
|
if (full_duplex[card_idx] >= 0)
|
sp->full_duplex = full_duplex[card_idx];
|
}
|
sp->default_port = option >= 0 ? (option & 0x0f) : 0;
|
|
sp->phy[0] = eeprom[6];
|
sp->phy[1] = eeprom[7];
|
sp->rx_bug = (eeprom[3] & 0x03) == 3 ? 0 : 1;
|
if (((pdev->device > 0x1030 && (pdev->device < 0x1039)))
|
|| (pdev->device == 0x2449)) {
|
sp->chip_id = 1;
|
}
|
|
if (sp->rx_bug)
|
printk(KERN_ERR " *** Receiver lock-up bug detected ***\n"
|
KERN_ERR " Your device may not work reliably!\n");
|
|
// *** RTnet ***
|
/* The Speedo-specific entries in the device structure. */
|
rtdev->open = &speedo_open;
|
rtdev->hard_start_xmit = &speedo_start_xmit;
|
rtdev->stop = &speedo_close;
|
rtdev->hard_header = &rt_eth_header;
|
rtdev->get_stats = &speedo_get_stats;
|
//rtdev->do_ioctl = NULL;
|
|
if ( (i=rt_register_rtnetdev(rtdev)) )
|
{
|
dma_free_coherent(&pdev->dev, size, tx_ring_space, tx_ring_dma);
|
rtdev_free(rtdev);
|
return i;
|
}
|
|
pci_set_drvdata (pdev, rtdev);
|
// *** RTnet ***
|
|
return 0;
|
}
|
|
/* Serial EEPROM section.
|
A "bit" grungy, but we work our way through bit-by-bit :->. */
|
/* EEPROM_Ctrl bits. */
|
#define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
|
#define EE_CS 0x02 /* EEPROM chip select. */
|
#define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
|
#define EE_DATA_READ 0x08 /* EEPROM chip data out. */
|
#define EE_ENB (0x4800 | EE_CS)
|
#define EE_WRITE_0 0x4802
|
#define EE_WRITE_1 0x4806
|
#define EE_OFFSET SCBeeprom
|
|
/* The fixes for the code were kindly provided by Dragan Stancevic
|
<visitor@valinux.com> to strictly follow Intel specifications of EEPROM
|
access timing.
|
The publicly available sheet 64486302 (sec. 3.1) specifies 1us access
|
interval for serial EEPROM. However, it looks like that there is an
|
additional requirement dictating larger udelay's in the code below.
|
2000/05/24 SAW */
|
static int do_eeprom_cmd(long ioaddr, int cmd, int cmd_len)
|
{
|
unsigned retval = 0;
|
long ee_addr = ioaddr + SCBeeprom;
|
|
io_outw(EE_ENB, ee_addr); udelay(2);
|
io_outw(EE_ENB | EE_SHIFT_CLK, ee_addr); udelay(2);
|
|
/* Shift the command bits out. */
|
do {
|
short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
|
io_outw(dataval, ee_addr); udelay(2);
|
io_outw(dataval | EE_SHIFT_CLK, ee_addr); udelay(2);
|
retval = (retval << 1) | ((io_inw(ee_addr) & EE_DATA_READ) ? 1 : 0);
|
} while (--cmd_len >= 0);
|
io_outw(EE_ENB, ee_addr); udelay(2);
|
|
/* Terminate the EEPROM access. */
|
io_outw(EE_ENB & ~EE_CS, ee_addr);
|
return retval;
|
}
|
|
static int mdio_read(long ioaddr, int phy_id, int location)
|
{
|
int val, boguscnt = 64*10; /* <64 usec. to complete, typ 27 ticks */
|
outl(0x08000000 | (location<<16) | (phy_id<<21), ioaddr + SCBCtrlMDI);
|
do {
|
val = inl(ioaddr + SCBCtrlMDI);
|
if (--boguscnt < 0) {
|
printk(KERN_ERR " mdio_read() timed out with val = %8.8x.\n", val);
|
break;
|
}
|
} while (! (val & 0x10000000));
|
return val & 0xffff;
|
}
|
|
|
static int
|
speedo_open(struct rtnet_device *rtdev)
|
{
|
struct speedo_private *sp = (struct speedo_private *)rtdev->priv;
|
long ioaddr = rtdev->base_addr;
|
int retval;
|
|
if (speedo_debug > 1)
|
printk(KERN_DEBUG "%s: speedo_open() irq %d.\n", rtdev->name, rtdev->irq);
|
|
pci_set_power_state(sp->pdev, 0);
|
|
/* Set up the Tx queue early.. */
|
sp->cur_tx = 0;
|
sp->dirty_tx = 0;
|
sp->last_cmd = 0;
|
sp->tx_full = 0;
|
rtdm_lock_init(&sp->lock);
|
sp->in_interrupt = 0;
|
|
// *** RTnet ***
|
rt_stack_connect(rtdev, &STACK_manager);
|
|
retval = rtdm_irq_request(&sp->irq_handle, rtdev->irq,
|
speedo_interrupt, RTDM_IRQTYPE_SHARED,
|
"rt_eepro100", rtdev);
|
if (retval) {
|
return retval;
|
}
|
// *** RTnet ***
|
|
rtdev->if_port = sp->default_port;
|
|
speedo_init_rx_ring(rtdev);
|
|
/* Fire up the hardware. */
|
outw(SCBMaskAll, ioaddr + SCBCmd);
|
speedo_write_flush(ioaddr);
|
