/*
|
* Copyright (c) 2017, Fuzhou Rockchip Electronics Co., Ltd
|
*
|
* This program is free software; you can redistribute it and/or modify it
|
* under the terms and conditions of the GNU General Public License,
|
* version 2, as published by the Free Software Foundation.
|
*
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
* more details.
|
*/
|
|
#include <linux/clk.h>
|
#include <linux/delay.h>
|
#include <linux/interrupt.h>
|
#include <linux/io.h>
|
#include <linux/module.h>
|
#include <linux/of.h>
|
#include <linux/of_address.h>
|
#include <linux/of_irq.h>
|
#include <linux/platform_device.h>
|
#include <linux/reset.h>
|
#include <linux/thermal.h>
|
#include <linux/timer.h>
|
#include <linux/mfd/syscon.h>
|
#include <linux/regmap.h>
|
#include <linux/gpio.h>
|
#include <linux/of_gpio.h>
|
#include <linux/reboot.h>
|
#include <linux/regulator/consumer.h>
|
#include <linux/slab.h>
|
#include <linux/mutex.h>
|
#include <linux/nvmem-consumer.h>
|
#include <linux/pm_qos.h>
|
#include <soc/rockchip/scpi.h>
|
|
/**
|
* If the temperature over a period of time High,
|
* the resulting TSHUT gave CRU module,let it reset the entire chip,
|
* or via GPIO give PMIC.
|
*/
|
enum tshut_mode {
|
TSHUT_MODE_CRU = 0,
|
TSHUT_MODE_GPIO,
|
};
|
|
enum tsadc_mode {
|
TSADC_AUTO_MODE = 0,
|
TSHUT_USER_MODE,
|
};
|
|
/**
|
* the system Temperature Sensors tshut(tshut) polarity
|
* the bit 8 is tshut polarity.
|
* 0: low active, 1: high active
|
*/
|
enum tshut_polarity {
|
TSHUT_LOW_ACTIVE = 0,
|
TSHUT_HIGH_ACTIVE,
|
};
|
|
#define NUM_SENSORS 2
|
|
/* TSADC V2 Sensor info define: */
|
#define TSADCV2_USER_CON 0x00
|
#define TSADCV2_AUTO_CON 0x04
|
#define TSADCV2_INT_EN 0x08
|
#define TSADCV2_INT_PD 0x0c
|
#define TSADCV2_DATA(chn) (0x20 + (chn) * 0x04)
|
|
#define TSADC_CLK_CYCLE_TIME 32 /* usec */
|
#define TSADCV3_DATA_MASK 0x3ff
|
|
/**
|
* The conversion table has the adc value and temperature.
|
* ADC_DECREMENT: the adc value is of diminishing.(e.g. rk3288_code_table)
|
* ADC_INCREMENT: the adc value is incremental.(e.g. rk3368_code_table)
|
*/
|
enum adc_sort_mode {
|
ADC_DECREMENT = 0,
|
ADC_INCREMENT,
|
};
|
|
#define TIME_OUT_TOTAL 2000
|
#define INVALID_EFUSE_VALUE 0xff
|
|
enum {
|
ACCESS_FORBIDDEN = 0,
|
};
|
|
#define MIN_TEMP (-40000)
|
#define MAX_TEMP (125000)
|
#define INVALID_TEMP INT_MAX
|
|
#define BASE (1024)
|
#define BASE_SHIFT (10)
|
#define START_BOUNDING_COUNT (100)
|
#define HIGHER_BOUNDING_TEMP (30)
|
#define LOWER_BOUNDING_TEMP (15)
|
|
/**
|
* struct tsadc_table - hold information about code and temp mapping
|
* @code: raw code from tsadc ip
|
* @temp: the mapping temperature
|
*/
|
|
struct tsadc_table {
|
unsigned long code;
|
int temp;
|
};
|
|
/**
|
* struct chip_tsadc_table - hold information about chip-specific differences
|
* @id: conversion table
|
* @length: size of conversion table
|
* @data_mask: mask to apply on data inputs
|
* @mode: sort mode of this adc variant (incrementing or decrementing)
|
*/
|
struct chip_tsadc_table {
|
const struct tsadc_table *id;
|
unsigned int length;
|
u32 data_mask;
|
enum adc_sort_mode mode;
|
};
|
|
/**
|
* struct rk3368_tsadc_chip - hold the private data of tsadc chip
|
* @chn_id[SOC_MAX_SENSORS]: the sensor id of chip correspond to the channel
|
* @chn_num: the channel number of tsadc chip
|
* @tshut_temp: the hardware-controlled shutdown temperature value
|
* @tshut_mode: the hardware-controlled shutdown mode (0:CRU 1:GPIO)
|
* @tshut_polarity: the hardware-controlled active polarity (0:LOW 1:HIGH)
|
