/*******************************************************************************
|
|
|
Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
|
|
This program is free software; you can redistribute it and/or modify it
|
under the terms of the GNU General Public License as published by the Free
|
Software Foundation; either version 2 of the License, or (at your option)
|
any later version.
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
more details.
|
|
You should have received a copy of the GNU General Public License along with
|
this program; if not, write to the Free Software Foundation, Inc., 59
|
Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
The full GNU General Public License is included in this distribution in the
|
file called LICENSE.
|
|
Contact Information:
|
Linux NICS <linux.nics@intel.com>
|
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
*******************************************************************************/
|
|
#include "e1000.h"
|
|
/* Change Log
|
*
|
* Port to rtnet (0.9.3) by Mathias Koehrer. Base version: e1000-7.1.9
|
* 8-Aug-2006
|
*
|
* 7.0.36 10-Mar-2006
|
* o fixups for compilation issues on older kernels
|
* 7.0.35 3-Mar-2006
|
* 7.0.34
|
* o Major performance fixes by understanding relationship of rx_buffer_len
|
* to window size growth. _ps and legacy receive paths changed
|
* o merge with kernel changes
|
* o legacy receive path went back to single descriptor model for jumbos
|
* 7.0.33 3-Feb-2006
|
* o Added another fix for the pass false carrier bit
|
* 7.0.32 24-Jan-2006
|
* o Need to rebuild with noew version number for the pass false carrier
|
* fix in e1000_hw.c
|
* 7.0.30 18-Jan-2006
|
* o fixup for tso workaround to disable it for pci-x
|
* o fix mem leak on 82542
|
* o fixes for 10 Mb/s connections and incorrect stats
|
* 7.0.28 01/06/2006
|
* o hardware workaround to only set "speed mode" bit for 1G link.
|
* 7.0.26 12/23/2005
|
* o wake on lan support modified for device ID 10B5
|
* o fix dhcp + vlan issue not making it to the iAMT firmware
|
* 7.0.24 12/9/2005
|
* o New hardware support for the Gigabit NIC embedded in the south bridge
|
* o Fixes to the recycling logic (skb->tail) from IBM LTC
|
* 6.3.7 11/18/2005
|
* o Honor eeprom setting for enabling/disabling Wake On Lan
|
* 6.3.5 11/17/2005
|
* o Fix memory leak in rx ring handling for PCI Express adapters
|
* 6.3.4 11/8/05
|
* o Patch from Jesper Juhl to remove redundant NULL checks for kfree
|
* 6.3.2 9/20/05
|
* o Render logic that sets/resets DRV_LOAD as inline functions to
|
* avoid code replication. If f/w is AMT then set DRV_LOAD only when
|
* network interface is open.
|
* o Handle DRV_LOAD set/reset in cases where AMT uses VLANs.
|
* o Adjust PBA partioning for Jumbo frames using MTU size and not
|
* rx_buffer_len
|
* 6.3.1 9/19/05
|
* o Use adapter->tx_timeout_factor in Tx Hung Detect logic
|
* (e1000_clean_tx_irq)
|
* o Support for 8086:10B5 device (Quad Port)
|
*/
|
|
char e1000_driver_name[] = "rt_e1000";
|
static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
|
#ifndef CONFIG_E1000_NAPI
|
#define DRIVERNAPI
|
#else
|
#define DRIVERNAPI "-NAPI"
|
#endif
|
#define DRV_VERSION "7.1.9"DRIVERNAPI
|
char e1000_driver_version[] = DRV_VERSION;
|
static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
|
|
/* e1000_pci_tbl - PCI Device ID Table
|
*
|
* Last entry must be all 0s
|
*
|
* Macro expands to...
|
* {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
|
*/
|
static struct pci_device_id e1000_pci_tbl[] = {
|
INTEL_E1000_ETHERNET_DEVICE(0x1000),
|
INTEL_E1000_ETHERNET_DEVICE(0x1001),
|
INTEL_E1000_ETHERNET_DEVICE(0x1004),
|
INTEL_E1000_ETHERNET_DEVICE(0x1008),
|
INTEL_E1000_ETHERNET_DEVICE(0x1009),
|
INTEL_E1000_ETHERNET_DEVICE(0x100C),
|
INTEL_E1000_ETHERNET_DEVICE(0x100D),
|
INTEL_E1000_ETHERNET_DEVICE(0x100E),
|
INTEL_E1000_ETHERNET_DEVICE(0x100F),
|
INTEL_E1000_ETHERNET_DEVICE(0x1010),
|
INTEL_E1000_ETHERNET_DEVICE(0x1011),
|
INTEL_E1000_ETHERNET_DEVICE(0x1012),
|
INTEL_E1000_ETHERNET_DEVICE(0x1013),
|
INTEL_E1000_ETHERNET_DEVICE(0x1014),
|
INTEL_E1000_ETHERNET_DEVICE(0x1015),
|
INTEL_E1000_ETHERNET_DEVICE(0x1016),
|
INTEL_E1000_ETHERNET_DEVICE(0x1017),
|
INTEL_E1000_ETHERNET_DEVICE(0x1018),
|
INTEL_E1000_ETHERNET_DEVICE(0x1019),
|
INTEL_E1000_ETHERNET_DEVICE(0x101A),
|
INTEL_E1000_ETHERNET_DEVICE(0x101D),
|
INTEL_E1000_ETHERNET_DEVICE(0x101E),
|
INTEL_E1000_ETHERNET_DEVICE(0x1026),
|
INTEL_E1000_ETHERNET_DEVICE(0x1027),
|
INTEL_E1000_ETHERNET_DEVICE(0x1028),
|
INTEL_E1000_ETHERNET_DEVICE(0x1049),
|
INTEL_E1000_ETHERNET_DEVICE(0x104A),
|
INTEL_E1000_ETHERNET_DEVICE(0x104B),
|
INTEL_E1000_ETHERNET_DEVICE(0x104C),
|
INTEL_E1000_ETHERNET_DEVICE(0x104D),
|
INTEL_E1000_ETHERNET_DEVICE(0x105E),
|
INTEL_E1000_ETHERNET_DEVICE(0x105F),
|
INTEL_E1000_ETHERNET_DEVICE(0x1060),
|
INTEL_E1000_ETHERNET_DEVICE(0x1075),
|
INTEL_E1000_ETHERNET_DEVICE(0x1076),
|
INTEL_E1000_ETHERNET_DEVICE(0x1077),
|
INTEL_E1000_ETHERNET_DEVICE(0x1078),
|
INTEL_E1000_ETHERNET_DEVICE(0x1079),
|
INTEL_E1000_ETHERNET_DEVICE(0x107A),
|
INTEL_E1000_ETHERNET_DEVICE(0x107B),
|
INTEL_E1000_ETHERNET_DEVICE(0x107C),
|
INTEL_E1000_ETHERNET_DEVICE(0x107D),
|
INTEL_E1000_ETHERNET_DEVICE(0x107E),
|
INTEL_E1000_ETHERNET_DEVICE(0x107F),
|
INTEL_E1000_ETHERNET_DEVICE(0x108A),
|
INTEL_E1000_ETHERNET_DEVICE(0x108B),
|
INTEL_E1000_ETHERNET_DEVICE(0x108C),
|
INTEL_E1000_ETHERNET_DEVICE(0x1096),
|
INTEL_E1000_ETHERNET_DEVICE(0x1098),
|
INTEL_E1000_ETHERNET_DEVICE(0x1099),
|
INTEL_E1000_ETHERNET_DEVICE(0x109A),
|
INTEL_E1000_ETHERNET_DEVICE(0x10A4),
|
INTEL_E1000_ETHERNET_DEVICE(0x10B5),
|
INTEL_E1000_ETHERNET_DEVICE(0x10B9),
|
INTEL_E1000_ETHERNET_DEVICE(0x10BA),
|
INTEL_E1000_ETHERNET_DEVICE(0x10BB),
|
INTEL_E1000_ETHERNET_DEVICE(0x10BC),
|
INTEL_E1000_ETHERNET_DEVICE(0x10C4),
|
INTEL_E1000_ETHERNET_DEVICE(0x10C5),
|
/* required last entry */
|
{0,}
|
};
|
|
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
|
|
int e1000_up(struct e1000_adapter *adapter);
|
void e1000_down(struct e1000_adapter *adapter);
|
void e1000_reinit_locked(struct e1000_adapter *adapter);
|
void e1000_reset(struct e1000_adapter *adapter);
|
int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
|
int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
|
int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
|
void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
|
void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
|
static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *txdr);
|
static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rxdr);
|
static void e1000_free_tx_resources(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *tx_ring);
|
static void e1000_free_rx_resources(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring);
|
|
static int e1000_init_module(void);
|
static void e1000_exit_module(void);
|
static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
|
static void e1000_remove(struct pci_dev *pdev);
|
static int e1000_alloc_queues(struct e1000_adapter *adapter);
|
static int e1000_sw_init(struct e1000_adapter *adapter);
|
static int e1000_open(struct rtnet_device *netdev);
|
static int e1000_close(struct rtnet_device *netdev);
|
static void e1000_configure_tx(struct e1000_adapter *adapter);
|
static void e1000_configure_rx(struct e1000_adapter *adapter);
|
static void e1000_setup_rctl(struct e1000_adapter *adapter);
|
static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
|
static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
|
static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *tx_ring);
|
static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring);
|
static void e1000_set_multi(struct rtnet_device *netdev);
|
static void e1000_update_phy_info_task(struct work_struct *work);
|
static void e1000_watchdog(struct work_struct *work);
|
static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
|
static int e1000_xmit_frame(struct rtskb *skb, struct rtnet_device *netdev);
|
static int e1000_intr(rtdm_irq_t *irq_handle);
|
static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *tx_ring);
|
static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
nanosecs_abs_t *time_stamp);
|
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
int cleaned_count);
|
#ifdef SIOCGMIIPHY
|
#endif
|
void e1000_set_ethtool_ops(struct rtnet_device *netdev);
|
#ifdef ETHTOOL_OPS_COMPAT
|
extern int ethtool_ioctl(struct ifreq *ifr);
|
#endif
|
static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
|
static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
|
static void e1000_smartspeed(struct e1000_adapter *adapter);
|
static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
|
struct rtskb *skb);
|
|
|
|
|
|
/* Exported from other modules */
|
|
extern void e1000_check_options(struct e1000_adapter *adapter);
|
|
static struct pci_driver e1000_driver = {
|
.name = e1000_driver_name,
|
.id_table = e1000_pci_tbl,
|
.probe = e1000_probe,
|
.remove = e1000_remove,
|
};
|
|
MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
|
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver for rtnet");
|
MODULE_LICENSE("GPL");
|
MODULE_VERSION(DRV_VERSION);
|
|
static int local_debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
|
module_param_named(debug, local_debug, int, 0);
|
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
|
|
|
#define MAX_UNITS 8
|
|
static int cards[MAX_UNITS] = { [0 ... (MAX_UNITS-1)] = 1 };
|
module_param_array(cards, int, NULL, 0444);
|
MODULE_PARM_DESC(cards, "array of cards to be supported (eg. 1,0,1)");
|
|
|
#define kmalloc(a,b) rtdm_malloc(a)
|
#define vmalloc(a) rtdm_malloc(a)
|
#define kfree(a) rtdm_free(a)
|
#define vfree(a) rtdm_free(a)
|
|
|
/**
|
* e1000_init_module - Driver Registration Routine
|
*
|
* e1000_init_module is the first routine called when the driver is
|
* loaded. All it does is register with the PCI subsystem.
|
**/
|
|
static int __init
|
e1000_init_module(void)
|
{
|
int ret;
|
printk(KERN_INFO "%s - version %s\n",
|
e1000_driver_string, e1000_driver_version);
|
|
printk(KERN_INFO "%s\n", e1000_copyright);
|
|
ret = pci_register_driver(&e1000_driver);
|
return ret;
|
}
|
|
module_init(e1000_init_module);
|
|
/**
|
* e1000_exit_module - Driver Exit Cleanup Routine
|
*
|
* e1000_exit_module is called just before the driver is removed
|
* from memory.