speedo_resume(rtdev);
|
|
netdevice_start(rtdev);
|
rtnetif_start_queue(rtdev);
|
|
/* Setup the chip and configure the multicast list. */
|
sp->mc_setup_head = NULL;
|
sp->mc_setup_tail = NULL;
|
sp->flow_ctrl = sp->partner = 0;
|
sp->rx_mode = -1; /* Invalid -> always reset the mode. */
|
set_rx_mode(rtdev);
|
if ((sp->phy[0] & 0x8000) == 0)
|
sp->advertising = mdio_read(ioaddr, sp->phy[0] & 0x1f, 4);
|
|
if (mdio_read(ioaddr, sp->phy[0] & 0x1f, MII_BMSR) & BMSR_LSTATUS)
|
rtnetif_carrier_on(rtdev);
|
else
|
rtnetif_carrier_off(rtdev);
|
|
if (speedo_debug > 2) {
|
printk(KERN_DEBUG "%s: Done speedo_open(), status %8.8x.\n",
|
rtdev->name, inw(ioaddr + SCBStatus));
|
}
|
|
/* No need to wait for the command unit to accept here. */
|
if ((sp->phy[0] & 0x8000) == 0)
|
mdio_read(ioaddr, sp->phy[0] & 0x1f, 0);
|
|
return 0;
|
}
|
|
/* Start the chip hardware after a full reset. */
|
static void speedo_resume(struct rtnet_device *rtdev)
|
{
|
struct speedo_private *sp = (struct speedo_private *)rtdev->priv;
|
long ioaddr = rtdev->base_addr;
|
|
/* Start with a Tx threshold of 256 (0x..20.... 8 byte units). */
|
sp->tx_threshold = 0x01208000;
|
|
/* Set the segment registers to '0'. */
|
wait_for_cmd_done(ioaddr + SCBCmd);
|
outl(0, ioaddr + SCBPointer);
|
/* impose a delay to avoid a bug */
|
inl(ioaddr + SCBPointer);
|
udelay(10);
|
outb(RxAddrLoad, ioaddr + SCBCmd);
|
wait_for_cmd_done(ioaddr + SCBCmd);
|
outb(CUCmdBase, ioaddr + SCBCmd);
|
|
/* Load the statistics block and rx ring addresses. */
|
wait_for_cmd_done(ioaddr + SCBCmd);
|
outl(sp->lstats_dma, ioaddr + SCBPointer);
|
outb(CUStatsAddr, ioaddr + SCBCmd);
|
sp->lstats->done_marker = 0;
|
|
if (sp->rx_ringp[sp->cur_rx % RX_RING_SIZE] == NULL) {
|
if (speedo_debug > 2)
|
printk(KERN_DEBUG "%s: NULL cur_rx in speedo_resume().\n",
|
rtdev->name);
|
} else {
|
wait_for_cmd_done(ioaddr + SCBCmd);
|
outl(sp->rx_ring_dma[sp->cur_rx % RX_RING_SIZE],
|
ioaddr + SCBPointer);
|
outb(RxStart, ioaddr + SCBCmd);
|
}
|
|
wait_for_cmd_done(ioaddr + SCBCmd);
|
outb(CUDumpStats, ioaddr + SCBCmd);
|
udelay(30);
|
|
/* Fill the first command with our physical address. */
|
{
|
struct descriptor *ias_cmd;
|
|
ias_cmd =
|
(struct descriptor *)&sp->tx_ring[sp->cur_tx++ % TX_RING_SIZE];
|
/* Avoid a bug(?!) here by marking the command already completed. */
|
ias_cmd->cmd_status = cpu_to_le32((CmdSuspend | CmdIASetup) | 0xa000);
|
ias_cmd->link =
|
cpu_to_le32(TX_RING_ELEM_DMA(sp, sp->cur_tx % TX_RING_SIZE));
|
memcpy(ias_cmd->params, rtdev->dev_addr, 6);
|
sp->last_cmd = ias_cmd;
|
}
|
|
/* Start the chip's Tx process and unmask interrupts. */
|
wait_for_cmd_done(ioaddr + SCBCmd);
|
outl(TX_RING_ELEM_DMA(sp, sp->dirty_tx % TX_RING_SIZE),
|
ioaddr + SCBPointer);
|
/* We are not ACK-ing FCP and ER in the interrupt handler yet so they should
|
remain masked --Dragan */
|
outw(CUStart | SCBMaskEarlyRx | SCBMaskFlowCtl, ioaddr + SCBCmd);
|
}
|
|
static void speedo_show_state(struct rtnet_device *rtdev)
|
{
|
struct speedo_private *sp = (struct speedo_private *)rtdev->priv;
|
unsigned int i;
|
|
/* Print a few items for debugging. */
|
if (speedo_debug > 0) {
|
printk(KERN_DEBUG "%s: Tx ring dump, Tx queue %u / %u:\n", rtdev->name,
|
sp->cur_tx, sp->dirty_tx);
|
for (i = 0; i < TX_RING_SIZE; i++)
|
printk(KERN_DEBUG "%s: %c%c%2d %8.8x.\n", rtdev->name,
|
i == sp->dirty_tx % TX_RING_SIZE ? '*' : ' ',
|
i == sp->cur_tx % TX_RING_SIZE ? '=' : ' ',
|
i, sp->tx_ring[i].status);
|
}
|
printk(KERN_DEBUG "%s: Printing Rx ring"
|
" (next to receive into %u, dirty index %u).\n",
|
rtdev->name, sp->cur_rx, sp->dirty_rx);
|
|
for (i = 0; i < RX_RING_SIZE; i++)
|
printk(KERN_DEBUG "%s: %c%c%c%2d %8.8x.\n", rtdev->name,
|
sp->rx_ringp[i] == sp->last_rxf ? 'l' : ' ',
|
i == sp->dirty_rx % RX_RING_SIZE ? '*' : ' ',
|
i == sp->cur_rx % RX_RING_SIZE ? '=' : ' ',
|
i, (sp->rx_ringp[i] != NULL) ?