* @chip_tsadc_table: the chip-specific conversion table
|
* @get_temp: get the temperature
|
* @set_alarm_temp: set the high temperature interrupt
|
* @set_tshut_temp: set the hardware-controlled shutdown temperature
|
* @set_tshut_mode: set the hardware-controlled shutdown mode
|
*/
|
struct rk3368_tsadc_chip {
|
int chn_id[NUM_SENSORS];
|
int chn_num;
|
long hw_shut_temp;
|
enum tshut_mode tshut_mode;
|
enum tsadc_mode mode;
|
enum tshut_polarity tshut_polarity;
|
int latency_bound;
|
|
const struct chip_tsadc_table *temp_table;
|
|
/* Per-sensor methods */
|
int (*get_temp)(const struct chip_tsadc_table *table,
|
int chn, void __iomem *reg, int *temp);
|
void (*set_alarm_temp)(const struct chip_tsadc_table *table,
|
int chn, void __iomem *reg, int temp);
|
void (*set_tshut_temp)(const struct chip_tsadc_table *table,
|
int chn, void __iomem *reg, int temp);
|
void (*set_tshut_mode)(int chn, void __iomem *reg, enum tshut_mode m);
|
};
|
|
/**
|
* struct rk3368_thermal_sensor - hold the information of thermal sensor
|
* @ctx: pointer to the platform/configuration data
|
* @tzd: pointer to a thermal zone
|
* @id: identifier of the thermal sensor
|
*/
|
struct rk3368_thermal_sensor {
|
struct rk3368_thermal_data *ctx;
|
struct thermal_zone_device *tzd;
|
int id;
|
};
|
|
/**
|
* struct rk3368_thermal_data - hold the private data of thermal driver
|
* @chip: pointer to the platform/configuration data
|
* @pdev: platform device of thermal
|
* @reset: the reset controller of tsadc
|
* @sensors[SOC_MAX_SENSORS]: the thermal sensor
|
* @clk: the controller clock is divided by the external 24MHz
|
* @pclk: the advanced peripherals bus clock
|
* @regs: the base address of tsadc controller
|
* @tshut_temp: the hardware-controlled shutdown temperature value
|
* @tshut_mode: the hardware-controlled shutdown mode (0:CRU 1:GPIO)
|
* @tshut_polarity: the hardware-controlled active polarity (0:LOW 1:HIGH)
|
* @cpu_temp_adjust: efuse value used to ajust the temperature
|
* @gpu_temp_adjust: efuse value used to ajust the temperature
|
* @cpu_temp: the current cpu's temperature
|
* @logout: switch to control log output or not
|
* @rk3368_thermal_kobj: node in sys fs
|
*/
|
struct rk3368_thermal_data {
|
const struct rk3368_tsadc_chip *chip;
|
struct platform_device *pdev;
|
struct reset_control *reset;
|
|
struct rk3368_thermal_sensor sensors[NUM_SENSORS];
|
|
struct clk *clk;
|
struct clk *pclk;
|
void __iomem *regs;
|
|
long hw_shut_temp;
|
enum tshut_mode tshut_mode;
|
enum tshut_polarity tshut_polarity;
|
|
int cpu_temp_adjust;
|
int gpu_temp_adjust;
|
int cpu_temp;
|
bool logout;
|
struct kobject *rk3368_thermal_kobj;
|
struct regulator *ref_regulator;
|
int regulator_uv;
|
int latency_req;
|
int latency_bound;
|
struct notifier_block tsadc_nb;
|
};
|
|
static struct rk3368_thermal_data *thermal_ctx;
|
|
static DEFINE_MUTEX(thermal_reg_mutex);
|
|
static DEFINE_MUTEX(thermal_lat_mutex);
|
|
static const struct tsadc_table code_table_3368[] = {
|
{0, MIN_TEMP},
|
{106, MIN_TEMP},
|
{108, -35000},
|
{110, -30000},
|
{112, -25000},
|
{114, -20000},
|
{116, -15000},
|
{118, -10000},
|
{120, -5000},
|
{122, 0},
|
{124, 5000},
|
{126, 10000},
|
{128, 15000},
|
{130, 20000},
|
{132, 25000},
|
{134, 30000},
|
{136, 35000},
|
{138, 40000},
|
{140, 45000},
|
{142, 50000},
|
{144, 55000},
|
{146, 60000},
|
{148, 65000},
|
{150, 70000},
|
{152, 75000},
|
{154, 80000},
|
{156, 85000},
|
{158, 90000},
|
{160, 95000},
|
{162, 100000},
|
{163, 105000},
|
{165, 110000},
|
{167, 115000},
|
{169, 120000},
|
{171, MAX_TEMP},