|
**/
|
|
static void __exit
|
e1000_exit_module(void)
|
{
|
pci_unregister_driver(&e1000_driver);
|
}
|
|
module_exit(e1000_exit_module);
|
|
static int e1000_request_irq(struct e1000_adapter *adapter)
|
{
|
struct rtnet_device *netdev = adapter->netdev;
|
int flags, err = 0;
|
|
flags = RTDM_IRQTYPE_SHARED;
|
#ifdef CONFIG_PCI_MSI
|
if (adapter->hw.mac_type > e1000_82547_rev_2) {
|
adapter->have_msi = TRUE;
|
if ((err = pci_enable_msi(adapter->pdev))) {
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate MSI interrupt Error: %d\n", err);
|
adapter->have_msi = FALSE;
|
}
|
}
|
if (adapter->have_msi)
|
flags = 0;
|
#endif
|
rt_stack_connect(netdev, &STACK_manager);
|
if ((err = rtdm_irq_request(&adapter->irq_handle, adapter->pdev->irq,
|
e1000_intr, flags, netdev->name, netdev)))
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate interrupt Error: %d\n", err);
|
|
return err;
|
}
|
|
static void e1000_free_irq(struct e1000_adapter *adapter)
|
{
|
// struct rtnet_device *netdev = adapter->netdev;
|
|
rtdm_irq_free(&adapter->irq_handle);
|
|
#ifdef CONFIG_PCI_MSI
|
if (adapter->have_msi)
|
pci_disable_msi(adapter->pdev);
|
#endif
|
}
|
|
/**
|
* e1000_irq_disable - Mask off interrupt generation on the NIC
|
* @adapter: board private structure
|
**/
|
|
static void
|
e1000_irq_disable(struct e1000_adapter *adapter)
|
{
|
atomic_inc(&adapter->irq_sem);
|
E1000_WRITE_REG(&adapter->hw, IMC, ~0);
|
E1000_WRITE_FLUSH(&adapter->hw);
|
synchronize_irq(adapter->pdev->irq);
|
}
|
|
/**
|
* e1000_irq_enable - Enable default interrupt generation settings
|
* @adapter: board private structure
|
**/
|
|
static void
|
e1000_irq_enable(struct e1000_adapter *adapter)
|
{
|
if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
|
E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
|
E1000_WRITE_FLUSH(&adapter->hw);
|
}
|
}
|
|
/**
|
* e1000_release_hw_control - release control of the h/w to f/w
|
* @adapter: address of board private structure
|
*
|
* e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
|
* For ASF and Pass Through versions of f/w this means that the
|
* driver is no longer loaded. For AMT version (only with 82573) i
|
* of the f/w this means that the netowrk i/f is closed.
|
*
|
**/
|
|
static void
|
e1000_release_hw_control(struct e1000_adapter *adapter)
|
{
|
uint32_t ctrl_ext;
|
uint32_t swsm;
|
uint32_t extcnf;
|
|
/* Let firmware taken over control of h/w */
|
switch (adapter->hw.mac_type) {
|
case e1000_82571:
|
case e1000_82572:
|
case e1000_80003es2lan:
|
ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
|
E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
|
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
|
break;
|
case e1000_82573:
|
swsm = E1000_READ_REG(&adapter->hw, SWSM);
|
E1000_WRITE_REG(&adapter->hw, SWSM,
|
swsm & ~E1000_SWSM_DRV_LOAD);
|
break;
|
case e1000_ich8lan:
|
extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
|
E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
|
extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
|
break;
|
default:
|
break;
|
}
|
}
|
|
/**
|
* e1000_get_hw_control - get control of the h/w from f/w
|
* @adapter: address of board private structure
|
*
|
* e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
|
* For ASF and Pass Through versions of f/w this means that
|
* the driver is loaded. For AMT version (only with 82573)
|
* of the f/w this means that the netowrk i/f is open.
|
*
|
**/
|
|
static void
|
e1000_get_hw_control(struct e1000_adapter *adapter)
|
{
|
uint32_t ctrl_ext;
|
uint32_t swsm;
|
uint32_t extcnf;
|
/* Let firmware know the driver has taken over */
|
switch (adapter->hw.mac_type) {
|
case e1000_82571:
|
case e1000_82572:
|
case e1000_80003es2lan:
|
ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
|
E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
|
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
|
break;
|
case e1000_82573:
|
swsm = E1000_READ_REG(&adapter->hw, SWSM);
|
E1000_WRITE_REG(&adapter->hw, SWSM,
|
swsm | E1000_SWSM_DRV_LOAD);
|
break;
|
case e1000_ich8lan:
|
extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
|
E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
|
extcnf | E1000_EXTCNF_CTRL_SWFLAG);
|
break;
|
default:
|
break;
|
}
|
}
|
|
int
|
e1000_up(struct e1000_adapter *adapter)
|
{
|
struct rtnet_device *netdev = adapter->netdev;
|
int i;
|
|
/* hardware has been reset, we need to reload some things */
|
|
e1000_set_multi(netdev);
|
|
|
e1000_configure_tx(adapter);
|
e1000_setup_rctl(adapter);
|
e1000_configure_rx(adapter);
|
/* call E1000_DESC_UNUSED which always leaves
|
* at least 1 descriptor unused to make sure
|
* next_to_use != next_to_clean */
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
struct e1000_rx_ring *ring = &adapter->rx_ring[i];
|
adapter->alloc_rx_buf(adapter, ring,
|
E1000_DESC_UNUSED(ring));
|
}
|
|
// TODO makoehre adapter->tx_queue_len = netdev->tx_queue_len;
|
|
schedule_delayed_work(&adapter->watchdog_task, 1);
|
|
e1000_irq_enable(adapter);
|
|
return 0;
|
}
|
|
/**
|
* e1000_power_up_phy - restore link in case the phy was powered down
|
* @adapter: address of board private structure
|
*
|
* The phy may be powered down to save power and turn off link when the
|
* driver is unloaded and wake on lan is not enabled (among others)
|
* *** this routine MUST be followed by a call to e1000_reset ***
|
*
|
**/
|
|
static void e1000_power_up_phy(struct e1000_adapter *adapter)
|
{
|
uint16_t mii_reg = 0;
|
|
/* Just clear the power down bit to wake the phy back up */
|
if (adapter->hw.media_type == e1000_media_type_copper) {
|
/* according to the manual, the phy will retain its
|
* settings across a power-down/up cycle */
|
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
|
mii_reg &= ~MII_CR_POWER_DOWN;
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
|
}
|
}
|
|
static void e1000_power_down_phy(struct e1000_adapter *adapter)
|
{
|
boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
|
e1000_check_mng_mode(&adapter->hw);
|
/* Power down the PHY so no link is implied when interface is down *
|
* The PHY cannot be powered down if any of the following is TRUE *
|
* (a) WoL is enabled
|
* (b) AMT is active
|
* (c) SoL/IDER session is active */
|
if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
|
adapter->hw.mac_type != e1000_ich8lan &&
|
adapter->hw.media_type == e1000_media_type_copper &&
|
!(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
|
!mng_mode_enabled &&
|
!e1000_check_phy_reset_block(&adapter->hw)) {
|
uint16_t mii_reg = 0;
|
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
|
mii_reg |= MII_CR_POWER_DOWN;
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
|
mdelay(1);
|
}
|
}
|
|
static void e1000_down_and_stop(struct e1000_adapter *adapter)
|
{
|
cancel_work_sync(&adapter->reset_task);
|
cancel_delayed_work_sync(&adapter->watchdog_task);
|
cancel_delayed_work_sync(&adapter->phy_info_task);
|
cancel_delayed_work_sync(&adapter->fifo_stall_task);
|
}
|
|
void
|
e1000_down(struct e1000_adapter *adapter)
|
{
|
struct rtnet_device *netdev = adapter->netdev;
|
|
e1000_irq_disable(adapter);
|
|
e1000_down_and_stop(adapter);
|
|
// TODO makoehre netdev->tx_queue_len = adapter->tx_queue_len;
|
adapter->link_speed = 0;
|
adapter->link_duplex = 0;
|
rtnetif_carrier_off(netdev);
|
rtnetif_stop_queue(netdev);
|
|
e1000_reset(adapter);
|
e1000_clean_all_tx_rings(adapter);
|
e1000_clean_all_rx_rings(adapter);
|
}
|
|
void
|
e1000_reinit_locked(struct e1000_adapter *adapter)
|
{
|
WARN_ON(in_interrupt());
|
if (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
|
msleep(1);
|
e1000_down(adapter);
|
e1000_up(adapter);
|
clear_bit(__E1000_RESETTING, &adapter->flags);
|
}
|
|
void
|
e1000_reset(struct e1000_adapter *adapter)
|
{
|
uint32_t pba;
|
uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
|
|
/* Repartition Pba for greater than 9k mtu
|
* To take effect CTRL.RST is required.
|
*/
|
|
switch (adapter->hw.mac_type) {
|
case e1000_82547:
|
case e1000_82547_rev_2:
|
pba = E1000_PBA_30K;
|
break;
|
case e1000_82571:
|
case e1000_82572:
|
case e1000_80003es2lan:
|
pba = E1000_PBA_38K;
|
break;
|
case e1000_82573:
|
pba = E1000_PBA_12K;
|
break;
|
case e1000_ich8lan:
|
pba = E1000_PBA_8K;
|
break;
|
default:
|
pba = E1000_PBA_48K;
|
break;
|
}
|
|
if ((adapter->hw.mac_type != e1000_82573) &&
|
(adapter->netdev->mtu > E1000_RXBUFFER_8192))
|
pba -= 8; /* allocate more FIFO for Tx */
|
|
|
if (adapter->hw.mac_type == e1000_82547) {
|
adapter->tx_fifo_head = 0;
|
adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
|
adapter->tx_fifo_size =
|
(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
|
atomic_set(&adapter->tx_fifo_stall, 0);
|
}
|
|
E1000_WRITE_REG(&adapter->hw, PBA, pba);
|
|
/* flow control settings */
|
/* Set the FC high water mark to 90% of the FIFO size.
|
* Required to clear last 3 LSB */
|
fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
|
/* We can't use 90% on small FIFOs because the remainder
|
* would be less than 1 full frame. In this case, we size
|
* it to allow at least a full frame above the high water
|
* mark. */
|
if (pba < E1000_PBA_16K)
|
fc_high_water_mark = (pba * 1024) - 1600;
|
|
adapter->hw.fc_high_water = fc_high_water_mark;
|
adapter->hw.fc_low_water = fc_high_water_mark - 8;
|
if (adapter->hw.mac_type == e1000_80003es2lan)
|
adapter->hw.fc_pause_time = 0xFFFF;
|
else
|
adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
|
adapter->hw.fc_send_xon = 1;
|
adapter->hw.fc = adapter->hw.original_fc;
|
|
/* Allow time for pending master requests to run */
|
e1000_reset_hw(&adapter->hw);
|
if (adapter->hw.mac_type >= e1000_82544)
|
E1000_WRITE_REG(&adapter->hw, WUC, 0);
|
if (e1000_init_hw(&adapter->hw))
|
DPRINTK(PROBE, ERR, "Hardware Error\n");
|
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
|
E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
|
|
E1000_WRITE_REG(&adapter->hw, AIT, 0); // Set adaptive interframe spacing to zero
|
|
// e1000_reset_adaptive(&adapter->hw);
|
e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
|
|
if (!adapter->smart_power_down &&
|
(adapter->hw.mac_type == e1000_82571 ||
|
adapter->hw.mac_type == e1000_82572)) {
|
uint16_t phy_data = 0;
|
/* speed up time to link by disabling smart power down, ignore
|
* the return value of this function because there is nothing
|
* different we would do if it failed */
|
e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
|
&phy_data);
|
phy_data &= ~IGP02E1000_PM_SPD;
|
e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
|
phy_data);
|
}
|
|
}
|
|
static void
|
e1000_reset_task(struct work_struct *work)
|
{
|
struct e1000_adapter *adapter =
|
container_of(work, struct e1000_adapter, reset_task);
|
|
e1000_reinit_locked(adapter);
|
}
|
|
/**
|
* e1000_probe - Device Initialization Routine
|
* @pdev: PCI device information struct
|
* @ent: entry in e1000_pci_tbl
|
*
|
* Returns 0 on success, negative on failure
|
*
|
* e1000_probe initializes an adapter identified by a pci_dev structure.
|
* The OS initialization, configuring of the adapter private structure,
|
* and a hardware reset occur.