|
(unsigned)sp->rx_ringp[i]->status : 0);
|
|
{
|
long ioaddr = rtdev->base_addr;
|
int phy_num = sp->phy[0] & 0x1f;
|
for (i = 0; i < 16; i++) {
|
/* FIXME: what does it mean? --SAW */
|
if (i == 6) i = 21;
|
printk(KERN_DEBUG "%s: PHY index %d register %d is %4.4x.\n",
|
rtdev->name, phy_num, i, mdio_read(ioaddr, phy_num, i));
|
}
|
}
|
}
|
|
static struct net_device_stats *speedo_get_stats(struct rtnet_device *rtdev)
|
{
|
struct speedo_private *sp = (struct speedo_private *)rtdev->priv;
|
return &sp->stats;
|
}
|
|
/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
|
static void
|
speedo_init_rx_ring(struct rtnet_device *rtdev)
|
{
|
struct speedo_private *sp = (struct speedo_private *)rtdev->priv;
|
struct RxFD *rxf, *last_rxf = NULL;
|
dma_addr_t last_rxf_dma = 0 /* to shut up the compiler */;
|
int i;
|
|
sp->cur_rx = 0;
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
struct rtskb *skb;
|
skb = rtnetdev_alloc_rtskb(rtdev, PKT_BUF_SZ + 2 + sizeof(struct RxFD));
|
sp->rx_skbuff[i] = skb;
|
if (skb == NULL)
|
break; /* OK. Just initially short of Rx bufs. */
|
// *** RTnet ***
|
rtskb_reserve(skb, 2); /* IP header alignment */
|
// *** RTnet ***
|
rxf = (struct RxFD *)skb->tail;
|
sp->rx_ringp[i] = rxf;
|
sp->rx_ring_dma[i] =
|
dma_map_single(&sp->pdev->dev, rxf,
|
PKT_BUF_SZ + sizeof(struct RxFD),
|
DMA_BIDIRECTIONAL);
|
rtskb_reserve(skb, sizeof(struct RxFD));
|
if (last_rxf) {
|
last_rxf->link = cpu_to_le32(sp->rx_ring_dma[i]);
|
dma_sync_single_for_device(&sp->pdev->dev, last_rxf_dma,
|
sizeof(struct RxFD),
|
DMA_TO_DEVICE);
|
}
|
last_rxf = rxf;
|
last_rxf_dma = sp->rx_ring_dma[i];
|
rxf->status = cpu_to_le32(0x00000001); /* '1' is flag value only. */
|
rxf->link = 0; /* None yet. */
|
/* This field unused by i82557. */
|
rxf->rx_buf_addr = 0xffffffff;
|
rxf->count = cpu_to_le32(PKT_BUF_SZ << 16);
|
dma_sync_single_for_device(&sp->pdev->dev, sp->rx_ring_dma[i],
|
sizeof(struct RxFD), DMA_TO_DEVICE);
|
}
|
sp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
|
/* Mark the last entry as end-of-list. */
|
last_rxf->status = cpu_to_le32(0xC0000002); /* '2' is flag value only. */
|
dma_sync_single_for_device(&sp->pdev->dev,
|
sp->rx_ring_dma[RX_RING_SIZE-1],
|
sizeof(struct RxFD), DMA_TO_DEVICE);
|
sp->last_rxf = last_rxf;
|
sp->last_rxf_dma = last_rxf_dma;
|
}
|
|
static int
|
speedo_start_xmit(struct rtskb *skb, struct rtnet_device *rtdev)
|
{
|
struct speedo_private *sp = (struct speedo_private *)rtdev->priv;
|
long ioaddr = rtdev->base_addr;
|
int entry;
|
// *** RTnet ***
|
rtdm_lockctx_t context;
|
|
/* Prevent interrupts from changing the Tx ring from underneath us. */
|
rtdm_lock_get_irqsave(&sp->lock, context);
|
// *** RTnet ***
|
|
/* Check if there are enough space. */
|
if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
|
// *** RTnet ***
|
rtnetif_stop_queue(rtdev);
|
sp->tx_full = 1;
|
|
rtdm_lock_put_irqrestore(&sp->lock, context);
|
|
rtdm_printk(KERN_ERR "%s: incorrect tbusy state, fixed.\n", rtdev->name);
|
// *** RTnet ***
|
|
return 1;
|
}
|
|
/* Calculate the Tx descriptor entry. */
|
entry = sp->cur_tx++ % TX_RING_SIZE;
|
|
sp->tx_skbuff[entry] = skb;
|
sp->tx_ring[entry].status =
|
cpu_to_le32(CmdSuspend | CmdTx | CmdTxFlex);
|
if (!(entry & ((TX_RING_SIZE>>2)-1)))
|
sp->tx_ring[entry].status |= cpu_to_le32(CmdIntr);
|
sp->tx_ring[entry].link =
|
cpu_to_le32(TX_RING_ELEM_DMA(sp, sp->cur_tx % TX_RING_SIZE));
|
sp->tx_ring[entry].tx_desc_addr =
|
cpu_to_le32(TX_RING_ELEM_DMA(sp, entry) + TX_DESCR_BUF_OFFSET);
|
/* The data region is always in one buffer descriptor. */
|
sp->tx_ring[entry].count = cpu_to_le32(sp->tx_threshold);
|
sp->tx_ring[entry].tx_buf_addr0 =
|
cpu_to_le32(dma_map_single(&sp->pdev->dev, skb->data,
|
skb->len, DMA_TO_DEVICE));
|
sp->tx_ring[entry].tx_buf_size0 = cpu_to_le32(skb->len);
|
|
// *** RTnet ***
|
// Disabled to gain shorter worst-case execution times.
