/* SPDX-License-Identifier: GPL-2.0 */
|
/*
|
* Block data types and constants. Directly include this file only to
|
* break include dependency loop.
|
*/
|
#ifndef __LINUX_BLK_TYPES_H
|
#define __LINUX_BLK_TYPES_H
|
|
#include <linux/types.h>
|
#include <linux/bvec.h>
|
#include <linux/ktime.h>
|
#include <linux/android_kabi.h>
|
|
struct bio_set;
|
struct bio;
|
struct bio_integrity_payload;
|
struct page;
|
struct io_context;
|
struct cgroup_subsys_state;
|
typedef void (bio_end_io_t) (struct bio *);
|
struct bio_crypt_ctx;
|
|
struct block_device {
|
dev_t bd_dev;
|
int bd_openers;
|
struct inode * bd_inode; /* will die */
|
struct super_block * bd_super;
|
struct mutex bd_mutex; /* open/close mutex */
|
void * bd_claiming;
|
void * bd_holder;
|
int bd_holders;
|
bool bd_write_holder;
|
#ifdef CONFIG_SYSFS
|
struct list_head bd_holder_disks;
|
#endif
|
struct block_device * bd_contains;
|
u8 bd_partno;
|
struct hd_struct * bd_part;
|
/* number of times partitions within this device have been opened. */
|
unsigned bd_part_count;
|
|
spinlock_t bd_size_lock; /* for bd_inode->i_size updates */
|
struct gendisk * bd_disk;
|
struct backing_dev_info *bd_bdi;
|
|
/* The counter of freeze processes */
|
int bd_fsfreeze_count;
|
/* Mutex for freeze */
|
struct mutex bd_fsfreeze_mutex;
|
struct super_block *bd_fsfreeze_sb;
|
|
ANDROID_KABI_RESERVE(1);
|
ANDROID_KABI_RESERVE(2);
|
ANDROID_KABI_RESERVE(3);
|
ANDROID_KABI_RESERVE(4);
|
} __randomize_layout;
|
|
/*
|
* Block error status values. See block/blk-core:blk_errors for the details.
|
* Alpha cannot write a byte atomically, so we need to use 32-bit value.
|
*/
|
#if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__)
|
typedef u32 __bitwise blk_status_t;
|
#else
|
typedef u8 __bitwise blk_status_t;
|
#endif
|
#define BLK_STS_OK 0
|
#define BLK_STS_NOTSUPP ((__force blk_status_t)1)
|
#define BLK_STS_TIMEOUT ((__force blk_status_t)2)
|
#define BLK_STS_NOSPC ((__force blk_status_t)3)
|
#define BLK_STS_TRANSPORT ((__force blk_status_t)4)
|
#define BLK_STS_TARGET ((__force blk_status_t)5)
|
#define BLK_STS_NEXUS ((__force blk_status_t)6)
|
#define BLK_STS_MEDIUM ((__force blk_status_t)7)
|
#define BLK_STS_PROTECTION ((__force blk_status_t)8)
|
#define BLK_STS_RESOURCE ((__force blk_status_t)9)
|
#define BLK_STS_IOERR ((__force blk_status_t)10)
|
|
/* hack for device mapper, don't use elsewhere: */
|
#define BLK_STS_DM_REQUEUE ((__force blk_status_t)11)
|
|
#define BLK_STS_AGAIN ((__force blk_status_t)12)
|
|
/*
|
* BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if
|
* device related resources are unavailable, but the driver can guarantee
|
* that the queue will be rerun in the future once resources become
|
* available again. This is typically the case for device specific
|
* resources that are consumed for IO. If the driver fails allocating these
|
* resources, we know that inflight (or pending) IO will free these
|
* resource upon completion.
|
*
|
* This is different from BLK_STS_RESOURCE in that it explicitly references
|
* a device specific resource. For resources of wider scope, allocation
|
* failure can happen without having pending IO. This means that we can't
|
* rely on request completions freeing these resources, as IO may not be in
|
* flight. Examples of that are kernel memory allocations, DMA mappings, or
|
* any other system wide resources.
|
*/
|
#define BLK_STS_DEV_RESOURCE ((__force blk_status_t)13)
|
|
/*
|
* BLK_STS_ZONE_RESOURCE is returned from the driver to the block layer if zone
|
* related resources are unavailable, but the driver can guarantee the queue
|
* will be rerun in the future once the resources become available again.