|
{TSADCV3_DATA_MASK, MAX_TEMP},
|
};
|
|
static const struct chip_tsadc_table tsadc_table_3368 = {
|
.id = code_table_3368,
|
.length = ARRAY_SIZE(code_table_3368),
|
.data_mask = TSADCV3_DATA_MASK,
|
.mode = ADC_INCREMENT,
|
};
|
|
static int rk3368_get_ajust_code(struct device_node *np, int *ajust_code)
|
{
|
struct nvmem_cell *cell;
|
unsigned char *buf;
|
size_t len;
|
|
cell = of_nvmem_cell_get(np, "temp_adjust");
|
if (IS_ERR(cell)) {
|
pr_err("avs failed to get temp_adjust cell\n");
|
return PTR_ERR(cell);
|
}
|
|
buf = (unsigned char *)nvmem_cell_read(cell, &len);
|
|
nvmem_cell_put(cell);
|
|
if (IS_ERR(buf))
|
return PTR_ERR(buf);
|
|
if (buf[0] == INVALID_EFUSE_VALUE)
|
return -EINVAL;
|
|
if (buf[0] & 0x80)
|
*ajust_code = -(buf[0] & 0x7f);
|
else
|
*ajust_code = buf[0];
|
|
kfree(buf);
|
|
return 0;
|
}
|
|
static struct rk3368_thermal_data *rk3368_thermal_get_data(void)
|
{
|
WARN_ON(!thermal_ctx);
|
return thermal_ctx;
|
}
|
|
static int rk3368_temp_to_code(const struct chip_tsadc_table *tmp_table,
|
long temp, u32 *code)
|
{
|
unsigned int low = 1;
|
unsigned int high = tmp_table->length - 1;
|
unsigned int mid = (low + high) / 2;
|
unsigned int num;
|
unsigned long denom;
|
*code = tmp_table->data_mask;
|
|
WARN_ON(tmp_table->length < 2);
|
|
if (temp < tmp_table->id[low].temp)
|
return -EAGAIN; /* Incorrect reading */
|
|
while (low <= high) {
|
if (temp == tmp_table->id[mid].temp) {
|
*code = tmp_table->id[mid].code;
|
break;
|
} else if (temp > tmp_table->id[mid].temp) {
|
low = mid + 1;
|
} else {
|
high = mid - 1;
|
}
|
|
mid = (low + high) / 2;
|
}
|
/*
|
* The 5C granularity provided by the table is too much. Let's
|
* assume that the relationship between sensor readings and
|
* temperature between 2 table entries is linear and interpolate
|
* to produce less granular result.
|
*/
|
if (*code == tmp_table->data_mask) {
|
num = abs(tmp_table->id[low].code - tmp_table->id[high].code);
|
num *= abs(tmp_table->id[high].temp - temp);
|
denom = abs(tmp_table->id[high].temp - tmp_table->id[low].temp);
|
*code = tmp_table->id[high].code + (num / denom);
|
}
|
|
return 0;
|
}
|
|
static int rk3368_code_to_temp(const struct chip_tsadc_table *tmp_table,
|
u32 code, int *temp)
|
{
|
unsigned int low = 1;
|
unsigned int high = tmp_table->length - 1;
|
unsigned int mid = (low + high) / 2;
|
unsigned int num;
|
unsigned long denom;
|
*temp = INVALID_TEMP;
|
|
WARN_ON(tmp_table->length < 2);
|
|
switch (tmp_table->mode) {
|
case ADC_DECREMENT:
|
code &= tmp_table->data_mask;
|
if (code < tmp_table->id[high].code)
|
return -EAGAIN; /* Incorrect reading */
|
|
while (low <= high) {
|
if (code == tmp_table->id[mid].code) {
|
*temp = tmp_table->id[mid].temp;
|
break;
|
} else if (code < tmp_table->id[mid].code) {
|
low = mid + 1;
|
} else {
|
high = mid - 1;
|
}
|
|
mid = (low + high) / 2;
|
}
|
break;
|
case ADC_INCREMENT:
|
code &= tmp_table->data_mask;
|
if (code < tmp_table->id[low].code)
|
return -EAGAIN; /* Incorrect reading */
|
|
while (low <= high) {
|
if (code == tmp_table->id[mid].code) {
|
*temp = tmp_table->id[mid].temp;
|
break;
|
} else if (code > tmp_table->id[mid].code) {
|
low = mid + 1;
|
} else {
|
high = mid - 1;
|
}
|
|
mid = (low + high) / 2;
|
}
|
break;
|
default:
|
pr_err("Invalid the conversion table\n");
|
}
|
|
/*
|
* The 5C granularity provided by the table is too much. Let's
|
* assume that the relationship between sensor readings and
|
* temperature between 2 table entries is linear and interpolate
|
* to produce less granular result.