|
// Hope this bug is not relevant for us
|
|
/* Trigger the command unit resume. */
|
if (rt_wait_for_cmd_done(ioaddr + SCBCmd, __FUNCTION__) != 0) {
|
rtdm_lock_put_irqrestore(&sp->lock, context);
|
|
return 1;
|
}
|
|
/* get and patch time stamp just before the transmission */
|
if (skb->xmit_stamp)
|
*skb->xmit_stamp = cpu_to_be64(rtdm_clock_read() + *skb->xmit_stamp);
|
// *** RTnet ***
|
|
clear_suspend(sp->last_cmd);
|
/* We want the time window between clearing suspend flag on the previous
|
command and resuming CU to be as small as possible.
|
Interrupts in between are very undesired. --SAW */
|
outb(CUResume, ioaddr + SCBCmd);
|
sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
|
|
/* Leave room for set_rx_mode(). If there is no more space than reserved
|
for multicast filter mark the ring as full. */
|
if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
|
rtnetif_stop_queue(rtdev);
|
sp->tx_full = 1;
|
}
|
|
// *** RTnet ***
|
rtdm_lock_put_irqrestore(&sp->lock, context);
|
// *** RTnet ***
|
|
return 0;
|
}
|
|
static void speedo_tx_buffer_gc(struct rtnet_device *rtdev)
|
{
|
unsigned int dirty_tx;
|
struct speedo_private *sp = (struct speedo_private *)rtdev->priv;
|
|
dirty_tx = sp->dirty_tx;
|
while ((int)(sp->cur_tx - dirty_tx) > 0) {
|
int entry = dirty_tx % TX_RING_SIZE;
|
int status = le32_to_cpu(sp->tx_ring[entry].status);
|
|
if (speedo_debug > 5)
|
printk(KERN_DEBUG " scavenge candidate %d status %4.4x.\n",
|
entry, status);
|
if ((status & StatusComplete) == 0)
|
break; /* It still hasn't been processed. */
|
if (status & TxUnderrun)
|
if (sp->tx_threshold < 0x01e08000) {
|
if (speedo_debug > 2)
|
printk(KERN_DEBUG "%s: TX underrun, threshold adjusted.\n",
|
rtdev->name);
|
sp->tx_threshold += 0x00040000;
|
}
|
/* Free the original skb. */
|
if (sp->tx_skbuff[entry]) {
|
sp->stats.tx_packets++; /* Count only user packets. */
|
sp->stats.tx_bytes += sp->tx_skbuff[entry]->len;
|
dma_unmap_single(&sp->pdev->dev,
|
le32_to_cpu(sp->tx_ring[entry].tx_buf_addr0),
|
sp->tx_skbuff[entry]->len, DMA_TO_DEVICE);
|
|
// *** RTnet ***
|
dev_kfree_rtskb(sp->tx_skbuff[entry]);
|
// *** RTnet ***
|
|
sp->tx_skbuff[entry] = 0;
|
}
|
dirty_tx++;
|
}
|
|
// *** RTnet ***
|
// *** RTnet ***
|
|
sp->dirty_tx = dirty_tx;
|
}
|
|
/* The interrupt handler does all of the Rx thread work and cleans up
|
after the Tx thread. */
|
static int speedo_interrupt(rtdm_irq_t *irq_handle)
|
{
|
// *** RTnet ***
|
nanosecs_abs_t time_stamp = rtdm_clock_read();
|
struct rtnet_device *rtdev =
|
rtdm_irq_get_arg(irq_handle, struct rtnet_device);
|
int packets = 0;
|
int ret = RTDM_IRQ_NONE;
|
// *** RTnet ***
|
|
struct speedo_private *sp;
|
long ioaddr, boguscnt = max_interrupt_work;
|
unsigned short status;
|
|
|
ioaddr = rtdev->base_addr;
|
sp = (struct speedo_private *)rtdev->priv;
|
|
#ifdef CONFIG_XENO_DRIVERS_NET_DRV_EEPRO100_DBG
|
/* A lock to prevent simultaneous entry on SMP machines. */
|
if (test_and_set_bit(0, (void*)&sp->in_interrupt)) {
|
rtdm_printk(KERN_ERR"%s: SMP simultaneous entry of an interrupt handler.\n",
|
rtdev->name);
|
sp->in_interrupt = 0; /* Avoid halting machine. */
|
return ret;
|
}
|
#endif
|
|
do {
|
status = inw(ioaddr + SCBStatus);
|
/* Acknowledge all of the current interrupt sources ASAP. */
|
/* Will change from 0xfc00 to 0xff00 when we start handling
|
FCP and ER interrupts --Dragan */
|
outw(status & 0xfc00, ioaddr + SCBStatus);
|
speedo_write_flush(ioaddr);
|
|
if (speedo_debug > 4)
|
rtdm_printk(KERN_DEBUG "%s: interrupt status=%#4.4x.\n",
|
rtdev->name, status);
|
|
if ((status & 0xfc00) == 0)
|
break;
|
|
ret = RTDM_IRQ_HANDLED;
|
|
/* Always check if all rx buffers are allocated. --SAW */
|
speedo_refill_rx_buffers(rtdev, 0);
|
|
if ((status & 0x5000) || /* Packet received, or Rx error. */
|
(sp->rx_ring_state&(RrNoMem|RrPostponed)) == RrPostponed)
|
/* Need to gather the postponed packet. */
|
speedo_rx(rtdev, &packets, &time_stamp);
|
|
if (status & 0x1000) {
|
rtdm_lock_get(&sp->lock);
|
if ((status & 0x003c) == 0x0028) { /* No more Rx buffers. */
|
struct RxFD *rxf;
|
rtdm_printk(KERN_WARNING "%s: card reports no RX buffers.\n",
|
rtdev->name);
|