|
*
|
* This is different from BLK_STS_DEV_RESOURCE in that it explicitly references
|
* a zone specific resource and IO to a different zone on the same device could
|
* still be served. Examples of that are zones that are write-locked, but a read
|
* to the same zone could be served.
|
*/
|
#define BLK_STS_ZONE_RESOURCE ((__force blk_status_t)14)
|
|
/*
|
* BLK_STS_ZONE_OPEN_RESOURCE is returned from the driver in the completion
|
* path if the device returns a status indicating that too many zone resources
|
* are currently open. The same command should be successful if resubmitted
|
* after the number of open zones decreases below the device's limits, which is
|
* reported in the request_queue's max_open_zones.
|
*/
|
#define BLK_STS_ZONE_OPEN_RESOURCE ((__force blk_status_t)15)
|
|
/*
|
* BLK_STS_ZONE_ACTIVE_RESOURCE is returned from the driver in the completion
|
* path if the device returns a status indicating that too many zone resources
|
* are currently active. The same command should be successful if resubmitted
|
* after the number of active zones decreases below the device's limits, which
|
* is reported in the request_queue's max_active_zones.
|
*/
|
#define BLK_STS_ZONE_ACTIVE_RESOURCE ((__force blk_status_t)16)
|
|
/**
|
* blk_path_error - returns true if error may be path related
|
* @error: status the request was completed with
|
*
|
* Description:
|
* This classifies block error status into non-retryable errors and ones
|
* that may be successful if retried on a failover path.
|
*
|
* Return:
|
* %false - retrying failover path will not help
|
* %true - may succeed if retried
|
*/
|
static inline bool blk_path_error(blk_status_t error)
|
{
|
switch (error) {
|
case BLK_STS_NOTSUPP:
|
case BLK_STS_NOSPC:
|
case BLK_STS_TARGET:
|
case BLK_STS_NEXUS:
|
case BLK_STS_MEDIUM:
|
case BLK_STS_PROTECTION:
|
return false;
|
}
|
|
/* Anything else could be a path failure, so should be retried */
|
return true;
|
}
|
|
/*
|
* From most significant bit:
|
* 1 bit: reserved for other usage, see below
|
* 12 bits: original size of bio
|
* 51 bits: issue time of bio
|
*/
|
#define BIO_ISSUE_RES_BITS 1
|
#define BIO_ISSUE_SIZE_BITS 12
|
#define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS)
|
#define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
|
#define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
|
#define BIO_ISSUE_SIZE_MASK \
|
(((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
|
#define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
|
|
/* Reserved bit for blk-throtl */
|
#define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
|
|
struct bio_issue {
|
u64 value;
|
};
|
|
static inline u64 __bio_issue_time(u64 time)
|
{
|
return time & BIO_ISSUE_TIME_MASK;
|
}
|
|
static inline u64 bio_issue_time(struct bio_issue *issue)
|
{
|
return __bio_issue_time(issue->value);
|
}
|
|
static inline sector_t bio_issue_size(struct bio_issue *issue)
|
{
|
return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
|
}
|
|
static inline void bio_issue_init(struct bio_issue *issue,
|
sector_t size)
|
{
|
size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
|
issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
|
(ktime_get_ns() & BIO_ISSUE_TIME_MASK) |
|
((u64)size << BIO_ISSUE_SIZE_SHIFT));
|
}
|
|
/*
|
* main unit of I/O for the block layer and lower layers (ie drivers and
|
* stacking drivers)
|
*/
|
struct bio {
|
struct bio *bi_next; /* request queue link */
|
struct gendisk *bi_disk;
|
unsigned int bi_opf; /* bottom bits req flags,
|
* top bits REQ_OP. Use
|
* accessors.
|
*/
|
unsigned short bi_flags; /* status, etc and bvec pool number */
|
unsigned short bi_ioprio;
|
unsigned short bi_write_hint;
|
blk_status_t bi_status;
|
u8 bi_partno;
|
atomic_t __bi_remaining;
|
|
struct bvec_iter bi_iter;
|
|
bio_end_io_t *bi_end_io;
|
|
void *bi_private;
|
#ifdef CONFIG_BLK_CGROUP
|
/*
|
* Represents the association of the css and request_queue for the bio.
|
* If a bio goes direct to device, it will not have a blkg as it will
|
* not have a request_queue associated with it. The reference is put
|
* on release of the bio.