|
*/
|
if (*temp == INVALID_TEMP) {
|
num = abs(tmp_table->id[low].temp - tmp_table->id[high].temp);
|
num *= abs(tmp_table->id[high].code - code);
|
denom = abs(tmp_table->id[high].code - tmp_table->id[low].code);
|
*temp = tmp_table->id[high].temp + (num / denom);
|
}
|
|
return 0;
|
}
|
|
static const struct rk3368_tsadc_chip rk3368_tsadc_data = {
|
.tshut_mode = TSHUT_MODE_GPIO, /* default TSHUT via GPIO give PMIC */
|
.tshut_polarity = TSHUT_LOW_ACTIVE, /* default TSHUT LOW ACTIVE */
|
.latency_bound = 50000, /* default 50000 us */
|
.hw_shut_temp = 125000,
|
.mode = TSHUT_USER_MODE,
|
.chn_num = 2,
|
.chn_id[0] = 0,
|
.chn_id[1] = 1,
|
.temp_table = &tsadc_table_3368,
|
};
|
|
static int rk3368_configure_from_dt(struct device *dev,
|
struct device_node *np,
|
struct rk3368_thermal_data *thermal)
|
{
|
u32 shut_temp;
|
u32 rate;
|
u32 cycle;
|
int lat_bound;
|
int ret;
|
|
if (of_property_read_u32(np, "clock-frequency", &rate)) {
|
dev_err(dev, "Missing clock-frequency property in the DT.\n");
|
return -EINVAL;
|
}
|
ret = clk_set_rate(thermal->clk, rate);
|
|
cycle = DIV_ROUND_UP(1000000000, rate) / 1000;
|
|
if (scpi_thermal_set_clk_cycle(cycle)) {
|
dev_err(dev, "scpi_thermal_set_clk_cycle error.\n");
|
return -EINVAL;
|
}
|
|
if (of_property_read_u32(np, "hw-shut-temp", &shut_temp)) {
|
dev_warn(dev,
|
"Missing tshut temp property, using default %ld\n",
|
thermal->chip->hw_shut_temp);
|
thermal->hw_shut_temp = thermal->chip->hw_shut_temp;
|
} else {
|
thermal->hw_shut_temp = shut_temp;
|
}
|
|
if (of_property_read_u32(np, "latency-bound", &lat_bound)) {
|
dev_warn(dev,
|
"Missing latency-bound property, using default %d\n",
|
thermal->chip->latency_bound);
|
thermal->latency_bound = thermal->chip->latency_bound;
|
} else {
|
thermal->latency_bound = lat_bound;
|
}
|
|
if (thermal->hw_shut_temp > INT_MAX) {
|
dev_err(dev, "Invalid tshut temperature specified: %ld\n",
|
thermal->hw_shut_temp);
|
return -ERANGE;
|
}
|
|
return 0;
|
}
|
|
static int predict_temp(int temp)
|
{
|
int cov_q = 18;
|
int cov_r = 542;
|
|
int gain;
|
int temp_mid;
|
int temp_now;
|
int prob_mid;
|
int prob_now;
|
static int temp_last = 25;
|
static int prob_last = 20;
|
static int bounding_cnt;
|
|
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
|
|
if (!ctx)
|
return INVALID_TEMP;
|
|
if (bounding_cnt++ > START_BOUNDING_COUNT) {
|
bounding_cnt = START_BOUNDING_COUNT;
|
if (temp - temp_last > HIGHER_BOUNDING_TEMP)
|
temp = temp_last + HIGHER_BOUNDING_TEMP / 3;
|
if (temp_last - temp > LOWER_BOUNDING_TEMP)
|
temp = temp_last - LOWER_BOUNDING_TEMP / 3;
|
}
|
|
temp_mid = temp_last;
|
prob_mid = prob_last + cov_q;
|
gain = (prob_mid * BASE) / (prob_mid + cov_r);
|
|
temp_now = temp_mid + (gain * (temp - temp_mid) >> BASE_SHIFT);
|
prob_now = ((BASE - gain) * prob_mid) >> BASE_SHIFT;
|
|
prob_last = prob_now;
|
temp_last = temp_now;
|
|
if (ctx->logout)
|
pr_info("prob_now %d, temp_last %d, temp %d gain %d", prob_now,
|
temp_now, temp, gain);
|
|
return temp_last;
|
}
|
|
static int get_raw_code_internal(void)
|
{
|
u32 val_cpu_pd;
|
int val_cpu = INVALID_TEMP;
|
int i;
|
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
|
|
if (!ctx)
|
return INVALID_TEMP;
|
|
/* power up, channel 0 */
|
writel_relaxed(0x18, ctx->regs + TSADCV2_USER_CON);
|
|
udelay(TSADC_CLK_CYCLE_TIME * 2);
|
/* start working */
|
writel_relaxed(0x38, ctx->regs + TSADCV2_USER_CON);
|
udelay(TSADC_CLK_CYCLE_TIME * 13);
|
|
/* try 50 times */
|
for (i = 0; i < 50; i++) {
|
udelay(TSADC_CLK_CYCLE_TIME);
|
val_cpu_pd = readl_relaxed(ctx->regs + TSADCV2_INT_PD);
|
|
if ((val_cpu_pd & 0x100) == 0x100) {
|
udelay(1);
|
/*clear eoc inter */
|