|
**/
|
|
static int e1000_probe(struct pci_dev *pdev,
|
const struct pci_device_id *ent)
|
{
|
struct rtnet_device *netdev;
|
struct e1000_adapter *adapter;
|
unsigned long mmio_start, mmio_len;
|
unsigned long flash_start, flash_len;
|
|
static int cards_found = 0;
|
static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
|
int i, err;
|
uint16_t eeprom_data;
|
uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
|
|
if (cards[cards_found++] == 0)
|
{
|
return -ENODEV;
|
}
|
|
if ((err = pci_enable_device(pdev)))
|
return err;
|
|
if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) ||
|
(err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)))) {
|
if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) &&
|
(err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
|
E1000_ERR("No usable DMA configuration, aborting\n");
|
return err;
|
}
|
}
|
|
if ((err = pci_request_regions(pdev, e1000_driver_name)))
|
return err;
|
|
pci_set_master(pdev);
|
|
netdev = rt_alloc_etherdev(sizeof(struct e1000_adapter), 48);
|
if (!netdev) {
|
err = -ENOMEM;
|
goto err_alloc_etherdev;
|
}
|
memset(netdev->priv, 0, sizeof(struct e1000_adapter));
|
|
rt_rtdev_connect(netdev, &RTDEV_manager);
|
|
|
// SET_NETDEV_DEV(netdev, &pdev->dev);
|
netdev->vers = RTDEV_VERS_2_0;
|
netdev->sysbind = &pdev->dev;
|
|
pci_set_drvdata(pdev, netdev);
|
adapter = netdev->priv;
|
adapter->netdev = netdev;
|
adapter->pdev = pdev;
|
adapter->hw.back = adapter;
|
adapter->msg_enable = (1 << local_debug) - 1;
|
|
mmio_start = pci_resource_start(pdev, BAR_0);
|
mmio_len = pci_resource_len(pdev, BAR_0);
|
|
adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
|
if (!adapter->hw.hw_addr) {
|
err = -EIO;
|
goto err_ioremap;
|
}
|
|
for (i = BAR_1; i <= BAR_5; i++) {
|
if (pci_resource_len(pdev, i) == 0)
|
continue;
|
if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
|
adapter->hw.io_base = pci_resource_start(pdev, i);
|
break;
|
}
|
}
|
|
netdev->open = &e1000_open;
|
netdev->stop = &e1000_close;
|
netdev->hard_start_xmit = &e1000_xmit_frame;
|
// netdev->get_stats = &e1000_get_stats;
|
// netdev->set_multicast_list = &e1000_set_multi;
|
// netdev->set_mac_address = &e1000_set_mac;
|
// netdev->change_mtu = &e1000_change_mtu;
|
// netdev->do_ioctl = &e1000_ioctl;
|
// e1000_set_ethtool_ops(netdev);
|
strcpy(netdev->name, pci_name(pdev));
|
|
netdev->mem_start = mmio_start;
|
netdev->mem_end = mmio_start + mmio_len;
|
netdev->base_addr = adapter->hw.io_base;
|
|
adapter->bd_number = cards_found - 1;
|
|
/* setup the private structure */
|
|
if ((err = e1000_sw_init(adapter)))
|
goto err_sw_init;
|
|
/* Flash BAR mapping must happen after e1000_sw_init
|
* because it depends on mac_type */
|
if ((adapter->hw.mac_type == e1000_ich8lan) &&
|
(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
|
flash_start = pci_resource_start(pdev, 1);
|
flash_len = pci_resource_len(pdev, 1);
|
adapter->hw.flash_address = ioremap(flash_start, flash_len);
|
if (!adapter->hw.flash_address) {
|
err = -EIO;
|
goto err_flashmap;
|
}
|
}
|
|
if ((err = e1000_check_phy_reset_block(&adapter->hw)))
|
DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
|
|
/* if ksp3, indicate if it's port a being setup */
|
if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
|
e1000_ksp3_port_a == 0)
|
adapter->ksp3_port_a = 1;
|
e1000_ksp3_port_a++;
|
/* Reset for multiple KP3 adapters */
|
if (e1000_ksp3_port_a == 4)
|
e1000_ksp3_port_a = 0;
|
|
netdev->features |= NETIF_F_LLTX;
|
|
adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
|
|
/* initialize eeprom parameters */
|
|
if (e1000_init_eeprom_params(&adapter->hw)) {
|
E1000_ERR("EEPROM initialization failed\n");
|
return -EIO;
|
}
|
|
/* before reading the EEPROM, reset the controller to
|
* put the device in a known good starting state */
|
|
e1000_reset_hw(&adapter->hw);
|
|
/* make sure the EEPROM is good */
|
|
if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
|
DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
|
err = -EIO;
|
goto err_eeprom;
|
}
|
|
/* copy the MAC address out of the EEPROM */
|
|
if (e1000_read_mac_addr(&adapter->hw))
|
DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
|
memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
|
#ifdef ETHTOOL_GPERMADDR
|
memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
|
|
if (!is_valid_ether_addr(netdev->perm_addr)) {
|
#else
|
if (!is_valid_ether_addr(netdev->dev_addr)) {
|
#endif
|
DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
|
err = -EIO;
|
goto err_eeprom;
|
}
|
|
e1000_read_part_num(&adapter->hw, &(adapter->part_num));
|
|
e1000_get_bus_info(&adapter->hw);
|
|
INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
|
INIT_DELAYED_WORK(&adapter->fifo_stall_task,
|
e1000_82547_tx_fifo_stall_task);
|
INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
|
INIT_WORK(&adapter->reset_task,
|
(void (*)(struct work_struct *))e1000_reset_task);
|
|
/* we're going to reset, so assume we have no link for now */
|
|
rtnetif_carrier_off(netdev);
|
rtnetif_stop_queue(netdev);
|
|
e1000_check_options(adapter);
|
|
/* Initial Wake on LAN setting
|
* If APM wake is enabled in the EEPROM,
|
* enable the ACPI Magic Packet filter
|
*/
|
|
switch (adapter->hw.mac_type) {
|
case e1000_82542_rev2_0:
|
case e1000_82542_rev2_1:
|
case e1000_82543:
|
break;
|
case e1000_82544:
|
e1000_read_eeprom(&adapter->hw,
|
EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
|
eeprom_apme_mask = E1000_EEPROM_82544_APM;
|
break;
|
case e1000_ich8lan:
|
e1000_read_eeprom(&adapter->hw,
|
EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
|
eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
|
break;
|
case e1000_82546:
|
case e1000_82546_rev_3:
|
case e1000_82571:
|
case e1000_80003es2lan:
|
if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
|
e1000_read_eeprom(&adapter->hw,
|
EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
|
break;
|
}
|
fallthrough;
|
default:
|
e1000_read_eeprom(&adapter->hw,
|
EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
|
break;
|
}
|
if (eeprom_data & eeprom_apme_mask)
|
adapter->wol |= E1000_WUFC_MAG;
|
|
/* print bus type/speed/width info */
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
|
((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
|
(hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
|
((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
|
(hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
|
(hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
|
(hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
|
(hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
|
((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
|
(hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
|
(hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
|
"32-bit"));
|
}
|
|
printk(KERN_INFO "e1000: hw ");
|
for (i = 0; i < 6; i++)
|
printk(KERN_CONT "%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
|
|
/* reset the hardware with the new settings */
|
e1000_reset(adapter);
|
|
/* If the controller is 82573 and f/w is AMT, do not set
|
* DRV_LOAD until the interface is up. For all other cases,
|
* let the f/w know that the h/w is now under the control
|
* of the driver. */
|
if (adapter->hw.mac_type != e1000_82573 ||
|
!e1000_check_mng_mode(&adapter->hw))
|
e1000_get_hw_control(adapter);
|
|
strcpy(netdev->name, "rteth%d");
|
if ((err = rt_register_rtnetdev(netdev)))
|
goto err_register;
|
|
DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
|
|
return 0;
|
|
err_register:
|
if (adapter->hw.flash_address)
|
iounmap(adapter->hw.flash_address);
|
err_flashmap:
|
err_sw_init:
|
err_eeprom:
|
iounmap(adapter->hw.hw_addr);
|
err_ioremap:
|
rtdev_free(netdev);
|
err_alloc_etherdev:
|
pci_release_regions(pdev);
|
return err;
|
}
|
|
/**
|
* e1000_remove - Device Removal Routine
|
* @pdev: PCI device information struct
|
*
|
* e1000_remove is called by the PCI subsystem to alert the driver
|
* that it should release a PCI device. The could be caused by a
|
* Hot-Plug event, or because the driver is going to be removed from
|
* memory.
|
**/
|
|
static void e1000_remove(struct pci_dev *pdev)
|
{
|
struct rtnet_device *netdev = pci_get_drvdata(pdev);
|
struct e1000_adapter *adapter = netdev->priv;
|
uint32_t manc;
|
|
e1000_down_and_stop(adapter);
|
|
if (adapter->hw.mac_type >= e1000_82540 &&
|
adapter->hw.mac_type != e1000_ich8lan &&
|
adapter->hw.media_type == e1000_media_type_copper) {
|
manc = E1000_READ_REG(&adapter->hw, MANC);
|
if (manc & E1000_MANC_SMBUS_EN) {
|
manc |= E1000_MANC_ARP_EN;
|
E1000_WRITE_REG(&adapter->hw, MANC, manc);
|
}
|
}
|
|
/* Release control of h/w to f/w. If f/w is AMT enabled, this
|
* would have already happened in close and is redundant. */
|
e1000_release_hw_control(adapter);
|
|
rt_unregister_rtnetdev(netdev);
|
|
if (!e1000_check_phy_reset_block(&adapter->hw))
|
e1000_phy_hw_reset(&adapter->hw);
|
|
kfree(adapter->tx_ring);
|
kfree(adapter->rx_ring);
|
|
|
iounmap(adapter->hw.hw_addr);
|
if (adapter->hw.flash_address)
|
iounmap(adapter->hw.flash_address);
|
pci_release_regions(pdev);
|
|
rtdev_free(netdev);
|
|
pci_disable_device(pdev);
|
}
|
|
/**
|
* e1000_sw_init - Initialize general software structures (struct e1000_adapter)
|
* @adapter: board private structure to initialize
|
*
|
* e1000_sw_init initializes the Adapter private data structure.
|
* Fields are initialized based on PCI device information and
|
* OS network device settings (MTU size).
|
**/
|
|
static int e1000_sw_init(struct e1000_adapter *adapter)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
struct rtnet_device *netdev = adapter->netdev;
|
struct pci_dev *pdev = adapter->pdev;
|
|
/* PCI config space info */
|
|
hw->vendor_id = pdev->vendor;
|
hw->device_id = pdev->device;
|
hw->subsystem_vendor_id = pdev->subsystem_vendor;
|
hw->subsystem_id = pdev->subsystem_device;
|
|
pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
|
|
pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
|
|
adapter->rx_buffer_len = MAXIMUM_ETHERNET_FRAME_SIZE;
|
adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
|
hw->max_frame_size = netdev->mtu +
|
ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
|
hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
|
|
/* identify the MAC */
|
|
if (e1000_set_mac_type(hw)) {
|
DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
|
return -EIO;
|
}
|
|
switch (hw->mac_type) {
|
default:
|
break;
|
case e1000_82541:
|
case e1000_82547:
|
case e1000_82541_rev_2:
|
case e1000_82547_rev_2:
|
hw->phy_init_script = 1;
|
break;
|
}
|
|
e1000_set_media_type(hw);
|
|
hw->wait_autoneg_complete = FALSE;
|
hw->tbi_compatibility_en = TRUE;
|
hw->adaptive_ifs = FALSE;
|
|
/* Copper options */
|
|
if (hw->media_type == e1000_media_type_copper) {
|
hw->mdix = AUTO_ALL_MODES;
|
hw->disable_polarity_correction = FALSE;
|
hw->master_slave = E1000_MASTER_SLAVE;
|
}
|
|
adapter->num_tx_queues = 1;
|
adapter->num_rx_queues = 1;
|
|
|
if (e1000_alloc_queues(adapter)) {
|
DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
|
return -ENOMEM;
|
}
|
|
atomic_set(&adapter->irq_sem, 1);
|
|
return 0;
|
}
|
|
/**
|
* e1000_alloc_queues - Allocate memory for all rings
|
* @adapter: board private structure to initialize
|
*
|
* We allocate one ring per queue at run-time since we don't know the
|
* number of queues at compile-time. The polling_netdev array is
|
* intended for Multiqueue, but should work fine with a single queue.
|
**/
|
|
static int e1000_alloc_queues(struct e1000_adapter *adapter)
|
{
|
int size;
|
|
size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
|
adapter->tx_ring = kmalloc(size, GFP_KERNEL);
|
if (!adapter->tx_ring)
|
return -ENOMEM;
|
memset(adapter->tx_ring, 0, size);
|
|
size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
|
adapter->rx_ring = kmalloc(size, GFP_KERNEL);
|
if (!adapter->rx_ring) {
|
kfree(adapter->tx_ring);
|
return -ENOMEM;
|
}
|
memset(adapter->rx_ring, 0, size);
|
|
|
return E1000_SUCCESS;
|
}
|
|
/**
|
* e1000_open - Called when a network interface is made active
|
* @netdev: network interface device structure
|
*
|
* Returns 0 on success, negative value on failure
|
*
|
* The open entry point is called when a network interface is made
|
* active by the system (IFF_UP). At this point all resources needed
|
* for transmit and receive operations are allocated, the interrupt
|
* handler is registered with the OS, the watchdog timer is started,
|
* and the stack is notified that the interface is ready.
|
**/
|
|
static int
|
e1000_open(struct rtnet_device *netdev)
|
{
|
struct e1000_adapter *adapter = netdev->priv;
|
int err;
|
|
/* disallow open during test */
|
if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
|
return -EBUSY;
|
|
/* allocate transmit descriptors */
|
|
if ((err = e1000_setup_all_tx_resources(adapter)))
|
goto err_setup_tx;
|
|
/* allocate receive descriptors */
|
|
if ((err = e1000_setup_all_rx_resources(adapter)))
|
goto err_setup_rx;
|
|
err = e1000_request_irq(adapter);
|
if (err)
|
goto err_up;
|
|
e1000_power_up_phy(adapter);
|
|
if ((err = e1000_up(adapter)))
|
goto err_up;
|
|
/* If AMT is enabled, let the firmware know that the network
|
* interface is now open */
|
if (adapter->hw.mac_type == e1000_82573 &&
|
e1000_check_mng_mode(&adapter->hw))
|
e1000_get_hw_control(adapter);
|
|
/* Wait for the hardware to come up */
|
msleep(3000);
|
|
return E1000_SUCCESS;
|
|
err_up:
|
e1000_free_all_rx_resources(adapter);
|
err_setup_rx:
|
e1000_free_all_tx_resources(adapter);
|
err_setup_tx:
|
e1000_reset(adapter);
|
|
return err;
|
}
|
|
/**
|
* e1000_close - Disables a network interface
|
* @netdev: network interface device structure
|
*
|
* Returns 0, this is not allowed to fail
|
*
|
* The close entry point is called when an interface is de-activated
|
* by the OS. The hardware is still under the drivers control, but
|
* needs to be disabled. A global MAC reset is issued to stop the
|
* hardware, and all transmit and receive resources are freed.