|
*/
|
struct blkcg_gq *bi_blkg;
|
struct bio_issue bi_issue;
|
#ifdef CONFIG_BLK_CGROUP_IOCOST
|
u64 bi_iocost_cost;
|
#endif
|
#endif
|
|
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
|
struct bio_crypt_ctx *bi_crypt_context;
|
#if IS_ENABLED(CONFIG_DM_DEFAULT_KEY)
|
bool bi_skip_dm_default_key;
|
#endif
|
#endif
|
|
union {
|
#if defined(CONFIG_BLK_DEV_INTEGRITY)
|
struct bio_integrity_payload *bi_integrity; /* data integrity */
|
#endif
|
};
|
|
unsigned short bi_vcnt; /* how many bio_vec's */
|
|
/*
|
* Everything starting with bi_max_vecs will be preserved by bio_reset()
|
*/
|
|
unsigned short bi_max_vecs; /* max bvl_vecs we can hold */
|
|
atomic_t __bi_cnt; /* pin count */
|
|
struct bio_vec *bi_io_vec; /* the actual vec list */
|
|
struct bio_set *bi_pool;
|
|
ANDROID_KABI_RESERVE(1);
|
ANDROID_KABI_RESERVE(2);
|
|
/*
|
* We can inline a number of vecs at the end of the bio, to avoid
|
* double allocations for a small number of bio_vecs. This member
|
* MUST obviously be kept at the very end of the bio.
|
*/
|
struct bio_vec bi_inline_vecs[];
|
};
|
|
#define BIO_RESET_BYTES offsetof(struct bio, bi_max_vecs)
|
|
/*
|
* bio flags
|
*/
|
enum {
|
BIO_NO_PAGE_REF, /* don't put release vec pages */
|
BIO_CLONED, /* doesn't own data */
|
BIO_BOUNCED, /* bio is a bounce bio */
|
BIO_WORKINGSET, /* contains userspace workingset pages */
|
BIO_QUIET, /* Make BIO Quiet */
|
BIO_CHAIN, /* chained bio, ->bi_remaining in effect */
|
BIO_REFFED, /* bio has elevated ->bi_cnt */
|
BIO_THROTTLED, /* This bio has already been subjected to
|
* throttling rules. Don't do it again. */
|
BIO_TRACE_COMPLETION, /* bio_endio() should trace the final completion
|
* of this bio. */
|
BIO_CGROUP_ACCT, /* has been accounted to a cgroup */
|
BIO_TRACKED, /* set if bio goes through the rq_qos path */
|
BIO_FLAG_LAST
|
};
|
|
/* See BVEC_POOL_OFFSET below before adding new flags */
|
|
/*
|
* We support 6 different bvec pools, the last one is magic in that it
|
* is backed by a mempool.
|
*/
|
#define BVEC_POOL_NR 6
|
#define BVEC_POOL_MAX (BVEC_POOL_NR - 1)
|
|
/*
|
* Top 3 bits of bio flags indicate the pool the bvecs came from. We add
|
* 1 to the actual index so that 0 indicates that there are no bvecs to be
|
* freed.
|
*/
|
#define BVEC_POOL_BITS (3)
|
#define BVEC_POOL_OFFSET (16 - BVEC_POOL_BITS)
|
#define BVEC_POOL_IDX(bio) ((bio)->bi_flags >> BVEC_POOL_OFFSET)
|
#if (1<< BVEC_POOL_BITS) < (BVEC_POOL_NR+1)
|
# error "BVEC_POOL_BITS is too small"
|
#endif
|
|
/*
|
* Flags starting here get preserved by bio_reset() - this includes
|
* only BVEC_POOL_IDX()
|
*/
|
#define BIO_RESET_BITS BVEC_POOL_OFFSET
|
|
typedef __u32 __bitwise blk_mq_req_flags_t;
|
|
/*
|
* Operations and flags common to the bio and request structures.
|
* We use 8 bits for encoding the operation, and the remaining 24 for flags.
|
*
|
* The least significant bit of the operation number indicates the data
|
* transfer direction:
|
*
|
* - if the least significant bit is set transfers are TO the device
|
* - if the least significant bit is not set transfers are FROM the device
|
*
|
* If a operation does not transfer data the least significant bit has no
|
* meaning.