rxf = sp->rx_ringp[sp->cur_rx % RX_RING_SIZE];
|
if (rxf == NULL) {
|
if (speedo_debug > 2)
|
rtdm_printk(KERN_DEBUG
|
"%s: NULL cur_rx in speedo_interrupt().\n",
|
rtdev->name);
|
sp->rx_ring_state |= RrNoMem|RrNoResources;
|
} else if (rxf == sp->last_rxf) {
|
if (speedo_debug > 2)
|
rtdm_printk(KERN_DEBUG
|
"%s: cur_rx is last in speedo_interrupt().\n",
|
rtdev->name);
|
sp->rx_ring_state |= RrNoMem|RrNoResources;
|
} else
|
outb(RxResumeNoResources, ioaddr + SCBCmd);
|
} else if ((status & 0x003c) == 0x0008) { /* No resources. */
|
struct RxFD *rxf;
|
rtdm_printk(KERN_WARNING "%s: card reports no resources.\n",
|
rtdev->name);
|
rxf = sp->rx_ringp[sp->cur_rx % RX_RING_SIZE];
|
if (rxf == NULL) {
|
if (speedo_debug > 2)
|
rtdm_printk(KERN_DEBUG
|
"%s: NULL cur_rx in speedo_interrupt().\n",
|
rtdev->name);
|
sp->rx_ring_state |= RrNoMem|RrNoResources;
|
} else if (rxf == sp->last_rxf) {
|
if (speedo_debug > 2)
|
rtdm_printk(KERN_DEBUG
|
"%s: cur_rx is last in speedo_interrupt().\n",
|
rtdev->name);
|
sp->rx_ring_state |= RrNoMem|RrNoResources;
|
} else {
|
/* Restart the receiver. */
|
outl(sp->rx_ring_dma[sp->cur_rx % RX_RING_SIZE],
|
ioaddr + SCBPointer);
|
outb(RxStart, ioaddr + SCBCmd);
|
}
|
}
|
sp->stats.rx_errors++;
|
rtdm_lock_put(&sp->lock);
|
}
|
|
if ((sp->rx_ring_state&(RrNoMem|RrNoResources)) == RrNoResources) {
|
rtdm_printk(KERN_WARNING
|
"%s: restart the receiver after a possible hang.\n",
|
rtdev->name);
|
rtdm_lock_get(&sp->lock);
|
/* Restart the receiver.
|
I'm not sure if it's always right to restart the receiver
|
here but I don't know another way to prevent receiver hangs.
|
1999/12/25 SAW */
|
outl(sp->rx_ring_dma[sp->cur_rx % RX_RING_SIZE],
|
ioaddr + SCBPointer);
|
outb(RxStart, ioaddr + SCBCmd);
|
sp->rx_ring_state &= ~RrNoResources;
|
rtdm_lock_put(&sp->lock);
|
}
|
|
/* User interrupt, Command/Tx unit interrupt or CU not active. */
|
if (status & 0xA400) {
|
rtdm_lock_get(&sp->lock);
|
speedo_tx_buffer_gc(rtdev);
|
if (sp->tx_full
|
&& (int)(sp->cur_tx - sp->dirty_tx) < TX_QUEUE_UNFULL) {
|
/* The ring is no longer full. */
|
sp->tx_full = 0;
|
rtnetif_wake_queue(rtdev); /* Attention: under a spinlock. --SAW */
|
}
|
rtdm_lock_put(&sp->lock);
|
}
|
|
if (--boguscnt < 0) {
|
rtdm_printk(KERN_ERR "%s: Too much work at interrupt, status=0x%4.4x.\n",
|
rtdev->name, status);
|
/* Clear all interrupt sources. */
|
/* Will change from 0xfc00 to 0xff00 when we start handling
|
FCP and ER interrupts --Dragan */
|
outw(0xfc00, ioaddr + SCBStatus);
|
break;
|
}
|
} while (1);
|
|
if (speedo_debug > 3)
|
rtdm_printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
|
rtdev->name, inw(ioaddr + SCBStatus));
|
|
clear_bit(0, (void*)&sp->in_interrupt);
|
if (packets > 0)
|
rt_mark_stack_mgr(rtdev);
|
return ret;
|
}
|
|
static inline struct RxFD *speedo_rx_alloc(struct rtnet_device *rtdev, int entry)
|
{
|
struct speedo_private *sp = (struct speedo_private *)rtdev->priv;
|
struct RxFD *rxf;
|
struct rtskb *skb;
|
/* Get a fresh skbuff to replace the consumed one. */
|
skb = rtnetdev_alloc_rtskb(rtdev, PKT_BUF_SZ + 2 + sizeof(struct RxFD));
|
sp->rx_skbuff[entry] = skb;
|
if (skb == NULL) {
|
sp->rx_ringp[entry] = NULL;
|
return NULL;
|
}
|
rtskb_reserve(skb, 2); /* IP header alignment */
|
rxf = sp->rx_ringp[entry] = (struct RxFD *)skb->tail;
|
sp->rx_ring_dma[entry] =
|
dma_map_single(&sp->pdev->dev, rxf,
|
PKT_BUF_SZ + sizeof(struct RxFD),
|
DMA_FROM_DEVICE);
|
rtskb_reserve(skb, sizeof(struct RxFD));
|
rxf->rx_buf_addr = 0xffffffff;
|
dma_sync_single_for_device(&sp->pdev->dev, sp->rx_ring_dma[entry],
|
sizeof(struct RxFD), DMA_TO_DEVICE);
|
return rxf;
|
}
|
|
static inline void speedo_rx_link(struct rtnet_device *rtdev, int entry,
|
struct RxFD *rxf, dma_addr_t rxf_dma)
|
{
|
struct speedo_private *sp = (struct speedo_private *)rtdev->priv;
|
rxf->status = cpu_to_le32(0xC0000001); /* '1' for driver use only. */
|
rxf->link = 0; /* None yet. */
|
rxf->count = cpu_to_le32(PKT_BUF_SZ << 16);
|
sp->last_rxf->link = cpu_to_le32(rxf_dma);
|
sp->last_rxf->status &= cpu_to_le32(~0xC0000000);
|
dma_sync_single_for_device(&sp->pdev->dev, sp->last_rxf_dma,
|
sizeof(struct RxFD), DMA_TO_DEVICE);
|
sp->last_rxf = rxf;