|
**/
|
|
static int
|
e1000_close(struct rtnet_device *netdev)
|
{
|
struct e1000_adapter *adapter = netdev->priv;
|
|
WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
|
e1000_down(adapter);
|
e1000_power_down_phy(adapter);
|
e1000_free_irq(adapter);
|
|
e1000_free_all_tx_resources(adapter);
|
e1000_free_all_rx_resources(adapter);
|
|
|
/* If AMT is enabled, let the firmware know that the network
|
* interface is now closed */
|
if (adapter->hw.mac_type == e1000_82573 &&
|
e1000_check_mng_mode(&adapter->hw))
|
e1000_release_hw_control(adapter);
|
|
return 0;
|
}
|
|
/**
|
* e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
|
* @adapter: address of board private structure
|
* @start: address of beginning of memory
|
* @len: length of memory
|
**/
|
static boolean_t
|
e1000_check_64k_bound(struct e1000_adapter *adapter,
|
void *start, unsigned long len)
|
{
|
unsigned long begin = (unsigned long) start;
|
unsigned long end = begin + len;
|
|
/* First rev 82545 and 82546 need to not allow any memory
|
* write location to cross 64k boundary due to errata 23 */
|
if (adapter->hw.mac_type == e1000_82545 ||
|
adapter->hw.mac_type == e1000_82546) {
|
return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
|
}
|
|
return TRUE;
|
}
|
|
/**
|
* e1000_setup_tx_resources - allocate Tx resources (Descriptors)
|
* @adapter: board private structure
|
* @txdr: tx descriptor ring (for a specific queue) to setup
|
*
|
* Return 0 on success, negative on failure
|
**/
|
|
static int
|
e1000_setup_tx_resources(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *txdr)
|
{
|
struct pci_dev *pdev = adapter->pdev;
|
int size;
|
|
size = sizeof(struct e1000_buffer) * txdr->count;
|
txdr->buffer_info = vmalloc(size);
|
if (!txdr->buffer_info) {
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate memory for the transmit descriptor ring\n");
|
return -ENOMEM;
|
}
|
memset(txdr->buffer_info, 0, size);
|
|
/* round up to nearest 4K */
|
|
txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
|
E1000_ROUNDUP(txdr->size, 4096);
|
|
txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
|
GFP_ATOMIC);
|
if (!txdr->desc) {
|
setup_tx_desc_die:
|
vfree(txdr->buffer_info);
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate memory for the transmit descriptor ring\n");
|
return -ENOMEM;
|
}
|
|
/* Fix for errata 23, can't cross 64kB boundary */
|
if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
|
void *olddesc = txdr->desc;
|
dma_addr_t olddma = txdr->dma;
|
DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
|
"at %p\n", txdr->size, txdr->desc);
|
/* Try again, without freeing the previous */
|
txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
|
&txdr->dma, GFP_ATOMIC);
|
/* Failed allocation, critical failure */
|
if (!txdr->desc) {
|
dma_free_coherent(&pdev->dev, txdr->size, olddesc,
|
olddma);
|
goto setup_tx_desc_die;
|
}
|
|
if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
|
/* give up */
|
dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
|
txdr->dma);
|
dma_free_coherent(&pdev->dev, txdr->size, olddesc,
|
olddma);
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate aligned memory "
|
"for the transmit descriptor ring\n");
|
vfree(txdr->buffer_info);
|
return -ENOMEM;
|
} else {
|
/* Free old allocation, new allocation was successful */
|
dma_free_coherent(&pdev->dev, txdr->size, olddesc,
|
olddma);
|
}
|
}
|
memset(txdr->desc, 0, txdr->size);
|
|
txdr->next_to_use = 0;
|
txdr->next_to_clean = 0;
|
rtdm_lock_init(&txdr->tx_lock);
|
|
return 0;
|
}
|
|
/**
|
* e1000_setup_all_tx_resources - wrapper to allocate Tx resources
|
* (Descriptors) for all queues
|
* @adapter: board private structure
|
*
|
* If this function returns with an error, then it's possible one or
|
* more of the rings is populated (while the rest are not). It is the
|
* callers duty to clean those orphaned rings.
|
*
|
* Return 0 on success, negative on failure
|
**/
|
|
int
|
e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
|
{
|
int i, err = 0;
|
|
for (i = 0; i < adapter->num_tx_queues; i++) {
|
err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
|
if (err) {
|
DPRINTK(PROBE, ERR,
|
"Allocation for Tx Queue %u failed\n", i);
|
break;
|
}
|
}
|
|
return err;
|
}
|
|
/**
|
* e1000_configure_tx - Configure 8254x Transmit Unit after Reset
|
* @adapter: board private structure
|
*
|
* Configure the Tx unit of the MAC after a reset.
|
**/
|
|
static void
|
e1000_configure_tx(struct e1000_adapter *adapter)
|
{
|
uint64_t tdba;
|
struct e1000_hw *hw = &adapter->hw;
|
uint32_t tdlen, tctl, tipg, tarc;
|
uint32_t ipgr1, ipgr2;
|
|
/* Setup the HW Tx Head and Tail descriptor pointers */
|
|
switch (adapter->num_tx_queues) {
|
case 1:
|
default:
|
tdba = adapter->tx_ring[0].dma;
|
tdlen = adapter->tx_ring[0].count *
|
sizeof(struct e1000_tx_desc);
|
E1000_WRITE_REG(hw, TDLEN, tdlen);
|
E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
|
E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
|
E1000_WRITE_REG(hw, TDT, 0);
|
E1000_WRITE_REG(hw, TDH, 0);
|
adapter->tx_ring[0].tdh = E1000_TDH;
|
adapter->tx_ring[0].tdt = E1000_TDT;
|
break;
|
}
|
|
/* Set the default values for the Tx Inter Packet Gap timer */
|
|
if (hw->media_type == e1000_media_type_fiber ||
|
hw->media_type == e1000_media_type_internal_serdes)
|
tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
|
else
|
tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
|
|
switch (hw->mac_type) {
|
case e1000_82542_rev2_0:
|
case e1000_82542_rev2_1:
|
tipg = DEFAULT_82542_TIPG_IPGT;
|
ipgr1 = DEFAULT_82542_TIPG_IPGR1;
|
ipgr2 = DEFAULT_82542_TIPG_IPGR2;
|
break;
|
case e1000_80003es2lan:
|
ipgr1 = DEFAULT_82543_TIPG_IPGR1;
|
ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
|
break;
|
default:
|
ipgr1 = DEFAULT_82543_TIPG_IPGR1;
|
ipgr2 = DEFAULT_82543_TIPG_IPGR2;
|
break;
|
}
|
tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
|
tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
|
E1000_WRITE_REG(hw, TIPG, tipg);
|
|
/* Set the Tx Interrupt Delay register */
|
|
E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
|
if (hw->mac_type >= e1000_82540)
|
E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
|
|
/* Program the Transmit Control Register */
|
|
tctl = E1000_READ_REG(hw, TCTL);
|
|
tctl &= ~E1000_TCTL_CT;
|
tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
|
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
|
|
#ifdef DISABLE_MULR
|
/* disable Multiple Reads for debugging */
|
tctl &= ~E1000_TCTL_MULR;
|
#endif
|
|
if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
|
tarc = E1000_READ_REG(hw, TARC0);
|
tarc |= ((1 << 25) | (1 << 21));
|
E1000_WRITE_REG(hw, TARC0, tarc);
|
tarc = E1000_READ_REG(hw, TARC1);
|
tarc |= (1 << 25);
|
if (tctl & E1000_TCTL_MULR)
|
tarc &= ~(1 << 28);
|
else
|
tarc |= (1 << 28);
|
E1000_WRITE_REG(hw, TARC1, tarc);
|
} else if (hw->mac_type == e1000_80003es2lan) {
|
tarc = E1000_READ_REG(hw, TARC0);
|
tarc |= 1;
|
if (hw->media_type == e1000_media_type_internal_serdes)
|
tarc |= (1 << 20);
|
E1000_WRITE_REG(hw, TARC0, tarc);
|
tarc = E1000_READ_REG(hw, TARC1);
|
tarc |= 1;
|
E1000_WRITE_REG(hw, TARC1, tarc);
|
}
|
|
e1000_config_collision_dist(hw);
|
|
/* Setup Transmit Descriptor Settings for eop descriptor */
|
adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
|
E1000_TXD_CMD_IFCS;
|
|
if (hw->mac_type < e1000_82543)
|
adapter->txd_cmd |= E1000_TXD_CMD_RPS;
|
else
|
adapter->txd_cmd |= E1000_TXD_CMD_RS;
|
|
/* Cache if we're 82544 running in PCI-X because we'll
|
* need this to apply a workaround later in the send path. */
|
if (hw->mac_type == e1000_82544 &&
|
hw->bus_type == e1000_bus_type_pcix)
|
adapter->pcix_82544 = 1;
|
|
E1000_WRITE_REG(hw, TCTL, tctl);
|
|
}
|
|
/**
|
* e1000_setup_rx_resources - allocate Rx resources (Descriptors)
|
* @adapter: board private structure
|
* @rxdr: rx descriptor ring (for a specific queue) to setup
|
*
|
* Returns 0 on success, negative on failure
|
**/
|
|
static int
|
e1000_setup_rx_resources(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rxdr)
|
{
|
struct pci_dev *pdev = adapter->pdev;
|
int size, desc_len;
|
|
size = sizeof(struct e1000_buffer) * rxdr->count;
|
rxdr->buffer_info = vmalloc(size);
|
if (!rxdr->buffer_info) {
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate memory for the receive descriptor ring\n");
|
return -ENOMEM;
|
}
|
memset(rxdr->buffer_info, 0, size);
|
|
size = sizeof(struct e1000_ps_page) * rxdr->count;
|
rxdr->ps_page = kmalloc(size, GFP_KERNEL);
|
if (!rxdr->ps_page) {
|
vfree(rxdr->buffer_info);
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate memory for the receive descriptor ring\n");
|
return -ENOMEM;
|
}
|
memset(rxdr->ps_page, 0, size);
|
|
size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
|
rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
|
if (!rxdr->ps_page_dma) {
|
vfree(rxdr->buffer_info);
|
kfree(rxdr->ps_page);
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate memory for the receive descriptor ring\n");
|
return -ENOMEM;
|
}
|
memset(rxdr->ps_page_dma, 0, size);
|
|
if (adapter->hw.mac_type <= e1000_82547_rev_2)
|
desc_len = sizeof(struct e1000_rx_desc);
|
else
|
desc_len = sizeof(union e1000_rx_desc_packet_split);
|
|
/* Round up to nearest 4K */
|
|
rxdr->size = rxdr->count * desc_len;
|
E1000_ROUNDUP(rxdr->size, 4096);
|
|
rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
|
GFP_ATOMIC);
|
|
if (!rxdr->desc) {
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate memory for the receive descriptor ring\n");
|
setup_rx_desc_die:
|
vfree(rxdr->buffer_info);
|
kfree(rxdr->ps_page);
|
kfree(rxdr->ps_page_dma);
|
return -ENOMEM;
|
}
|
|
/* Fix for errata 23, can't cross 64kB boundary */
|
if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
|
void *olddesc = rxdr->desc;
|
dma_addr_t olddma = rxdr->dma;
|
DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
|
"at %p\n", rxdr->size, rxdr->desc);
|
/* Try again, without freeing the previous */
|
rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
|
&rxdr->dma, GFP_ATOMIC);
|
/* Failed allocation, critical failure */
|
if (!rxdr->desc) {
|
dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
|
olddma);
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate memory "
|
"for the receive descriptor ring\n");
|
goto setup_rx_desc_die;
|
}
|
|
if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
|
/* give up */
|
dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
|
rxdr->dma);
|
dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
|
olddma);
|
DPRINTK(PROBE, ERR,
|
"Unable to allocate aligned memory "
|
"for the receive descriptor ring\n");
|
goto setup_rx_desc_die;
|
} else {
|
/* Free old allocation, new allocation was successful */
|
dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
|
olddma);
|
}
|
}
|
memset(rxdr->desc, 0, rxdr->size);
|
|
rxdr->next_to_clean = 0;
|
rxdr->next_to_use = 0;
|
|
return 0;
|
}
|
|
/**
|
* e1000_setup_all_rx_resources - wrapper to allocate Rx resources
|
* (Descriptors) for all queues
|
* @adapter: board private structure
|
*
|
* If this function returns with an error, then it's possible one or
|
* more of the rings is populated (while the rest are not). It is the
|
* callers duty to clean those orphaned rings.