|
*/
|
#define REQ_OP_BITS 8
|
#define REQ_OP_MASK ((1 << REQ_OP_BITS) - 1)
|
#define REQ_FLAG_BITS 24
|
|
enum req_opf {
|
/* read sectors from the device */
|
REQ_OP_READ = 0,
|
/* write sectors to the device */
|
REQ_OP_WRITE = 1,
|
/* flush the volatile write cache */
|
REQ_OP_FLUSH = 2,
|
/* discard sectors */
|
REQ_OP_DISCARD = 3,
|
/* securely erase sectors */
|
REQ_OP_SECURE_ERASE = 5,
|
/* write the same sector many times */
|
REQ_OP_WRITE_SAME = 7,
|
/* write the zero filled sector many times */
|
REQ_OP_WRITE_ZEROES = 9,
|
/* Open a zone */
|
REQ_OP_ZONE_OPEN = 10,
|
/* Close a zone */
|
REQ_OP_ZONE_CLOSE = 11,
|
/* Transition a zone to full */
|
REQ_OP_ZONE_FINISH = 12,
|
/* write data at the current zone write pointer */
|
REQ_OP_ZONE_APPEND = 13,
|
/* reset a zone write pointer */
|
REQ_OP_ZONE_RESET = 15,
|
/* reset all the zone present on the device */
|
REQ_OP_ZONE_RESET_ALL = 17,
|
|
/* SCSI passthrough using struct scsi_request */
|
REQ_OP_SCSI_IN = 32,
|
REQ_OP_SCSI_OUT = 33,
|
/* Driver private requests */
|
REQ_OP_DRV_IN = 34,
|
REQ_OP_DRV_OUT = 35,
|
|
REQ_OP_LAST,
|
};
|
|
enum req_flag_bits {
|
__REQ_FAILFAST_DEV = /* no driver retries of device errors */
|
REQ_OP_BITS,
|
__REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */
|
__REQ_FAILFAST_DRIVER, /* no driver retries of driver errors */
|
__REQ_SYNC, /* request is sync (sync write or read) */
|
__REQ_META, /* metadata io request */
|
__REQ_PRIO, /* boost priority in cfq */
|
__REQ_NOMERGE, /* don't touch this for merging */
|
__REQ_IDLE, /* anticipate more IO after this one */
|
__REQ_INTEGRITY, /* I/O includes block integrity payload */
|
__REQ_FUA, /* forced unit access */
|
__REQ_PREFLUSH, /* request for cache flush */
|
__REQ_RAHEAD, /* read ahead, can fail anytime */
|
__REQ_BACKGROUND, /* background IO */
|
__REQ_NOWAIT, /* Don't wait if request will block */
|
/*
|
* When a shared kthread needs to issue a bio for a cgroup, doing
|
* so synchronously can lead to priority inversions as the kthread
|
* can be trapped waiting for that cgroup. CGROUP_PUNT flag makes
|
* submit_bio() punt the actual issuing to a dedicated per-blkcg
|
* work item to avoid such priority inversions.
|
*/
|
__REQ_CGROUP_PUNT,
|
|
/* command specific flags for REQ_OP_WRITE_ZEROES: */
|
__REQ_NOUNMAP, /* do not free blocks when zeroing */
|
|
__REQ_HIPRI,
|
|
/* for driver use */
|
__REQ_DRV,
|
__REQ_SWAP, /* swapping request. */
|
__REQ_NR_BITS, /* stops here */
|
};
|
|
#define REQ_FAILFAST_DEV (1ULL << __REQ_FAILFAST_DEV)
|
#define REQ_FAILFAST_TRANSPORT (1ULL << __REQ_FAILFAST_TRANSPORT)
|
#define REQ_FAILFAST_DRIVER (1ULL << __REQ_FAILFAST_DRIVER)
|
#define REQ_SYNC (1ULL << __REQ_SYNC)
|
#define REQ_META (1ULL << __REQ_META)
|
#define REQ_PRIO (1ULL << __REQ_PRIO)
|
#define REQ_NOMERGE (1ULL << __REQ_NOMERGE)
|
#define REQ_IDLE (1ULL << __REQ_IDLE)
|
#define REQ_INTEGRITY (1ULL << __REQ_INTEGRITY)
|
#define REQ_FUA (1ULL << __REQ_FUA)
|
#define REQ_PREFLUSH (1ULL << __REQ_PREFLUSH)
|
#define REQ_RAHEAD (1ULL << __REQ_RAHEAD)