|
sp->last_rxf_dma = rxf_dma;
|
}
|
|
static int speedo_refill_rx_buf(struct rtnet_device *rtdev, int force)
|
{
|
struct speedo_private *sp = (struct speedo_private *)rtdev->priv;
|
int entry;
|
struct RxFD *rxf;
|
|
entry = sp->dirty_rx % RX_RING_SIZE;
|
if (sp->rx_skbuff[entry] == NULL) {
|
rxf = speedo_rx_alloc(rtdev, entry);
|
if (rxf == NULL) {
|
unsigned int forw;
|
int forw_entry;
|
if (speedo_debug > 2 || !(sp->rx_ring_state & RrOOMReported)) {
|
// *** RTnet ***
|
rtdm_printk(KERN_WARNING "%s: can't fill rx buffer (force %d)!\n",
|
rtdev->name, force);
|
// *** RTnet ***
|
sp->rx_ring_state |= RrOOMReported;
|
}
|
if (!force)
|
return -1; /* Better luck next time! */
|
/* Borrow an skb from one of next entries. */
|
for (forw = sp->dirty_rx + 1; forw != sp->cur_rx; forw++)
|
if (sp->rx_skbuff[forw % RX_RING_SIZE] != NULL)
|
break;
|
if (forw == sp->cur_rx)
|
return -1;
|
forw_entry = forw % RX_RING_SIZE;
|
sp->rx_skbuff[entry] = sp->rx_skbuff[forw_entry];
|
sp->rx_skbuff[forw_entry] = NULL;
|
rxf = sp->rx_ringp[forw_entry];
|
sp->rx_ringp[forw_entry] = NULL;
|
sp->rx_ringp[entry] = rxf;
|
}
|
} else {
|
rxf = sp->rx_ringp[entry];
|
}
|
speedo_rx_link(rtdev, entry, rxf, sp->rx_ring_dma[entry]);
|
sp->dirty_rx++;
|
sp->rx_ring_state &= ~(RrNoMem|RrOOMReported); /* Mark the progress. */
|
return 0;
|
}
|
|
static void speedo_refill_rx_buffers(struct rtnet_device *rtdev, int force)
|
{
|
struct speedo_private *sp = (struct speedo_private *)rtdev->priv;
|
|
/* Refill the RX ring. */
|
while ((int)(sp->cur_rx - sp->dirty_rx) > 0 &&
|
speedo_refill_rx_buf(rtdev, force) != -1);
|
}
|
|
static int
|
speedo_rx(struct rtnet_device *rtdev, int* packets, nanosecs_abs_t *time_stamp)
|
{
|
struct speedo_private *sp = (struct speedo_private *)rtdev->priv;
|
int entry = sp->cur_rx % RX_RING_SIZE;
|
int rx_work_limit = sp->dirty_rx + RX_RING_SIZE - sp->cur_rx;
|
int alloc_ok = 1;
|
|
if (speedo_debug > 4)
|
rtdm_printk(KERN_DEBUG " In speedo_rx().\n");
|
/* If we own the next entry, it's a new packet. Send it up. */
|
while (sp->rx_ringp[entry] != NULL) {
|
int status;
|
int pkt_len;
|
|
dma_sync_single_for_cpu(&sp->pdev->dev, sp->rx_ring_dma[entry],
|
sizeof(struct RxFD), DMA_FROM_DEVICE);
|
status = le32_to_cpu(sp->rx_ringp[entry]->status);
|
pkt_len = le32_to_cpu(sp->rx_ringp[entry]->count) & 0x3fff;
|
|
if (!(status & RxComplete))
|
break;
|
|
if (--rx_work_limit < 0)
|
break;
|
|
/* Check for a rare out-of-memory case: the current buffer is
|
the last buffer allocated in the RX ring. --SAW */
|
if (sp->last_rxf == sp->rx_ringp[entry]) {
|
/* Postpone the packet. It'll be reaped at an interrupt when this
|
packet is no longer the last packet in the ring. */
|
if (speedo_debug > 2)
|
rtdm_printk(KERN_DEBUG "%s: RX packet postponed!\n",
|
rtdev->name);
|
sp->rx_ring_state |= RrPostponed;
|
break;
|
}
|
|
if (speedo_debug > 4)
|
rtdm_printk(KERN_DEBUG " speedo_rx() status %8.8x len %d.\n", status,
|
pkt_len);
|
if ((status & (RxErrTooBig|RxOK|0x0f90)) != RxOK) {
|
if (status & RxErrTooBig)
|
rtdm_printk(KERN_ERR "%s: Ethernet frame overran the Rx buffer, "
|
"status %8.8x!\n", rtdev->name, status);
|
else if (! (status & RxOK)) {
|
/* There was a fatal error. This *should* be impossible. */
|
sp->stats.rx_errors++;
|
rtdm_printk(KERN_ERR "%s: Anomalous event in speedo_rx(), "
|
"status %8.8x.\n",
|
rtdev->name, status);
|
}
|
} else {
|
struct rtskb *skb;
|
|
// *** RTnet ***
|
{
|
// *** RTnet ***
|
/* Pass up the already-filled skbuff. */
|
skb = sp->rx_skbuff[entry];
|
if (skb == NULL) {
|
rtdm_printk(KERN_ERR "%s: Inconsistent Rx descriptor chain.\n",
|
rtdev->name);
|
break;
|
}
|
sp->rx_skbuff[entry] = NULL;
|
rtskb_put(skb, pkt_len);
|
sp->rx_ringp[entry] = NULL;
|
dma_unmap_single(&sp->pdev->dev,
|
sp->rx_ring_dma[entry],
|
PKT_BUF_SZ + sizeof(struct RxFD),
|
DMA_FROM_DEVICE);
|
}
|
skb->protocol = rt_eth_type_trans(skb, rtdev);
|
//rtmac
|
skb->time_stamp = *time_stamp;
|
//rtmac
|
rtnetif_rx(skb);
|
(*packets)++;
|
sp->stats.rx_packets++;
|
sp->stats.rx_bytes += pkt_len;
|
}
|
entry = (++sp->cur_rx) % RX_RING_SIZE;
|
sp->rx_ring_state &= ~RrPostponed;
|
/* Refill the recently taken buffers.