writel_relaxed(0x100, ctx->regs + TSADCV2_INT_PD);
|
/*read adc data */
|
val_cpu = readl_relaxed(ctx->regs + TSADCV2_DATA(0));
|
break;
|
}
|
}
|
/*power down, channel 0 */
|
writel_relaxed(0x0, ctx->regs + TSADCV2_USER_CON);
|
|
return val_cpu;
|
}
|
|
#define RAW_CODE_MIN (50)
|
#define RAW_CODE_MAX (225)
|
|
static int rk3368_get_raw_code(struct rk3368_thermal_data *ctx)
|
{
|
static int old_data = 130;
|
int tsadc_data = 0;
|
|
if (ctx->latency_req > ctx->latency_bound)
|
tsadc_data = scpi_thermal_get_temperature();
|
else
|
tsadc_data = get_raw_code_internal();
|
|
if ((tsadc_data < RAW_CODE_MIN) || (tsadc_data > RAW_CODE_MAX))
|
tsadc_data = old_data;
|
else
|
old_data = tsadc_data;
|
|
return tsadc_data;
|
}
|
|
static int rk3368_convert_code_2_temp(int tsadc_data, int voltage)
|
{
|
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
|
const struct rk3368_tsadc_chip *tsadc;
|
int out_temp;
|
static int old_temp;
|
int data_adjust;
|
|
u32 code_temp;
|
u32 tmp_code1;
|
u32 tmp_code2;
|
|
if (!ctx)
|
return INVALID_TEMP;
|
|
tsadc = ctx->chip;
|
|
rk3368_temp_to_code(tsadc->temp_table,
|
ctx->cpu_temp_adjust * 1000, &tmp_code1);
|
rk3368_temp_to_code(tsadc->temp_table, 0, &tmp_code2);
|
data_adjust = tmp_code1 - tmp_code2;
|
code_temp =
|
((tsadc_data * voltage - data_adjust * 1000000) + 500000) / 1000000;
|
rk3368_code_to_temp(tsadc->temp_table, code_temp, &out_temp);
|
|
if (ctx->logout)
|
pr_info("cpu code temp:[%d, %d], voltage: %d\n",
|
tsadc_data, out_temp / 1000, voltage);
|
|
if ((out_temp < MIN_TEMP) || (out_temp > MAX_TEMP))
|
out_temp = old_temp;
|
else
|
old_temp = out_temp;
|
|
ctx->cpu_temp = out_temp / 1000;
|
return out_temp;
|
}
|
|
static int rk3368_thermal_set_trips(void *_sensor, int low, int high)
|
{
|
return 0;
|
}
|
|
static int rk3368_thermal_get_temp(void *_sensor, int *out_temp)
|
{
|
int raw_code;
|
int temp;
|
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
|
struct platform_device *pdev;
|
|
if (!ctx)
|
return INVALID_TEMP;
|
|
pdev = ctx->pdev;
|
|
mutex_lock(&thermal_reg_mutex);
|
raw_code = rk3368_get_raw_code(ctx);
|
temp = rk3368_convert_code_2_temp(raw_code, ctx->regulator_uv);
|
*out_temp = predict_temp(temp / 1000) * 1000;
|
mutex_unlock(&thermal_reg_mutex);
|
|
return 0;
|
}
|
|
static const struct thermal_zone_of_device_ops rk3368_of_thermal_ops = {
|
.get_temp = rk3368_thermal_get_temp,
|
.set_trips = rk3368_thermal_set_trips,
|
};
|
|
static int
|
rk3368_thermal_register_sensor(struct platform_device *pdev,
|
struct rk3368_thermal_data *ctx,
|
struct rk3368_thermal_sensor *sensor, int id)
|
{
|
int error;
|
|
sensor->ctx = ctx;
|
sensor->id = id;
|
sensor->tzd = devm_thermal_zone_of_sensor_register(&pdev->dev, id,
|
sensor,
|
&rk3368_of_thermal_ops);
|
if (IS_ERR(sensor->tzd)) {
|
error = PTR_ERR(sensor->tzd);
|
dev_err(&pdev->dev, "failed to register sensor %d: %d\n",
|
id, error);
|
return error;
|
}
|
|
return 0;
|
}
|
|
/*
|
* Reset TSADC Controller, reset all tsadc registers.
|
*/
|
static void rk3368_thermal_reset_controller(struct reset_control *reset)
|
{
|
reset_control_assert(reset);
|
udelay(10);
|
reset_control_deassert(reset);
|
}
|
|
static ssize_t rk3368_thermal_temp_adjust_test_store(struct kobject *kobj,
|
struct kobj_attribute
|
*attr, const char *buf,
|
size_t n)
|
{
|
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
|
int getdata;
|
char cmd;
|
const char *buftmp = buf;
|
int ret;
|
|
if (!ctx)
|
return n;
|
|
ret = sscanf(buftmp, "%c ", &cmd);
|
if (ret != 1)
|
return -EINVAL;
|
|
switch (cmd) {
|
case 'c':
|
ret = sscanf(buftmp, "%c %d", &cmd, &getdata);
|
if (ret != 2)
|
return -EINVAL;
|
ctx->cpu_temp_adjust = getdata;