|
#define REQ_BACKGROUND (1ULL << __REQ_BACKGROUND)
|
#define REQ_NOWAIT (1ULL << __REQ_NOWAIT)
|
#define REQ_CGROUP_PUNT (1ULL << __REQ_CGROUP_PUNT)
|
|
#define REQ_NOUNMAP (1ULL << __REQ_NOUNMAP)
|
#define REQ_HIPRI (1ULL << __REQ_HIPRI)
|
|
#define REQ_DRV (1ULL << __REQ_DRV)
|
#define REQ_SWAP (1ULL << __REQ_SWAP)
|
|
#define REQ_FAILFAST_MASK \
|
(REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER)
|
|
#define REQ_NOMERGE_FLAGS \
|
(REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA)
|
|
enum stat_group {
|
STAT_READ,
|
STAT_WRITE,
|
STAT_DISCARD,
|
STAT_FLUSH,
|
|
NR_STAT_GROUPS
|
};
|
|
#define bio_op(bio) \
|
((bio)->bi_opf & REQ_OP_MASK)
|
#define req_op(req) \
|
((req)->cmd_flags & REQ_OP_MASK)
|
|
/* obsolete, don't use in new code */
|
static inline void bio_set_op_attrs(struct bio *bio, unsigned op,
|
unsigned op_flags)
|
{
|
bio->bi_opf = op | op_flags;
|
}
|
|
static inline bool op_is_write(unsigned int op)
|
{
|
return (op & 1);
|
}
|
|
/*
|
* Check if the bio or request is one that needs special treatment in the
|
* flush state machine.
|
*/
|
static inline bool op_is_flush(unsigned int op)
|
{
|
return op & (REQ_FUA | REQ_PREFLUSH);
|
}
|
|
/*
|
* Reads are always treated as synchronous, as are requests with the FUA or
|
* PREFLUSH flag. Other operations may be marked as synchronous using the
|
* REQ_SYNC flag.
|
*/
|
static inline bool op_is_sync(unsigned int op)
|
{
|
return (op & REQ_OP_MASK) == REQ_OP_READ ||
|
(op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH));
|
}
|
|
static inline bool op_is_discard(unsigned int op)
|
{
|
return (op & REQ_OP_MASK) == REQ_OP_DISCARD;
|
}
|
|
/*
|
* Check if a bio or request operation is a zone management operation, with
|
* the exception of REQ_OP_ZONE_RESET_ALL which is treated as a special case
|
* due to its different handling in the block layer and device response in
|
* case of command failure.
|
*/
|
static inline bool op_is_zone_mgmt(enum req_opf op)
|
{
|
switch (op & REQ_OP_MASK) {
|
case REQ_OP_ZONE_RESET:
|
case REQ_OP_ZONE_OPEN:
|
case REQ_OP_ZONE_CLOSE:
|
case REQ_OP_ZONE_FINISH:
|
return true;
|
default:
|
return false;
|
}
|
}
|
|
static inline int op_stat_group(unsigned int op)
|
{
|
if (op_is_discard(op))
|
return STAT_DISCARD;
|
return op_is_write(op);
|
}
|
|
typedef unsigned int blk_qc_t;
|
#define BLK_QC_T_NONE -1U
|
#define BLK_QC_T_SHIFT 16
|
#define BLK_QC_T_INTERNAL (1U << 31)
|
|
static inline bool blk_qc_t_valid(blk_qc_t cookie)
|
{
|
return cookie != BLK_QC_T_NONE;
|
}
|
|
static inline unsigned int blk_qc_t_to_queue_num(blk_qc_t cookie)
|
{
|
return (cookie & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT;
|
}
|
|
static inline unsigned int blk_qc_t_to_tag(blk_qc_t cookie)
|
{
|
return cookie & ((1u << BLK_QC_T_SHIFT) - 1);
|
}
|
|
static inline bool blk_qc_t_is_internal(blk_qc_t cookie)
|
{
|
return (cookie & BLK_QC_T_INTERNAL) != 0;
|
}
|
|
struct blk_rq_stat {
|
u64 mean;
|
u64 min;
|
u64 max;
|
u32 nr_samples;
|
u64 batch;
|
};
|
|
#endif /* __LINUX_BLK_TYPES_H */
|