|
*
|
* Return 0 on success, negative on failure
|
**/
|
|
int
|
e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
|
{
|
int i, err = 0;
|
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
|
if (err) {
|
DPRINTK(PROBE, ERR,
|
"Allocation for Rx Queue %u failed\n", i);
|
break;
|
}
|
}
|
|
return err;
|
}
|
|
/**
|
* e1000_setup_rctl - configure the receive control registers
|
* @adapter: Board private structure
|
**/
|
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
|
(((S) & (PAGE_SIZE - 1)) ? 1 : 0))
|
static void
|
e1000_setup_rctl(struct e1000_adapter *adapter)
|
{
|
uint32_t rctl;
|
#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
|
uint32_t pages = 0;
|
#endif
|
|
rctl = E1000_READ_REG(&adapter->hw, RCTL);
|
|
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
|
|
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
|
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
|
(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
|
|
/* FIXME: disable the stripping of CRC because it breaks
|
* BMC firmware connected over SMBUS
|
if (adapter->hw.mac_type > e1000_82543)
|
rctl |= E1000_RCTL_SECRC;
|
*/
|
|
if (adapter->hw.tbi_compatibility_on == 1)
|
rctl |= E1000_RCTL_SBP;
|
else
|
rctl &= ~E1000_RCTL_SBP;
|
|
if (adapter->netdev->mtu <= ETH_DATA_LEN)
|
rctl &= ~E1000_RCTL_LPE;
|
else
|
rctl |= E1000_RCTL_LPE;
|
|
/* Setup buffer sizes */
|
rctl &= ~E1000_RCTL_SZ_4096;
|
rctl |= E1000_RCTL_BSEX;
|
switch (adapter->rx_buffer_len) {
|
case E1000_RXBUFFER_256:
|
rctl |= E1000_RCTL_SZ_256;
|
rctl &= ~E1000_RCTL_BSEX;
|
break;
|
case E1000_RXBUFFER_512:
|
rctl |= E1000_RCTL_SZ_512;
|
rctl &= ~E1000_RCTL_BSEX;
|
break;
|
case E1000_RXBUFFER_1024:
|
rctl |= E1000_RCTL_SZ_1024;
|
rctl &= ~E1000_RCTL_BSEX;
|
break;
|
case E1000_RXBUFFER_2048:
|
default:
|
rctl |= E1000_RCTL_SZ_2048;
|
rctl &= ~E1000_RCTL_BSEX;
|
break;
|
case E1000_RXBUFFER_4096:
|
rctl |= E1000_RCTL_SZ_4096;
|
break;
|
case E1000_RXBUFFER_8192:
|
rctl |= E1000_RCTL_SZ_8192;
|
break;
|
case E1000_RXBUFFER_16384:
|
rctl |= E1000_RCTL_SZ_16384;
|
break;
|
}
|
|
adapter->rx_ps_pages = 0;
|
|
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
|
}
|
|
/**
|
* e1000_configure_rx - Configure 8254x Receive Unit after Reset
|
* @adapter: board private structure
|
*
|
* Configure the Rx unit of the MAC after a reset.
|
**/
|
|
static void
|
e1000_configure_rx(struct e1000_adapter *adapter)
|
{
|
uint64_t rdba;
|
struct e1000_hw *hw = &adapter->hw;
|
uint32_t rdlen, rctl, rxcsum, ctrl_ext;
|
|
{
|
rdlen = adapter->rx_ring[0].count *
|
sizeof(struct e1000_rx_desc);
|
adapter->clean_rx = NULL; /* unused */
|
adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
|
}
|
|
/* disable receives while setting up the descriptors */
|
rctl = E1000_READ_REG(hw, RCTL);
|
E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
|
|
/* set the Receive Delay Timer Register */
|
E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
|
|
if (hw->mac_type >= e1000_82540) {
|
E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
|
if (adapter->itr > 1)
|
E1000_WRITE_REG(hw, ITR,
|
1000000000 / (adapter->itr * 256));
|
}
|
|
if (hw->mac_type >= e1000_82571) {
|
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
|
/* Reset delay timers after every interrupt */
|
ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
|
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
|
E1000_WRITE_REG(hw, IAM, ~0);
|
E1000_WRITE_FLUSH(hw);
|
}
|
|
/* Setup the HW Rx Head and Tail Descriptor Pointers and
|
* the Base and Length of the Rx Descriptor Ring */
|
switch (adapter->num_rx_queues) {
|
case 1:
|
default:
|
rdba = adapter->rx_ring[0].dma;
|
E1000_WRITE_REG(hw, RDLEN, rdlen);
|
E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
|
E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
|
E1000_WRITE_REG(hw, RDT, 0);
|
E1000_WRITE_REG(hw, RDH, 0);
|
adapter->rx_ring[0].rdh = E1000_RDH;
|
adapter->rx_ring[0].rdt = E1000_RDT;
|
break;
|
}
|
|
/* Enable 82543 Receive Checksum Offload for TCP and UDP */
|
if (hw->mac_type >= e1000_82543) {
|
rxcsum = E1000_READ_REG(hw, RXCSUM);
|
if (adapter->rx_csum == TRUE) {
|
rxcsum |= E1000_RXCSUM_TUOFL;
|
|
} else {
|
rxcsum &= ~E1000_RXCSUM_TUOFL;
|
/* don't need to clear IPPCSE as it defaults to 0 */
|
}
|
E1000_WRITE_REG(hw, RXCSUM, rxcsum);
|
}
|
|
|
/* Enable Receives */
|
E1000_WRITE_REG(hw, RCTL, rctl);
|
}
|
|
/**
|
* e1000_free_tx_resources - Free Tx Resources per Queue
|
* @adapter: board private structure
|
* @tx_ring: Tx descriptor ring for a specific queue
|
*
|
* Free all transmit software resources
|
**/
|
|
static void
|
e1000_free_tx_resources(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *tx_ring)
|
{
|
struct pci_dev *pdev = adapter->pdev;
|
|
e1000_clean_tx_ring(adapter, tx_ring);
|
|
vfree(tx_ring->buffer_info);
|
tx_ring->buffer_info = NULL;
|
|
dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
|
tx_ring->dma);
|
|
tx_ring->desc = NULL;
|
}
|
|
/**
|
* e1000_free_all_tx_resources - Free Tx Resources for All Queues
|
* @adapter: board private structure
|
*
|
* Free all transmit software resources
|
**/
|
|
void
|
e1000_free_all_tx_resources(struct e1000_adapter *adapter)
|
{
|
int i;
|
|
for (i = 0; i < adapter->num_tx_queues; i++)
|
e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
|
}
|
|
static void
|
e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
|
struct e1000_buffer *buffer_info)
|
{
|
if (buffer_info->dma) {
|
dma_unmap_page(&adapter->pdev->dev,
|
buffer_info->dma,
|
buffer_info->length,
|
DMA_TO_DEVICE);
|
}
|
if (buffer_info->skb)
|
kfree_rtskb(buffer_info->skb);
|
memset(buffer_info, 0, sizeof(struct e1000_buffer));
|
}
|
|
/**
|
* e1000_clean_tx_ring - Free Tx Buffers
|
* @adapter: board private structure
|
* @tx_ring: ring to be cleaned
|
**/
|
|
static void
|
e1000_clean_tx_ring(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *tx_ring)
|
{
|
struct e1000_buffer *buffer_info;
|
unsigned long size;
|
unsigned int i;
|
|
/* Free all the Tx ring sk_buffs */
|
|
for (i = 0; i < tx_ring->count; i++) {
|
buffer_info = &tx_ring->buffer_info[i];
|
e1000_unmap_and_free_tx_resource(adapter, buffer_info);
|
}
|
|
size = sizeof(struct e1000_buffer) * tx_ring->count;
|
memset(tx_ring->buffer_info, 0, size);
|
|
/* Zero out the descriptor ring */
|
|
memset(tx_ring->desc, 0, tx_ring->size);
|
|
tx_ring->next_to_use = 0;
|
tx_ring->next_to_clean = 0;
|
tx_ring->last_tx_tso = 0;
|
|
writel(0, adapter->hw.hw_addr + tx_ring->tdh);
|
writel(0, adapter->hw.hw_addr + tx_ring->tdt);
|
}
|
|
/**
|
* e1000_clean_all_tx_rings - Free Tx Buffers for all queues
|
* @adapter: board private structure
|
**/
|
|
static void
|
e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
|
{
|
int i;
|
|
for (i = 0; i < adapter->num_tx_queues; i++)
|
e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
|
}
|
|
/**
|
* e1000_free_rx_resources - Free Rx Resources
|
* @adapter: board private structure
|
* @rx_ring: ring to clean the resources from
|
*
|
* Free all receive software resources
|
**/
|
|
static void
|
e1000_free_rx_resources(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring)
|
{
|
struct pci_dev *pdev = adapter->pdev;
|
|
e1000_clean_rx_ring(adapter, rx_ring);
|
|
vfree(rx_ring->buffer_info);
|
rx_ring->buffer_info = NULL;
|
kfree(rx_ring->ps_page);
|
rx_ring->ps_page = NULL;
|
kfree(rx_ring->ps_page_dma);
|
rx_ring->ps_page_dma = NULL;
|
|
dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
|
rx_ring->dma);
|
|
rx_ring->desc = NULL;
|
}
|
|
/**
|
* e1000_free_all_rx_resources - Free Rx Resources for All Queues
|
* @adapter: board private structure
|
*
|
* Free all receive software resources
|
**/
|
|
void
|
e1000_free_all_rx_resources(struct e1000_adapter *adapter)
|
{
|
int i;
|
|
for (i = 0; i < adapter->num_rx_queues; i++)
|
e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
|
}
|
|
/**
|
* e1000_clean_rx_ring - Free Rx Buffers per Queue
|
* @adapter: board private structure
|
* @rx_ring: ring to free buffers from
|
**/
|
|
static void
|
e1000_clean_rx_ring(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring)
|
{
|
struct e1000_buffer *buffer_info;
|
struct pci_dev *pdev = adapter->pdev;
|
unsigned long size;
|
unsigned int i;
|
|
/* Free all the Rx ring sk_buffs */
|
for (i = 0; i < rx_ring->count; i++) {
|
buffer_info = &rx_ring->buffer_info[i];
|
if (buffer_info->skb) {
|
dma_unmap_single(&pdev->dev,
|
buffer_info->dma,
|
buffer_info->length,
|
DMA_FROM_DEVICE);
|
|
kfree_rtskb(buffer_info->skb);
|
buffer_info->skb = NULL;
|
}
|
}
|
|
size = sizeof(struct e1000_buffer) * rx_ring->count;
|
memset(rx_ring->buffer_info, 0, size);
|
size = sizeof(struct e1000_ps_page) * rx_ring->count;
|
memset(rx_ring->ps_page, 0, size);
|
size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
|
memset(rx_ring->ps_page_dma, 0, size);
|
|
/* Zero out the descriptor ring */
|
|
memset(rx_ring->desc, 0, rx_ring->size);
|
|
rx_ring->next_to_clean = 0;
|
rx_ring->next_to_use = 0;
|
|
writel(0, adapter->hw.hw_addr + rx_ring->rdh);
|
writel(0, adapter->hw.hw_addr + rx_ring->rdt);
|
}
|
|
/**
|
* e1000_clean_all_rx_rings - Free Rx Buffers for all queues
|
* @adapter: board private structure
|
**/
|
|
static void
|
e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
|
{
|
int i;
|
|
for (i = 0; i < adapter->num_rx_queues; i++)
|
e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
|
}
|
|
/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
|
* and memory write and invalidate disabled for certain operations
|
*/
|
static void
|
e1000_enter_82542_rst(struct e1000_adapter *adapter)
|
{
|
struct rtnet_device *netdev = adapter->netdev;
|
uint32_t rctl;
|
|
e1000_pci_clear_mwi(&adapter->hw);
|
|
rctl = E1000_READ_REG(&adapter->hw, RCTL);
|
rctl |= E1000_RCTL_RST;
|
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
|
E1000_WRITE_FLUSH(&adapter->hw);
|
mdelay(5);
|
|
if (rtnetif_running(netdev))
|
e1000_clean_all_rx_rings(adapter);
|
}
|
|
static void
|
e1000_leave_82542_rst(struct e1000_adapter *adapter)
|
{
|
struct rtnet_device *netdev = adapter->netdev;
|
uint32_t rctl;
|
|
rctl = E1000_READ_REG(&adapter->hw, RCTL);
|
rctl &= ~E1000_RCTL_RST;
|
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
|
E1000_WRITE_FLUSH(&adapter->hw);
|
mdelay(5);
|
|
if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
|
e1000_pci_set_mwi(&adapter->hw);
|
|
if (rtnetif_running(netdev)) {
|
/* No need to loop, because 82542 supports only 1 queue */
|
struct e1000_rx_ring *ring = &adapter->rx_ring[0];
|
e1000_configure_rx(adapter);
|
adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
|
}
|
}
|
|
/**
|
* e1000_set_multi - Multicast and Promiscuous mode set
|
* @netdev: network interface device structure
|
*
|
* The set_multi entry point is called whenever the multicast address
|
* list or the network interface flags are updated. This routine is
|
* responsible for configuring the hardware for proper multicast,
|
* promiscuous mode, and all-multi behavior.