|
pr_info("get cpu_temp_adjust value = %d\n", getdata);
|
|
break;
|
case 'g':
|
ret = sscanf(buftmp, "%c %d", &cmd, &getdata);
|
if (ret != 2)
|
return -EINVAL;
|
ctx->gpu_temp_adjust = getdata;
|
pr_info("get gpu_temp_adjust value = %d\n", getdata);
|
|
break;
|
default:
|
pr_info("Unknown command\n");
|
break;
|
}
|
|
return n;
|
}
|
|
static ssize_t rk3368_thermal_temp_adjust_test_show(struct kobject *kobj,
|
struct kobj_attribute
|
*attr, char *buf)
|
{
|
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
|
char *str = buf;
|
|
if (!ctx)
|
return 0;
|
|
str +=
|
sprintf(str, "rk3368_thermal: cpu:%d, gpu:%d\n",
|
ctx->cpu_temp_adjust, ctx->gpu_temp_adjust);
|
return (str - buf);
|
}
|
|
static ssize_t rk3368_thermal_temp_test_store(struct kobject *kobj,
|
struct kobj_attribute *attr,
|
const char *buf, size_t n)
|
{
|
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
|
char cmd;
|
const char *buftmp = buf;
|
int ret;
|
|
if (!ctx)
|
return n;
|
|
ret = sscanf(buftmp, "%c", &cmd);
|
if (ret != 1)
|
return -EINVAL;
|
|
switch (cmd) {
|
case 't':
|
ctx->logout = true;
|
break;
|
case 'f':
|
ctx->logout = false;
|
break;
|
default:
|
pr_info("Unknown command\n");
|
break;
|
}
|
|
return n;
|
}
|
|
static ssize_t rk3368_thermal_temp_test_show(struct kobject *kobj,
|
struct kobj_attribute *attr,
|
char *buf)
|
{
|
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
|
char *str = buf;
|
|
if (!ctx)
|
return 0;
|
|
str += sprintf(str, "current cpu_temp:%d\n", ctx->cpu_temp);
|
return (str - buf);
|
}
|
|
struct rk3368_thermal_attribute {
|
struct attribute attr;
|
ssize_t (*show) (struct kobject *kobj, struct kobj_attribute *attr,
|
char *buf);
|
ssize_t (*store) (struct kobject *kobj, struct kobj_attribute *attr,
|
const char *buf, size_t n);
|
};
|
|
static struct rk3368_thermal_attribute rk3368_thermal_attrs[] = {
|
/*node_name permission show_func store_func */
|
__ATTR(temp_adjust, 0644,
|
rk3368_thermal_temp_adjust_test_show,
|
rk3368_thermal_temp_adjust_test_store),
|
__ATTR(temp, 0644, rk3368_thermal_temp_test_show,
|
rk3368_thermal_temp_test_store),
|
};
|
|
static void rk3368_dump_temperature(void)
|
{
|
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
|
struct platform_device *pdev;
|
|
if (!ctx)
|
return;
|
|
pdev = ctx->pdev;
|
|
if (ctx->cpu_temp != INVALID_TEMP)
|
dev_warn(&pdev->dev, "cpu channal temperature(%d C)\n",
|
ctx->cpu_temp);
|
|
if (ctx->regs) {
|
pr_warn("THERMAL REGS:\n");
|
print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET,
|
32, 4, ctx->regs, 0x88, false);
|
}
|
}
|
EXPORT_SYMBOL_GPL(rk3368_dump_temperature);
|
|
static int rk3368_thermal_panic(struct notifier_block *this,
|
unsigned long ev, void *ptr)
|
{
|
rk3368_dump_temperature();
|
return NOTIFY_DONE;
|
}
|
|
static struct notifier_block rk3368_thermal_panic_block = {
|
.notifier_call = rk3368_thermal_panic,
|
};
|
|
static int rk3368_thermal_notify(struct notifier_block *nb,
|
unsigned long event, void *data)
|
{
|
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
|
struct platform_device *pdev;
|
|
if (!ctx)
|
return NOTIFY_OK;
|
|
pdev = ctx->pdev;
|
|
if (event & REGULATOR_EVENT_PRE_VOLTAGE_CHANGE) {
|
mutex_lock(&thermal_reg_mutex);
|
} else if (event & (REGULATOR_EVENT_VOLTAGE_CHANGE |
|
REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE)) {
|
ctx->regulator_uv = (unsigned long)data;
|
if (mutex_is_locked(&thermal_reg_mutex))
|
mutex_unlock(&thermal_reg_mutex);
|
} else {
|
return NOTIFY_OK;
|
}
|
return NOTIFY_OK;
|
}
|
|
/*
|
* This function gets called when a part of the kernel has a new latency
|
* requirement. We record this requirement to instruct us to get temperature.