|
Do it one-by-one to handle traffic bursts better. */
|
if (alloc_ok && speedo_refill_rx_buf(rtdev, 0) == -1)
|
alloc_ok = 0;
|
}
|
|
/* Try hard to refill the recently taken buffers. */
|
speedo_refill_rx_buffers(rtdev, 1);
|
|
sp->last_rx_time = jiffies;
|
|
return 0;
|
}
|
|
static int
|
speedo_close(struct rtnet_device *rtdev)
|
{
|
long ioaddr = rtdev->base_addr;
|
struct speedo_private *sp = (struct speedo_private *)rtdev->priv;
|
int i;
|
|
netdevice_stop(rtdev);
|
rtnetif_stop_queue(rtdev);
|
|
if (speedo_debug > 1)
|
printk(KERN_DEBUG "%s: Shutting down ethercard, status was %4.4x.\n",
|
rtdev->name, inw(ioaddr + SCBStatus));
|
|
/* Shutdown procedure according to Intel's e100 */
|
outl(PortPartialReset, ioaddr + SCBPort);
|
speedo_write_flush(ioaddr); udelay(20);
|
|
outl(PortReset, ioaddr + SCBPort);
|
speedo_write_flush(ioaddr); udelay(20);
|
|
outw(SCBMaskAll, ioaddr + SCBCmd);
|
speedo_write_flush(ioaddr);
|
|
// *** RTnet ***
|
if ( (i=rtdm_irq_free(&sp->irq_handle))<0 )
|
return i;
|
|
rt_stack_disconnect(rtdev);
|
|
// *** RTnet ***
|
|
/* Print a few items for debugging. */
|
if (speedo_debug > 3)
|
speedo_show_state(rtdev);
|
|
/* Free all the skbuffs in the Rx and Tx queues. */
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
struct rtskb *skb = sp->rx_skbuff[i];
|
sp->rx_skbuff[i] = 0;
|
/* Clear the Rx descriptors. */
|
if (skb) {
|
dma_unmap_single(&sp->pdev->dev,
|
sp->rx_ring_dma[i],
|
PKT_BUF_SZ + sizeof(struct RxFD),
|
DMA_FROM_DEVICE);
|
dev_kfree_rtskb(skb);
|
}
|
}
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
struct rtskb *skb = sp->tx_skbuff[i];
|
sp->tx_skbuff[i] = 0;
|
/* Clear the Tx descriptors. */
|
if (skb) {
|
dma_unmap_single(&sp->pdev->dev,
|
le32_to_cpu(sp->tx_ring[i].tx_buf_addr0),
|
skb->len, DMA_TO_DEVICE);
|
|
// *** RTnet ***
|
dev_kfree_rtskb(skb);
|
// *** RTnet ***
|
}
|
}
|
|
// *** RTnet ***
|
// *** RTnet ***
|
|
pci_set_power_state(sp->pdev, 2);
|
|
return 0;
|
}
|
|
|
/* Set or clear the multicast filter for this adaptor.
|
This is very ugly with Intel chips -- we usually have to execute an
|
entire configuration command, plus process a multicast command.
|
This is complicated. We must put a large configuration command and
|
an arbitrarily-sized multicast command in the transmit list.
|
To minimize the disruption -- the previous command might have already
|
loaded the link -- we convert the current command block, normally a Tx
|
command, into a no-op and link it to the new command.
|
*/
|
static void set_rx_mode(struct rtnet_device *rtdev)
|
{
|
struct speedo_private *sp = (struct speedo_private *)rtdev->priv;
|
long ioaddr = rtdev->base_addr;
|
struct descriptor *last_cmd;
|
char new_rx_mode;
|
//unsigned long flags;
|
int entry/*, i*/;
|
|
if (rtdev->flags & IFF_PROMISC) { /* Set promiscuous. */
|
new_rx_mode = 3;
|
} else if (rtdev->flags & IFF_ALLMULTI) {
|
new_rx_mode = 1;
|
} else
|
new_rx_mode = 0;
|
|
if (speedo_debug > 3)
|
printk(KERN_DEBUG "%s: set_rx_mode %d -> %d\n", rtdev->name,
|
sp->rx_mode, new_rx_mode);
|
|
if ((int)(sp->cur_tx - sp->dirty_tx) > TX_RING_SIZE - TX_MULTICAST_SIZE) {
|
/* The Tx ring is full -- don't add anything! Hope the mode will be
|
* set again later. */
|
sp->rx_mode = -1;
|
return;
|
}
|
|
if (new_rx_mode != sp->rx_mode) {
|
u8 *config_cmd_data;
|
|
//spin_lock_irqsave(&sp->lock, flags); --- disabled for now as it runs before irq handler is active
|
entry = sp->cur_tx++ % TX_RING_SIZE;
|
last_cmd = sp->last_cmd;
|
sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
|
|
sp->tx_skbuff[entry] = 0; /* Redundant. */
|
sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdConfigure);
|
sp->tx_ring[entry].link =
|
cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
|
config_cmd_data = (void *)&sp->tx_ring[entry].tx_desc_addr;
|
/* Construct a full CmdConfig frame. */
|
memcpy(config_cmd_data, i82558_config_cmd, CONFIG_DATA_SIZE);
|
config_cmd_data[1] = (txfifo << 4) | rxfifo;
|
config_cmd_data[4] = rxdmacount;
|
config_cmd_data[5] = txdmacount + 0x80;
|
config_cmd_data[15] |= (new_rx_mode & 2) ? 1 : 0;
|
/* 0x80 doesn't disable FC 0x84 does.