|
**/
|
|
static void
|
e1000_set_multi(struct rtnet_device *netdev)
|
{
|
struct e1000_adapter *adapter = netdev->priv;
|
struct e1000_hw *hw = &adapter->hw;
|
uint32_t rctl;
|
int i, rar_entries = E1000_RAR_ENTRIES;
|
int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
|
E1000_NUM_MTA_REGISTERS_ICH8LAN :
|
E1000_NUM_MTA_REGISTERS;
|
|
if (adapter->hw.mac_type == e1000_ich8lan)
|
rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
|
|
/* reserve RAR[14] for LAA over-write work-around */
|
if (adapter->hw.mac_type == e1000_82571)
|
rar_entries--;
|
|
/* Check for Promiscuous and All Multicast modes */
|
|
rctl = E1000_READ_REG(hw, RCTL);
|
|
if (netdev->flags & IFF_PROMISC) {
|
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
|
} else if (netdev->flags & IFF_ALLMULTI) {
|
rctl |= E1000_RCTL_MPE;
|
rctl &= ~E1000_RCTL_UPE;
|
} else {
|
rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
|
}
|
|
E1000_WRITE_REG(hw, RCTL, rctl);
|
|
/* 82542 2.0 needs to be in reset to write receive address registers */
|
|
if (hw->mac_type == e1000_82542_rev2_0)
|
e1000_enter_82542_rst(adapter);
|
|
/* load the first 14 multicast address into the exact filters 1-14
|
* RAR 0 is used for the station MAC adddress
|
* if there are not 14 addresses, go ahead and clear the filters
|
* -- with 82571 controllers only 0-13 entries are filled here
|
*/
|
|
for (i = 1; i < rar_entries; i++) {
|
E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
|
E1000_WRITE_FLUSH(hw);
|
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
|
E1000_WRITE_FLUSH(hw);
|
}
|
|
/* clear the old settings from the multicast hash table */
|
|
for (i = 0; i < mta_reg_count; i++) {
|
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
|
E1000_WRITE_FLUSH(hw);
|
}
|
|
if (hw->mac_type == e1000_82542_rev2_0)
|
e1000_leave_82542_rst(adapter);
|
}
|
|
/**
|
* e1000_update_phy_info_task - get phy info
|
* @work: work struct contained inside adapter struct
|
*
|
* Need to wait a few seconds after link up to get diagnostic information from
|
* the phy
|
*/
|
static void e1000_update_phy_info_task(struct work_struct *work)
|
{
|
struct e1000_adapter *adapter = container_of(work,
|
struct e1000_adapter,
|
phy_info_task.work);
|
e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
|
}
|
|
/**
|
* e1000_82547_tx_fifo_stall_task - task to complete work
|
* @work: work struct contained inside adapter struct
|
**/
|
|
static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
|
{
|
struct e1000_adapter *adapter = container_of(work,
|
struct e1000_adapter,
|
fifo_stall_task.work);
|
struct rtnet_device *netdev = adapter->netdev;
|
uint32_t tctl;
|
|
if (atomic_read(&adapter->tx_fifo_stall)) {
|
if ((E1000_READ_REG(&adapter->hw, TDT) ==
|
E1000_READ_REG(&adapter->hw, TDH)) &&
|
(E1000_READ_REG(&adapter->hw, TDFT) ==
|
E1000_READ_REG(&adapter->hw, TDFH)) &&
|
(E1000_READ_REG(&adapter->hw, TDFTS) ==
|
E1000_READ_REG(&adapter->hw, TDFHS))) {
|
tctl = E1000_READ_REG(&adapter->hw, TCTL);
|
E1000_WRITE_REG(&adapter->hw, TCTL,
|
tctl & ~E1000_TCTL_EN);
|
E1000_WRITE_REG(&adapter->hw, TDFT,
|
adapter->tx_head_addr);
|
E1000_WRITE_REG(&adapter->hw, TDFH,
|
adapter->tx_head_addr);
|
E1000_WRITE_REG(&adapter->hw, TDFTS,
|
adapter->tx_head_addr);
|
E1000_WRITE_REG(&adapter->hw, TDFHS,
|
adapter->tx_head_addr);
|
E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
|
E1000_WRITE_FLUSH(&adapter->hw);
|
|
adapter->tx_fifo_head = 0;
|
atomic_set(&adapter->tx_fifo_stall, 0);
|
rtnetif_wake_queue(netdev);
|
} else {
|
schedule_delayed_work(&adapter->fifo_stall_task, 1);
|
}
|
}
|
}
|
|
/**
|
* e1000_watchdog - work function
|
* @work: work struct contained inside adapter struct
|
**/
|
static void e1000_watchdog(struct work_struct *work)
|
{
|
struct e1000_adapter *adapter = container_of(work,
|
struct e1000_adapter,
|
watchdog_task.work);
|
struct rtnet_device *netdev = adapter->netdev;
|
struct e1000_tx_ring *txdr = adapter->tx_ring;
|
uint32_t link, tctl;
|
int32_t ret_val;
|
|
ret_val = e1000_check_for_link(&adapter->hw);
|
if ((ret_val == E1000_ERR_PHY) &&
|
(adapter->hw.phy_type == e1000_phy_igp_3) &&
|
(E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
|
/* See e1000_kumeran_lock_loss_workaround() */
|
DPRINTK(LINK, INFO,
|
"Gigabit has been disabled, downgrading speed\n");
|
}
|
if (adapter->hw.mac_type == e1000_82573) {
|
e1000_enable_tx_pkt_filtering(&adapter->hw);
|
}
|
|
if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
|
!(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
|
link = !adapter->hw.serdes_link_down;
|
else
|
link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
|
|
if (link) {
|
if (!rtnetif_carrier_ok(netdev)) {
|
boolean_t txb2b = 1;
|
e1000_get_speed_and_duplex(&adapter->hw,
|
&adapter->link_speed,
|
&adapter->link_duplex);
|
|
DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
|
adapter->link_speed,
|
adapter->link_duplex == FULL_DUPLEX ?
|
"Full Duplex" : "Half Duplex");
|
|
/* tweak tx_queue_len according to speed/duplex
|
* and adjust the timeout factor */
|
// TODO makoehre netdev->tx_queue_len = adapter->tx_queue_len;
|
adapter->tx_timeout_factor = 1;
|
switch (adapter->link_speed) {
|
case SPEED_10:
|
txb2b = 0;
|
// TODO makoehre netdev->tx_queue_len = 10;
|
adapter->tx_timeout_factor = 8;
|
break;
|
case SPEED_100:
|
txb2b = 0;
|
// TODO makoehre netdev->tx_queue_len = 100;
|
/* maybe add some timeout factor ? */
|
break;
|
}
|
|
if ((adapter->hw.mac_type == e1000_82571 ||
|
adapter->hw.mac_type == e1000_82572) &&
|
txb2b == 0) {
|
#define SPEED_MODE_BIT (1 << 21)
|
uint32_t tarc0;
|
tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
|
tarc0 &= ~SPEED_MODE_BIT;
|
E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
|
}
|
|
|
/* enable transmits in the hardware, need to do this
|
* after setting TARC0 */
|
tctl = E1000_READ_REG(&adapter->hw, TCTL);
|
tctl |= E1000_TCTL_EN;
|
E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
|
|
rtnetif_carrier_on(netdev);
|
rtnetif_wake_queue(netdev);
|
schedule_delayed_work(&adapter->phy_info_task, 2 * HZ);
|
adapter->smartspeed = 0;
|
}
|
} else {
|
if (rtnetif_carrier_ok(netdev)) {
|
adapter->link_speed = 0;
|
adapter->link_duplex = 0;
|
DPRINTK(LINK, INFO, "NIC Link is Down\n");
|
rtnetif_carrier_off(netdev);
|
rtnetif_stop_queue(netdev);
|
schedule_delayed_work(&adapter->phy_info_task, 2 * HZ);
|
|
/* 80003ES2LAN workaround--
|
* For packet buffer work-around on link down event;
|
* disable receives in the ISR and
|
* reset device here in the watchdog
|
*/
|
if (adapter->hw.mac_type == e1000_80003es2lan)
|
/* reset device */
|
schedule_work(&adapter->reset_task);
|
}
|
|
e1000_smartspeed(adapter);
|
}
|
|
|
adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
|
adapter->tpt_old = adapter->stats.tpt;
|
adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
|
adapter->colc_old = adapter->stats.colc;
|
|
adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
|
adapter->gorcl_old = adapter->stats.gorcl;
|
adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
|
adapter->gotcl_old = adapter->stats.gotcl;
|
|
// e1000_update_adaptive(&adapter->hw);
|
|
if (!rtnetif_carrier_ok(netdev)) {
|
if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
|
/* We've lost link, so the controller stops DMA,
|
* but we've got queued Tx work that's never going
|
* to get done, so reset controller to flush Tx.
|
* (Do the reset outside of interrupt context). */
|
adapter->tx_timeout_count++;
|
schedule_work(&adapter->reset_task);
|
}
|
}
|
|
/* Dynamic mode for Interrupt Throttle Rate (ITR) */
|
if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
|
/* Symmetric Tx/Rx gets a reduced ITR=2000; Total
|
* asymmetrical Tx or Rx gets ITR=8000; everyone
|
* else is between 2000-8000. */
|
uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
|
uint32_t dif = (adapter->gotcl > adapter->gorcl ?
|
adapter->gotcl - adapter->gorcl :
|
adapter->gorcl - adapter->gotcl) / 10000;
|
uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
|
E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
|
}
|
|
/* Cause software interrupt to ensure rx ring is cleaned */
|
E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
|
|
/* Force detection of hung controller every watchdog period */
|
adapter->detect_tx_hung = TRUE;
|
|
/* With 82571 controllers, LAA may be overwritten due to controller
|
* reset from the other port. Set the appropriate LAA in RAR[0] */
|
if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
|
e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
|
|
/* Reschedule the task */
|
schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
|
}
|
|
#define E1000_TX_FLAGS_CSUM 0x00000001
|
#define E1000_TX_FLAGS_VLAN 0x00000002
|
#define E1000_TX_FLAGS_TSO 0x00000004
|
#define E1000_TX_FLAGS_IPV4 0x00000008
|
#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
|
#define E1000_TX_FLAGS_VLAN_SHIFT 16
|
|
|
static boolean_t
|
e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
|
struct rtskb *skb)
|
{
|
struct e1000_context_desc *context_desc;
|
struct e1000_buffer *buffer_info;
|
unsigned int i;
|
uint8_t css;
|
|
if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
|
css = skb->h.raw - skb->data;
|
|
i = tx_ring->next_to_use;
|
buffer_info = &tx_ring->buffer_info[i];
|
context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
|
|
context_desc->upper_setup.tcp_fields.tucss = css;
|
context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
|
context_desc->upper_setup.tcp_fields.tucse = 0;
|
context_desc->tcp_seg_setup.data = 0;
|
context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
|
|
buffer_info->time_stamp = jiffies;
|
|
if (unlikely(++i == tx_ring->count)) i = 0;
|
tx_ring->next_to_use = i;
|
|
return TRUE;
|
}
|
|
return FALSE;
|
}
|
|
#define E1000_MAX_TXD_PWR 12
|
#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
|
|
static int
|
e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
|
struct rtskb *skb, unsigned int first, unsigned int max_per_txd,
|
unsigned int nr_frags, unsigned int mss)
|
{
|
struct e1000_buffer *buffer_info;
|
unsigned int len = skb->len;
|
unsigned int offset = 0, size, count = 0, i;
|
|
i = tx_ring->next_to_use;
|
|
while (len) {
|
buffer_info = &tx_ring->buffer_info[i];
|
size = min(len, max_per_txd);
|
/* work-around for errata 10 and it applies
|
* to all controllers in PCI-X mode
|
* The fix is to make sure that the first descriptor of a
|
* packet is smaller than 2048 - 16 - 16 (or 2016) bytes
|
*/
|
if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
|
(size > 2015) && count == 0))
|
size = 2015;
|
|
/* Workaround for potential 82544 hang in PCI-X. Avoid
|
* terminating buffers within evenly-aligned dwords. */
|
if (unlikely(adapter->pcix_82544 &&
|
!((unsigned long)(skb->data + offset + size - 1) & 4) &&
|
size > 4))
|
size -= 4;
|
|
buffer_info->length = size;
|
buffer_info->dma =
|
dma_map_single(&adapter->pdev->dev,
|
skb->data + offset,
|
size,
|
DMA_TO_DEVICE);
|
buffer_info->time_stamp = jiffies;
|
|
len -= size;
|
offset += size;
|
count++;
|
if (unlikely(++i == tx_ring->count)) i = 0;
|
}
|
|
|
i = (i == 0) ? tx_ring->count - 1 : i - 1;
|
tx_ring->buffer_info[i].skb = skb;
|
tx_ring->buffer_info[first].next_to_watch = i;
|
|
return count;
|
}
|
|
static void
|
e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
|
int tx_flags, int count, nanosecs_abs_t *xmit_stamp)
|
{
|
struct e1000_tx_desc *tx_desc = NULL;
|
struct e1000_buffer *buffer_info;
|
uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
|
unsigned int i;
|
|
|
if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
|
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
|
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
|
}
|
|
i = tx_ring->next_to_use;
|
|
while (count--) {
|
buffer_info = &tx_ring->buffer_info[i];
|
tx_desc = E1000_TX_DESC(*tx_ring, i);
|
tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
|
tx_desc->lower.data =
|
cpu_to_le32(txd_lower | buffer_info->length);
|
tx_desc->upper.data = cpu_to_le32(txd_upper);
|
if (unlikely(++i == tx_ring->count)) i = 0;
|
}
|
|
tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
|
|
if (xmit_stamp)
|
*xmit_stamp = cpu_to_be64(rtdm_clock_read() + *xmit_stamp);
|
|
/* Force memory writes to complete before letting h/w
|
* know there are new descriptors to fetch. (Only
|
* applicable for weak-ordered memory model archs,
|
* such as IA-64). */
|
wmb();
|
|
tx_ring->next_to_use = i;
|
writel(i, adapter->hw.hw_addr + tx_ring->tdt);
|
}
|
|
/**
|
* 82547 workaround to avoid controller hang in half-duplex environment.