|
*/
|
static int tsadc_latency_notify(struct notifier_block *b,
|
unsigned long l, void *v)
|
{
|
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
|
|
if (!ctx)
|
return NOTIFY_OK;
|
|
mutex_lock(&thermal_lat_mutex);
|
ctx->latency_req = (int)l;
|
mutex_unlock(&thermal_lat_mutex);
|
|
return NOTIFY_OK;
|
}
|
|
static struct notifier_block tsadc_latency_notifier = {
|
.notifier_call = tsadc_latency_notify,
|
};
|
|
static inline int tsadc_add_latency_notifier(struct notifier_block *n)
|
{
|
return pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY, n);
|
}
|
|
static inline int tsadc_remove_latency_notifier(struct notifier_block *n)
|
{
|
return pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY, n);
|
}
|
|
static const struct of_device_id of_rk3368_thermal_match[] = {
|
{
|
.compatible = "rockchip,rk3368-tsadc-legacy",
|
.data = (void *)&rk3368_tsadc_data,
|
},
|
|
{ /* end */ },
|
};
|
MODULE_DEVICE_TABLE(of, of_rk3368_thermal_match);
|
|
static int rk3368_thermal_probe(struct platform_device *pdev)
|
{
|
struct device_node *np = pdev->dev.of_node;
|
struct rk3368_thermal_data *ctx;
|
const struct of_device_id *match;
|
struct resource *res;
|
int irq;
|
int i, j;
|
int error;
|
int uv;
|
int ajust_code = 0;
|
int latency_req = 0;
|
|
match = of_match_node(of_rk3368_thermal_match, np);
|
if (!match)
|
return -ENXIO;
|
|
irq = platform_get_irq(pdev, 0);
|
if (irq < 0) {
|
dev_err(&pdev->dev, "no irq resource?\n");
|
return -EINVAL;
|
}
|
|
ctx = devm_kzalloc(&pdev->dev, sizeof(struct rk3368_thermal_data),
|
GFP_KERNEL);
|
if (!ctx)
|
return -ENOMEM;
|
|
ctx->pdev = pdev;
|
|
ctx->chip = (const struct rk3368_tsadc_chip *)match->data;
|
if (!ctx->chip)
|
return -EINVAL;
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
ctx->regs = devm_ioremap_resource(&pdev->dev, res);
|
if (IS_ERR(ctx->regs))
|
return PTR_ERR(ctx->regs);
|
|
ctx->reset = devm_reset_control_get(&pdev->dev, "tsadc-apb");
|
if (IS_ERR(ctx->reset)) {
|
error = PTR_ERR(ctx->reset);
|
dev_err(&pdev->dev, "failed to get tsadc reset: %d\n", error);
|
return error;
|
}
|
|
ctx->clk = devm_clk_get(&pdev->dev, "tsadc");
|
if (IS_ERR(ctx->clk)) {
|
error = PTR_ERR(ctx->clk);
|
dev_err(&pdev->dev, "failed to get tsadc clock: %d\n", error);
|
return error;
|
}
|
|
ctx->pclk = devm_clk_get(&pdev->dev, "apb_pclk");
|
if (IS_ERR(ctx->pclk)) {
|
error = PTR_ERR(ctx->pclk);
|
dev_err(&pdev->dev, "failed to get apb_pclk clock: %d\n",
|
error);
|
return error;
|
}
|
|
error = clk_prepare_enable(ctx->clk);
|
if (error) {
|
dev_err(&pdev->dev, "failed to enable converter clock: %d\n",
|
error);
|
return error;
|
}
|
|
error = clk_prepare_enable(ctx->pclk);
|
if (error) {
|
dev_err(&pdev->dev, "failed to enable pclk: %d\n", error);
|
goto err_disable_clk;
|
}
|
|
rk3368_thermal_reset_controller(ctx->reset);
|
|
error = rk3368_configure_from_dt(&pdev->dev, np, ctx);
|
if (error) {
|
dev_err(&pdev->dev, "failed to parse device tree data: %d\n",
|
error);
|
goto err_disable_pclk;
|
}
|
|
thermal_ctx = ctx;
|
ctx->ref_regulator = devm_regulator_get_optional(&pdev->dev, "tsadc");
|
|
if (IS_ERR(ctx->ref_regulator)) {
|
error = PTR_ERR(ctx->ref_regulator);
|
|
if (error != -EPROBE_DEFER)
|
dev_err(&pdev->dev,
|
"couldn't get regulator tsadc-supply\n");
|
goto err_disable_pclk;
|
}
|
|
ctx->tsadc_nb.notifier_call = rk3368_thermal_notify;
|
|
/* register regulator notifier */
|
error =
|
regulator_register_notifier(ctx->ref_regulator, &ctx->tsadc_nb);
|
if (error) {
|
dev_err(&pdev->dev, "regulator notifier request failed\n");
|
goto err_disable_pclk;
|
}
|
|
uv = regulator_get_voltage(ctx->ref_regulator);
|
if (uv <= 0) {
|
dev_WARN(&pdev->dev, "regulator get failed\n");
|
uv = 1000000;
|
}
|
|
mutex_lock(&thermal_reg_mutex);
|
if (!ctx->regulator_uv)
|
ctx->regulator_uv = uv;
|
mutex_unlock(&thermal_reg_mutex);
|
|
error = tsadc_add_latency_notifier(&tsadc_latency_notifier);
|
if (error) {
|
dev_err(&pdev->dev, "latency notifier request failed\n");
|
goto err_unreg_notifier;