|
Disable Flow control since we are not ACK-ing any FC interrupts
|
for now. --Dragan */
|
config_cmd_data[19] = 0x84;
|
config_cmd_data[19] |= sp->full_duplex ? 0x40 : 0;
|
config_cmd_data[21] = (new_rx_mode & 1) ? 0x0D : 0x05;
|
if (sp->phy[0] & 0x8000) { /* Use the AUI port instead. */
|
config_cmd_data[15] |= 0x80;
|
config_cmd_data[8] = 0;
|
}
|
/* Trigger the command unit resume. */
|
wait_for_cmd_done(ioaddr + SCBCmd);
|
clear_suspend(last_cmd);
|
outb(CUResume, ioaddr + SCBCmd);
|
if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
|
rtnetif_stop_queue(rtdev);
|
sp->tx_full = 1;
|
}
|
//spin_unlock_irqrestore(&sp->lock, flags);
|
}
|
|
if (new_rx_mode == 0) {
|
/* The simple case of 0-3 multicast list entries occurs often, and
|
fits within one tx_ring[] entry. */
|
/*struct dev_mc_list *mclist;*/
|
u16 *setup_params/*, *eaddrs*/;
|
|
//spin_lock_irqsave(&sp->lock, flags); --- disabled for now as it runs before irq handler is active
|
entry = sp->cur_tx++ % TX_RING_SIZE;
|
last_cmd = sp->last_cmd;
|
sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
|
|
sp->tx_skbuff[entry] = 0;
|
sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdMulticastList);
|
sp->tx_ring[entry].link =
|
cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
|
sp->tx_ring[entry].tx_desc_addr = 0; /* Really MC list count. */
|
setup_params = (u16 *)&sp->tx_ring[entry].tx_desc_addr;
|
*setup_params++ = cpu_to_le16(0); /* mc_count */
|
// *** RTnet ***
|
// *** RTnet ***
|
|
wait_for_cmd_done(ioaddr + SCBCmd);
|
clear_suspend(last_cmd);
|
/* Immediately trigger the command unit resume. */
|
outb(CUResume, ioaddr + SCBCmd);
|
|
if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
|
rtnetif_stop_queue(rtdev);
|
sp->tx_full = 1;
|
}
|
//spin_unlock_irqrestore(&sp->lock, flags);
|
// *** RTnet ***
|
// *** RTnet ***
|
}
|
|
sp->rx_mode = new_rx_mode;
|
}
|
|
|
static void eepro100_remove_one (struct pci_dev *pdev)
|
{
|
// *** RTnet ***
|
struct rtnet_device *rtdev = pci_get_drvdata (pdev);
|
|
struct speedo_private *sp = (struct speedo_private *)rtdev->priv;
|
|
rt_unregister_rtnetdev(rtdev);
|
rt_rtdev_disconnect(rtdev);
|
// *** RTnet ***
|
|
release_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1));
|
release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
|
|
#ifndef USE_IO
|
iounmap((char *)rtdev->base_addr);
|
#endif
|
|
dma_free_coherent(
|
&pdev->dev,
|
TX_RING_SIZE * sizeof(struct TxFD) + sizeof(struct speedo_stats),
|
sp->tx_ring, sp->tx_ring_dma);
|
pci_disable_device(pdev);
|
|
// *** RTnet ***
|
rtdev_free(rtdev);
|
// *** RTnet ***
|
}
|
|
static struct pci_device_id eepro100_pci_tbl[] = {
|
{ PCI_VENDOR_ID_INTEL, 0x1229, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x1209, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x1029, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x1030, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x1031, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x1032, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x1033, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x1034, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x1035, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x1036, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x1037, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x1038, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x1039, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x103A, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x103B, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x103C, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x103D, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x103E, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x1092, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x1227, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x1228, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x2449, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x2459, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x245D, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x27DC, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x5200, PCI_ANY_ID, PCI_ANY_ID, },
|
{ PCI_VENDOR_ID_INTEL, 0x5201, PCI_ANY_ID, PCI_ANY_ID, },
|
{ 0,}
|
};
|
MODULE_DEVICE_TABLE(pci, eepro100_pci_tbl);
|
|
static struct pci_driver eepro100_driver = {
|
name: "eepro100_rt",
|
id_table: eepro100_pci_tbl,
|
probe: eepro100_init_one,
|
remove: eepro100_remove_one,
|
suspend: NULL,
|
resume: NULL,
|
};
|
|
static int __init eepro100_init_module(void)
|
{
|
#ifdef CONFIG_XENO_DRIVERS_NET_DRV_EEPRO100_DBG
|
if (local_debug >= 0 && speedo_debug != local_debug)
|
printk(KERN_INFO "eepro100.c: Debug level is %d.\n", local_debug);
|
if (local_debug >= 0)
|
speedo_debug = local_debug;
|
#else /* !CONFIG_XENO_DRIVERS_NET_DRV_EEPRO100_DBG */
|
local_debug = speedo_debug; /* touch debug variable */
|
#endif /* CONFIG_XENO_DRIVERS_NET_DRV_EEPRO100_DBG */
|
|
return pci_register_driver(&eepro100_driver);
|
}
|
|
static void __exit eepro100_cleanup_module(void)
|
{
|
pci_unregister_driver(&eepro100_driver);
|
}
|
|
module_init(eepro100_init_module);
|
module_exit(eepro100_cleanup_module);
|