|
* The workaround is to avoid queuing a large packet that would span
|
* the internal Tx FIFO ring boundary by notifying the stack to resend
|
* the packet at a later time. This gives the Tx FIFO an opportunity to
|
* flush all packets. When that occurs, we reset the Tx FIFO pointers
|
* to the beginning of the Tx FIFO.
|
**/
|
|
#define E1000_FIFO_HDR 0x10
|
#define E1000_82547_PAD_LEN 0x3E0
|
|
static int
|
e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct rtskb *skb)
|
{
|
uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
|
uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
|
|
E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
|
|
if (adapter->link_duplex != HALF_DUPLEX)
|
goto no_fifo_stall_required;
|
|
if (atomic_read(&adapter->tx_fifo_stall))
|
return 1;
|
|
if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
|
atomic_set(&adapter->tx_fifo_stall, 1);
|
return 1;
|
}
|
|
no_fifo_stall_required:
|
adapter->tx_fifo_head += skb_fifo_len;
|
if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
|
adapter->tx_fifo_head -= adapter->tx_fifo_size;
|
return 0;
|
}
|
|
#define MINIMUM_DHCP_PACKET_SIZE 282
|
static int
|
e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct rtskb *skb)
|
{
|
struct e1000_hw *hw = &adapter->hw;
|
uint16_t length, offset;
|
if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
|
struct ethhdr *eth = (struct ethhdr *) skb->data;
|
if ((htons(ETH_P_IP) == eth->h_proto)) {
|
const struct iphdr *ip =
|
(struct iphdr *)((uint8_t *)skb->data+14);
|
if (IPPROTO_UDP == ip->protocol) {
|
struct udphdr *udp =
|
(struct udphdr *)((uint8_t *)ip +
|
(ip->ihl << 2));
|
if (ntohs(udp->dest) == 67) {
|
offset = (uint8_t *)udp + 8 - skb->data;
|
length = skb->len - offset;
|
|
return e1000_mng_write_dhcp_info(hw,
|
(uint8_t *)udp + 8,
|
length);
|
}
|
}
|
}
|
}
|
return 0;
|
}
|
|
#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
|
static int
|
e1000_xmit_frame(struct rtskb *skb, struct rtnet_device *netdev)
|
{
|
struct e1000_adapter *adapter = netdev->priv;
|
struct e1000_tx_ring *tx_ring;
|
unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
|
unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
|
unsigned int tx_flags = 0;
|
unsigned int len = skb->len;
|
rtdm_lockctx_t context;
|
unsigned int nr_frags = 0;
|
unsigned int mss = 0;
|
int count = 0;
|
|
/* This goes back to the question of how to logically map a tx queue
|
* to a flow. Right now, performance is impacted slightly negatively
|
* if using multiple tx queues. If the stack breaks away from a
|
* single qdisc implementation, we can look at this again. */
|
tx_ring = adapter->tx_ring;
|
|
if (unlikely(skb->len <= 0)) {
|
kfree_rtskb(skb);
|
return NETDEV_TX_OK;
|
}
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL)
|
count++;
|
|
|
count += TXD_USE_COUNT(len, max_txd_pwr);
|
|
if (adapter->pcix_82544)
|
count++;
|
|
/* work-around for errata 10 and it applies to all controllers
|
* in PCI-X mode, so add one more descriptor to the count
|
*/
|
if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
|
(len > 2015)))
|
count++;
|
|
|
if (adapter->hw.tx_pkt_filtering &&
|
(adapter->hw.mac_type == e1000_82573))
|
e1000_transfer_dhcp_info(adapter, skb);
|
|
rtdm_lock_get_irqsave(&tx_ring->tx_lock, context);
|
|
/* need: count + 2 desc gap to keep tail from touching
|
* head, otherwise try next time */
|
if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
|
rtnetif_stop_queue(netdev);
|
rtdm_lock_put_irqrestore(&tx_ring->tx_lock, context);
|
rtdm_printk("FATAL: rt_e1000 ran into tail close to head situation!\n");
|
return NETDEV_TX_BUSY;
|
}
|
|
if (unlikely(adapter->hw.mac_type == e1000_82547)) {
|
if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
|
rtnetif_stop_queue(netdev);
|
rtdm_lock_put_irqrestore(&tx_ring->tx_lock, context);
|
|
/* FIXME: warn the user earlier, i.e. on startup if
|
half-duplex is detected! */
|
rtdm_printk("FATAL: rt_e1000 ran into 82547 "
|
"controller bug!\n");
|
return NETDEV_TX_BUSY;
|
}
|
}
|
|
first = tx_ring->next_to_use;
|
|
if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
|
tx_flags |= E1000_TX_FLAGS_CSUM;
|
|
e1000_tx_queue(adapter, tx_ring, tx_flags,
|
e1000_tx_map(adapter, tx_ring, skb, first,
|
max_per_txd, nr_frags, mss),
|
skb->xmit_stamp);
|
|
rtdm_lock_put_irqrestore(&tx_ring->tx_lock, context);
|
|
return NETDEV_TX_OK;
|
}
|
|
/**
|
* e1000_intr - Interrupt Handler
|
* @irq: interrupt number
|
* @data: pointer to a network interface device structure
|
* @pt_regs: CPU registers structure
|
**/
|
|
static int
|
e1000_intr(rtdm_irq_t *irq_handle)
|
/* int irq, void *data, struct pt_regs *regs) */
|
{
|
|
struct rtnet_device *netdev = rtdm_irq_get_arg(irq_handle, struct rtnet_device);
|
struct e1000_adapter *adapter = netdev->priv;
|
struct e1000_hw *hw = &adapter->hw;
|
uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
|
int i;
|
nanosecs_abs_t time_stamp = rtdm_clock_read();
|
|
if (unlikely(!icr)) {
|
return RTDM_IRQ_NONE; /* Not our interrupt */
|
}
|
if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
|
hw->get_link_status = 1;
|
/* 80003ES2LAN workaround--
|
* For packet buffer work-around on link down event;
|
* disable receives here in the ISR and
|
* reset adapter in watchdog
|
*/
|
if (rtnetif_carrier_ok(netdev) &&
|
(adapter->hw.mac_type == e1000_80003es2lan)) {
|
/* disable receives */
|
rctl = E1000_READ_REG(hw, RCTL);
|
E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
|
}
|
/* FIXME: we need to handle this via some yet-to-be-invented
|
error manager (Linux botton-half and/or kthread)
|
mod_timer(&adapter->watchdog_timer, jiffies);*/
|
}
|
|
/* Writing IMC and IMS is needed for 82547.
|
* Due to Hub Link bus being occupied, an interrupt
|
* de-assertion message is not able to be sent.
|
* When an interrupt assertion message is generated later,
|
* two messages are re-ordered and sent out.
|
* That causes APIC to think 82547 is in de-assertion
|
* state, while 82547 is in assertion state, resulting
|
* in dead lock. Writing IMC forces 82547 into
|
* de-assertion state.
|
*/
|
if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
|
atomic_inc(&adapter->irq_sem);
|
E1000_WRITE_REG(hw, IMC, ~0);
|
}
|
|
adapter->data_received = 0;
|
|
for (i = 0; i < E1000_MAX_INTR; i++)
|
if (unlikely(!e1000_clean_rx_irq(adapter, adapter->rx_ring,
|
&time_stamp) &
|
!e1000_clean_tx_irq(adapter, adapter->tx_ring)))
|
break;
|
|
if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
|
e1000_irq_enable(adapter);
|
|
|
if (adapter->data_received)
|
rt_mark_stack_mgr(netdev);
|
return RTDM_IRQ_HANDLED;
|
}
|
|
/**
|
* e1000_clean_tx_irq - Reclaim resources after transmit completes
|
* @adapter: board private structure
|
**/
|
|
static boolean_t
|
e1000_clean_tx_irq(struct e1000_adapter *adapter,
|
struct e1000_tx_ring *tx_ring)
|
{
|
struct rtnet_device *netdev = adapter->netdev;
|
struct e1000_tx_desc *tx_desc, *eop_desc;
|
struct e1000_buffer *buffer_info;
|
unsigned int i, eop;
|
boolean_t cleaned = FALSE;
|
|
i = tx_ring->next_to_clean;
|
eop = tx_ring->buffer_info[i].next_to_watch;
|
eop_desc = E1000_TX_DESC(*tx_ring, eop);
|
|
while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
|
for (cleaned = FALSE; !cleaned; ) {
|
tx_desc = E1000_TX_DESC(*tx_ring, i);
|
buffer_info = &tx_ring->buffer_info[i];
|
cleaned = (i == eop);
|
|
e1000_unmap_and_free_tx_resource(adapter, buffer_info);
|
memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
|
|
if (unlikely(++i == tx_ring->count)) i = 0;
|
}
|
|
|
eop = tx_ring->buffer_info[i].next_to_watch;
|
eop_desc = E1000_TX_DESC(*tx_ring, eop);
|
}
|
|
tx_ring->next_to_clean = i;
|
|
#define TX_WAKE_THRESHOLD 32
|
if (unlikely(cleaned && rtnetif_queue_stopped(netdev) &&
|
rtnetif_carrier_ok(netdev))) {
|
rtdm_lock_get(&tx_ring->tx_lock);
|
if (rtnetif_queue_stopped(netdev) &&
|
(E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
|
rtnetif_wake_queue(netdev);
|
rtdm_lock_put(&tx_ring->tx_lock);
|
}
|
|
if (adapter->detect_tx_hung) {
|
/* Detect a transmit hang in hardware, this serializes the
|
* check with the clearing of time_stamp and movement of i */
|
adapter->detect_tx_hung = FALSE;
|
if (tx_ring->buffer_info[eop].dma &&
|
time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
|
(adapter->tx_timeout_factor * HZ))
|
&& !(E1000_READ_REG(&adapter->hw, STATUS) &
|
E1000_STATUS_TXOFF)) {
|
|
/* detected Tx unit hang */
|
DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
|
" Tx Queue <%lu>\n"
|
" TDH <%x>\n"
|
" TDT <%x>\n"
|
" next_to_use <%x>\n"
|
" next_to_clean <%x>\n"
|
"buffer_info[next_to_clean]\n"
|
" time_stamp <%lx>\n"
|
" next_to_watch <%x>\n"
|
" jiffies <%lx>\n"
|
" next_to_watch.status <%x>\n",
|
(unsigned long)((tx_ring - adapter->tx_ring) /
|
sizeof(struct e1000_tx_ring)),
|
readl(adapter->hw.hw_addr + tx_ring->tdh),
|
readl(adapter->hw.hw_addr + tx_ring->tdt),
|
tx_ring->next_to_use,
|
tx_ring->next_to_clean,
|
tx_ring->buffer_info[eop].time_stamp,
|
eop,
|
jiffies,
|
eop_desc->upper.fields.status);
|
rtnetif_stop_queue(netdev);
|
}
|
}
|
return cleaned;
|
}
|
|
/**
|
* e1000_rx_checksum - Receive Checksum Offload for 82543
|
* @adapter: board private structure
|
* @status_err: receive descriptor status and error fields
|
* @csum: receive descriptor csum field
|
* @sk_buff: socket buffer with received data
|
**/
|
|
static void
|
e1000_rx_checksum(struct e1000_adapter *adapter,
|
uint32_t status_err, uint32_t csum,
|
struct rtskb *skb)
|
{
|
uint16_t status = (uint16_t)status_err;
|
uint8_t errors = (uint8_t)(status_err >> 24);
|
skb->ip_summed = CHECKSUM_NONE;
|
|
/* 82543 or newer only */
|
if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
|
/* Ignore Checksum bit is set */
|
if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
|
/* TCP/UDP checksum error bit is set */
|
if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
|
/* let the stack verify checksum errors */
|
adapter->hw_csum_err++;
|
return;
|
}
|
/* TCP/UDP Checksum has not been calculated */
|
if (adapter->hw.mac_type <= e1000_82547_rev_2) {
|
if (!(status & E1000_RXD_STAT_TCPCS))
|
return;
|
} else {
|
if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
|
return;
|
}
|
/* It must be a TCP or UDP packet with a valid checksum */
|
if (likely(status & E1000_RXD_STAT_TCPCS)) {
|
/* TCP checksum is good */
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
} else if (adapter->hw.mac_type > e1000_82547_rev_2) {
|
/* IP fragment with UDP payload */
|
/* Hardware complements the payload checksum, so we undo it
|
* and then put the value in host order for further stack use.