|
}
|
|
latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
|
|
mutex_lock(&thermal_lat_mutex);
|
if (!ctx->latency_req)
|
ctx->latency_req = latency_req;
|
mutex_unlock(&thermal_lat_mutex);
|
|
rk3368_get_ajust_code(np, &ajust_code);
|
|
ctx->cpu_temp_adjust = (int)ajust_code;
|
|
for (i = 0; i < ctx->chip->chn_num; i++) {
|
error = rk3368_thermal_register_sensor(pdev, ctx,
|
&ctx->sensors[i],
|
ctx->chip->chn_id[i]);
|
if (error) {
|
dev_err(&pdev->dev,
|
"failed to register thermal sensor %d : error= %d\n",
|
i, error);
|
for (j = 0; j < i; j++)
|
thermal_zone_of_sensor_unregister(&pdev->dev,
|
ctx->sensors[j].tzd);
|
goto err_remove_latancy_notifier;
|
}
|
}
|
|
ctx->rk3368_thermal_kobj =
|
kobject_create_and_add("rk3368_thermal", NULL);
|
if (!ctx->rk3368_thermal_kobj) {
|
error = -ENOMEM;
|
dev_err(&pdev->dev,
|
"failed to creat debug node : error= %d\n", error);
|
goto err_remove_latancy_notifier;
|
}
|
|
for (i = 0; i < ARRAY_SIZE(rk3368_thermal_attrs); i++) {
|
error =
|
sysfs_create_file(ctx->rk3368_thermal_kobj,
|
&rk3368_thermal_attrs[i].attr);
|
if (error) {
|
dev_err(&pdev->dev,
|
"failed to register thermal sensor %d : error= %d\n",
|
i, error);
|
for (j = 0; j < i; j++)
|
sysfs_remove_file(ctx->rk3368_thermal_kobj,
|
&rk3368_thermal_attrs[j].attr);
|
|
goto err_remove_latancy_notifier;
|
}
|
}
|
|
platform_set_drvdata(pdev, ctx);
|
|
atomic_notifier_chain_register(&panic_notifier_list,
|
&rk3368_thermal_panic_block);
|
|
ctx->cpu_temp = INVALID_TEMP;
|
|
pr_info("rk3368 tsadc probed successfully\n");
|
|
return 0;
|
|
err_remove_latancy_notifier:
|
tsadc_remove_latency_notifier(&tsadc_latency_notifier);
|
err_unreg_notifier:
|
regulator_unregister_notifier(ctx->ref_regulator, &ctx->tsadc_nb);
|
|
err_disable_pclk:
|
clk_disable_unprepare(ctx->pclk);
|
err_disable_clk:
|
clk_disable_unprepare(ctx->clk);
|
|
return error;
|
}
|
|
static int rk3368_thermal_remove(struct platform_device *pdev)
|
{
|
struct rk3368_thermal_data *ctx = platform_get_drvdata(pdev);
|
int i;
|
|
atomic_notifier_chain_unregister(&panic_notifier_list,
|
&rk3368_thermal_panic_block);
|
for (i = 0; i < ctx->chip->chn_num; i++) {
|
struct rk3368_thermal_sensor *sensor = &ctx->sensors[i];
|
|
thermal_zone_of_sensor_unregister(&pdev->dev, sensor->tzd);
|
}
|
tsadc_remove_latency_notifier(&tsadc_latency_notifier);
|
regulator_unregister_notifier(ctx->ref_regulator, &ctx->tsadc_nb);
|
clk_disable_unprepare(ctx->pclk);
|
clk_disable_unprepare(ctx->clk);
|
|
return 0;
|
}
|
|
static int __maybe_unused rk3368_thermal_suspend(struct device *dev)
|
{
|
struct platform_device *pdev = to_platform_device(dev);
|
struct rk3368_thermal_data *ctx = platform_get_drvdata(pdev);
|
|
clk_disable(ctx->pclk);
|
clk_disable(ctx->clk);
|
return 0;
|
}
|
|
static int __maybe_unused rk3368_thermal_resume(struct device *dev)
|
{
|
struct platform_device *pdev = to_platform_device(dev);
|
struct rk3368_thermal_data *ctx = platform_get_drvdata(pdev);
|
int error;
|
|
error = clk_enable(ctx->clk);
|
if (error)
|
return error;
|
|
error = clk_enable(ctx->pclk);
|
if (error) {
|
clk_disable(ctx->clk);
|
return error;
|
}
|
|
rk3368_thermal_reset_controller(ctx->reset);
|
|
return 0;
|
}
|
|
static SIMPLE_DEV_PM_OPS(rk3368_thermal_pm_ops,
|
rk3368_thermal_suspend, rk3368_thermal_resume);
|
|
static struct platform_driver rk3368_thermal_driver = {
|
.driver = {
|
.name = "rk3368-thermal",
|
.pm = &rk3368_thermal_pm_ops,
|
.of_match_table = of_rk3368_thermal_match,
|
},
|
.probe = rk3368_thermal_probe,
|
.remove = rk3368_thermal_remove,
|
};
|
|
/* rk3368 thermal needs a clock source of 32k from rk818, so this init process
|
* is postponed
|
*/
|
static int __init rk3368_thermal_init_driver(void)
|
{
|
return platform_driver_register(&rk3368_thermal_driver);
|
}
|
late_initcall(rk3368_thermal_init_driver);
|
|
MODULE_DESCRIPTION("ROCKCHIP THERMAL Driver");
|
MODULE_AUTHOR("Rockchip, Inc.");
|
MODULE_LICENSE("GPL v2");
|
MODULE_ALIAS("platform:rk3368-thermal");
|