|
*/
|
csum = ntohl(csum ^ 0xFFFF);
|
skb->csum = csum;
|
skb->ip_summed = CHECKSUM_PARTIAL;
|
}
|
adapter->hw_csum_good++;
|
}
|
|
/**
|
* e1000_clean_rx_irq - Send received data up the network stack; legacy
|
* @adapter: board private structure
|
**/
|
|
static boolean_t
|
e1000_clean_rx_irq(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
nanosecs_abs_t *time_stamp)
|
{
|
struct rtnet_device *netdev = adapter->netdev;
|
struct pci_dev *pdev = adapter->pdev;
|
struct e1000_rx_desc *rx_desc, *next_rxd;
|
struct e1000_buffer *buffer_info, *next_buffer;
|
uint32_t length;
|
uint8_t last_byte;
|
unsigned int i;
|
int cleaned_count = 0;
|
boolean_t cleaned = FALSE;
|
|
i = rx_ring->next_to_clean;
|
rx_desc = E1000_RX_DESC(*rx_ring, i);
|
buffer_info = &rx_ring->buffer_info[i];
|
|
while (rx_desc->status & E1000_RXD_STAT_DD) {
|
struct rtskb *skb, *next_skb;
|
u8 status;
|
|
status = rx_desc->status;
|
skb = buffer_info->skb;
|
buffer_info->skb = NULL;
|
|
prefetch(skb->data - NET_IP_ALIGN);
|
|
if (++i == rx_ring->count) i = 0;
|
next_rxd = E1000_RX_DESC(*rx_ring, i);
|
prefetch(next_rxd);
|
|
next_buffer = &rx_ring->buffer_info[i];
|
next_skb = next_buffer->skb;
|
prefetch(next_skb->data - NET_IP_ALIGN);
|
|
cleaned = TRUE;
|
cleaned_count++;
|
dma_unmap_single(&pdev->dev,
|
buffer_info->dma,
|
buffer_info->length,
|
DMA_FROM_DEVICE);
|
|
length = le16_to_cpu(rx_desc->length);
|
|
if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
|
/* All receives must fit into a single buffer */
|
E1000_DBG("%s: Receive packet consumed multiple"
|
" buffers\n", netdev->name);
|
/* recycle */
|
buffer_info->skb = skb;
|
goto next_desc;
|
}
|
|
if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
|
last_byte = *(skb->data + length - 1);
|
if (TBI_ACCEPT(&adapter->hw, status,
|
rx_desc->errors, length, last_byte)) {
|
length--;
|
} else {
|
/* recycle */
|
buffer_info->skb = skb;
|
goto next_desc;
|
}
|
}
|
|
/* code added for copybreak, this should improve
|
* performance for small packets with large amounts
|
* of reassembly being done in the stack */
|
rtskb_put(skb, length);
|
|
/* end copybreak code */
|
|
/* Receive Checksum Offload */
|
e1000_rx_checksum(adapter,
|
(uint32_t)(status) |
|
((uint32_t)(rx_desc->errors) << 24),
|
le16_to_cpu(rx_desc->csum), skb);
|
|
skb->protocol = rt_eth_type_trans(skb, netdev);
|
skb->time_stamp = *time_stamp;
|
rtnetif_rx(skb);
|
adapter->data_received = 1; // Set flag for the main interrupt routine
|
|
next_desc:
|
rx_desc->status = 0;
|
|
/* return some buffers to hardware, one at a time is too slow */
|
if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
|
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
|
cleaned_count = 0;
|
}
|
|
/* use prefetched values */
|
rx_desc = next_rxd;
|
buffer_info = next_buffer;
|
}
|
rx_ring->next_to_clean = i;
|
|
cleaned_count = E1000_DESC_UNUSED(rx_ring);
|
if (cleaned_count)
|
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
|
|
return cleaned;
|
}
|
|
/**
|
* e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
|
* @adapter: address of board private structure
|
**/
|
|
static void
|
e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
|
struct e1000_rx_ring *rx_ring,
|
int cleaned_count)
|
{
|
struct rtnet_device *netdev = adapter->netdev;
|
struct pci_dev *pdev = adapter->pdev;
|
struct e1000_rx_desc *rx_desc;
|
struct e1000_buffer *buffer_info;
|
struct rtskb *skb;
|
unsigned int i;
|
unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
|
|
i = rx_ring->next_to_use;
|
buffer_info = &rx_ring->buffer_info[i];
|
|
while (cleaned_count--) {
|
if (!(skb = buffer_info->skb))
|
skb = rtnetdev_alloc_rtskb(netdev, bufsz);
|
else {
|
rtskb_trim(skb, 0);
|
goto map_skb;
|
}
|
|
if (unlikely(!skb)) {
|
/* Better luck next round */
|
adapter->alloc_rx_buff_failed++;
|
break;
|
}
|
|
/* Fix for errata 23, can't cross 64kB boundary */
|
if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
|
struct rtskb *oldskb = skb;
|
DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
|
"at %p\n", bufsz, skb->data);
|
/* Try again, without freeing the previous */
|
skb = rtnetdev_alloc_rtskb(netdev, bufsz);
|
/* Failed allocation, critical failure */
|
if (!skb) {
|
kfree_rtskb(oldskb);
|
break;
|
}
|
|
if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
|
/* give up */
|
kfree_rtskb(skb);
|
kfree_rtskb(oldskb);
|
break; /* while !buffer_info->skb */
|
} else {
|
/* Use new allocation */
|
kfree_rtskb(oldskb);
|
}
|
}
|
/* Make buffer alignment 2 beyond a 16 byte boundary
|
* this will result in a 16 byte aligned IP header after
|
* the 14 byte MAC header is removed
|
*/
|
rtskb_reserve(skb, NET_IP_ALIGN);
|
|
buffer_info->skb = skb;
|
buffer_info->length = adapter->rx_buffer_len;
|
map_skb:
|
buffer_info->dma = dma_map_single(&pdev->dev,
|
skb->data,
|
adapter->rx_buffer_len,
|
DMA_FROM_DEVICE);
|
|
/* Fix for errata 23, can't cross 64kB boundary */
|
if (!e1000_check_64k_bound(adapter,
|
(void *)(unsigned long)buffer_info->dma,
|
adapter->rx_buffer_len)) {
|
DPRINTK(RX_ERR, ERR,
|
"dma align check failed: %u bytes at %p\n",
|
adapter->rx_buffer_len,
|
(void *)(unsigned long)buffer_info->dma);
|
kfree_rtskb(skb);
|
buffer_info->skb = NULL;
|
|
dma_unmap_single(&pdev->dev, buffer_info->dma,
|
adapter->rx_buffer_len,
|
DMA_FROM_DEVICE);
|
|
break; /* while !buffer_info->skb */
|
}
|
rx_desc = E1000_RX_DESC(*rx_ring, i);
|
rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
|
|
if (unlikely(++i == rx_ring->count))
|
i = 0;
|
buffer_info = &rx_ring->buffer_info[i];
|
}
|
|
if (likely(rx_ring->next_to_use != i)) {
|
rx_ring->next_to_use = i;
|
if (unlikely(i-- == 0))
|
i = (rx_ring->count - 1);
|
|
/* Force memory writes to complete before letting h/w
|
* know there are new descriptors to fetch. (Only
|
* applicable for weak-ordered memory model archs,
|
* such as IA-64). */
|
wmb();
|
writel(i, adapter->hw.hw_addr + rx_ring->rdt);
|
}
|
}
|
|
|
/**
|
* e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
|
* @adapter:
|
**/
|
|
static void
|
e1000_smartspeed(struct e1000_adapter *adapter)
|
{
|
uint16_t phy_status;
|
uint16_t phy_ctrl;
|
|
if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
|
!(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
|
return;
|
|
if (adapter->smartspeed == 0) {
|
/* If Master/Slave config fault is asserted twice,
|
* we assume back-to-back */
|
e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
|
if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
|
e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
|
if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
|
e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
|
if (phy_ctrl & CR_1000T_MS_ENABLE) {
|
phy_ctrl &= ~CR_1000T_MS_ENABLE;
|
e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
|
phy_ctrl);
|
adapter->smartspeed++;
|
if (!e1000_phy_setup_autoneg(&adapter->hw) &&
|
!e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
|
&phy_ctrl)) {
|
phy_ctrl |= (MII_CR_AUTO_NEG_EN |
|
MII_CR_RESTART_AUTO_NEG);
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
|
phy_ctrl);
|
}
|
}
|
return;
|
} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
|
/* If still no link, perhaps using 2/3 pair cable */
|
e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
|
phy_ctrl |= CR_1000T_MS_ENABLE;
|
e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
|
if (!e1000_phy_setup_autoneg(&adapter->hw) &&
|
!e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
|
phy_ctrl |= (MII_CR_AUTO_NEG_EN |
|
MII_CR_RESTART_AUTO_NEG);
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
|
}
|
}
|
/* Restart process after E1000_SMARTSPEED_MAX iterations */
|
if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
|
adapter->smartspeed = 0;
|
}
|
|
|
|
void
|
e1000_pci_set_mwi(struct e1000_hw *hw)
|
{
|
struct e1000_adapter *adapter = hw->back;
|
#ifdef HAVE_PCI_SET_MWI
|
int ret_val = pci_set_mwi(adapter->pdev);
|
|
if (ret_val)
|
DPRINTK(PROBE, ERR, "Error in setting MWI\n");
|
#else
|
pci_write_config_word(adapter->pdev, PCI_COMMAND,
|
adapter->hw.pci_cmd_word |
|
PCI_COMMAND_INVALIDATE);
|
#endif
|
}
|
|
void
|
e1000_pci_clear_mwi(struct e1000_hw *hw)
|
{
|
struct e1000_adapter *adapter = hw->back;
|
|
#ifdef HAVE_PCI_SET_MWI
|
pci_clear_mwi(adapter->pdev);
|
#else
|
pci_write_config_word(adapter->pdev, PCI_COMMAND,
|
adapter->hw.pci_cmd_word &
|
~PCI_COMMAND_INVALIDATE);
|
#endif
|
}
|
|
void
|
e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
|
{
|
struct e1000_adapter *adapter = hw->back;
|
|
pci_read_config_word(adapter->pdev, reg, value);
|
}
|
|
void
|
e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
|
{
|
struct e1000_adapter *adapter = hw->back;
|
|
pci_write_config_word(adapter->pdev, reg, *value);
|
}
|
|
uint32_t
|
e1000_io_read(struct e1000_hw *hw, unsigned long port)
|
{
|
return inl(port);
|
}
|
|
void
|
e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
|
{
|
outl(value, port);
|
}
|
|
|
int
|
e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
|
{
|
adapter->hw.autoneg = 0;
|
|
/* Fiber NICs only allow 1000 gbps Full duplex */
|
if ((adapter->hw.media_type == e1000_media_type_fiber) &&
|
spddplx != (SPEED_1000 + DUPLEX_FULL)) {
|
DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
|
return -EINVAL;
|
}
|
|
switch (spddplx) {
|
case SPEED_10 + DUPLEX_HALF:
|
adapter->hw.forced_speed_duplex = e1000_10_half;
|
break;
|
case SPEED_10 + DUPLEX_FULL:
|
adapter->hw.forced_speed_duplex = e1000_10_full;
|
break;
|
case SPEED_100 + DUPLEX_HALF:
|
adapter->hw.forced_speed_duplex = e1000_100_half;
|
break;
|
case SPEED_100 + DUPLEX_FULL:
|
adapter->hw.forced_speed_duplex = e1000_100_full;
|
break;
|
case SPEED_1000 + DUPLEX_FULL:
|
adapter->hw.autoneg = 1;
|
adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
|
break;
|
case SPEED_1000 + DUPLEX_HALF: /* not supported */
|
default:
|
DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
|
return -EINVAL;
|
}
|
return 0;
|
}
|