// SPDX-License-Identifier: BSD-2-Clause
|
/*
|
* Copyright (c) 2015, Linaro Limited
|
* All rights reserved.
|
*/
|
|
#include <adbg.h>
|
#include <fcntl.h>
|
#include <math.h>
|
#include <stdint.h>
|
#include <stdio.h>
|
#include <stdlib.h>
|
#include <string.h>
|
#include <strings.h>
|
#include <sys/types.h>
|
#include <sys/stat.h>
|
#include <tee_client_api.h>
|
#include <time.h>
|
#include <unistd.h>
|
|
#include "crypto_common.h"
|
#include "xtest_helpers.h"
|
|
/*
|
* TEE client stuff
|
*/
|
|
static TEEC_Context ctx;
|
static TEEC_Session sess;
|
static TEEC_SharedMemory in_shm = {
|
.flags = TEEC_MEM_INPUT
|
};
|
static TEEC_SharedMemory out_shm = {
|
.flags = TEEC_MEM_OUTPUT
|
};
|
|
static void errx(const char *msg, TEEC_Result res, uint32_t *orig)
|
{
|
fprintf(stderr, "%s: 0x%08x", msg, res);
|
if (orig)
|
fprintf(stderr, " (orig=%d)", (int)*orig);
|
fprintf(stderr, "\n");
|
exit (1);
|
}
|
|
static void check_res(TEEC_Result res, const char *errmsg, uint32_t *orig)
|
{
|
if (res != TEEC_SUCCESS)
|
errx(errmsg, res, orig);
|
}
|
|
static void open_ta(void)
|
{
|
TEEC_Result res = TEEC_ERROR_GENERIC;
|
TEEC_UUID uuid = TA_SHA_PERF_UUID;
|
uint32_t err_origin = 0;
|
|
res = TEEC_InitializeContext(NULL, &ctx);
|
check_res(res,"TEEC_InitializeContext", NULL);
|
|
res = TEEC_OpenSession(&ctx, &sess, &uuid, TEEC_LOGIN_PUBLIC, NULL,
|
NULL, &err_origin);
|
check_res(res,"TEEC_OpenSession", &err_origin);
|
}
|
|
/*
|
* Statistics
|
*
|
* We want to compute min, max, mean and standard deviation of processing time
|
*/
|
|
struct statistics {
|
int n;
|
double m;
|
double M2;
|
double min;
|
double max;
|
int initialized;
|
};
|
|
/* Take new sample into account (Knuth/Welford algorithm) */
|
static void update_stats(struct statistics *s, uint64_t t)
|
{
|
double x = (double)t;
|
double delta = x - s->m;
|
|
s->n++;
|
s->m += delta/s->n;
|
s->M2 += delta*(x - s->m);
|
if (!s->initialized) {
|
s->min = s->max = x;
|
s->initialized = 1;
|
} else {
|
if (s->min > x)
|
s->min = x;
|
if (s->max < x)
|
s->max = x;
|
}
|
}
|
|
static double stddev(struct statistics *s)
|
{
|
if (s->n < 2)
|
return NAN;
|
return sqrt(s->M2/s->n);
|
}
|
|
static const char *algo_str(uint32_t algo)
|
{
|
switch (algo) {
|
case TA_SHA_SHA1:
|
return "SHA1";
|
case TA_SHA_SHA224:
|
return "SHA224";
|
case TA_SHA_SHA256:
|
return "SHA256";
|
case TA_SHA_SHA384:
|
return "SHA384";
|
case TA_SHA_SHA512:
|
return "SHA512";
|
default:
|
return "???";
|
}
|
}
|
|
static int hash_size(uint32_t algo)
|
{
|
switch (algo) {
|
case TA_SHA_SHA1:
|
return 20;
|
case TA_SHA_SHA224:
|
return 28;
|
case TA_SHA_SHA256:
|
return 32;
|
case TA_SHA_SHA384:
|
return 48;
|
case TA_SHA_SHA512:
|
return 64;
|
default:
|
return 0;
|
}
|
}
|
|
#define _TO_STR(x) #x
|
#define TO_STR(x) _TO_STR(x)
|
|
|
static void alloc_shm(size_t sz, uint32_t algo, int offset)
|
{
|
TEEC_Result res = TEEC_ERROR_GENERIC;
|
|
in_shm.buffer = NULL;
|
in_shm.size = sz + offset;
|
res = TEEC_AllocateSharedMemory(&ctx, &in_shm);
|
check_res(res, "TEEC_AllocateSharedMemory", NULL);
|
|
out_shm.buffer = NULL;
|
out_shm.size = hash_size(algo);
|
res = TEEC_AllocateSharedMemory(&ctx, &out_shm);
|
check_res(res, "TEEC_AllocateSharedMemory", NULL);
|
}
|
|
static void free_shm(void)
|
{
|
TEEC_ReleaseSharedMemory(&in_shm);
|
TEEC_ReleaseSharedMemory(&out_shm);
|
}
|
|
static ssize_t read_random(void *in, size_t rsize)
|
{
|
static int rnd;
|
ssize_t s = 0;
|
|
if (!rnd) {
|
rnd = open("/dev/urandom", O_RDONLY);
|
if (rnd < 0) {
|
perror("open");
|
return 1;
|
}
|
}
|
s = read(rnd, in, rsize);
|
if (s < 0) {
|
perror("read");
|
return 1;
|
}
|
if ((size_t)s != rsize) {
|
printf("read: requested %zu bytes, got %zd\n",
|
rsize, s);
|
}
|
return 0;
|
}
|
|
static long get_current_time(struct timespec *ts)
|
{
|
if (clock_gettime(CLOCK_MONOTONIC, ts) < 0) {
|
perror("clock_gettime");
|
exit(1);
|
}
|
return 0;
|
}
|
|
static uint64_t timespec_diff_ns(struct timespec *start, struct timespec *end)
|
{
|
uint64_t ns = 0;
|
|
if (end->tv_nsec < start->tv_nsec) {
|
ns += 1000000000 * (end->tv_sec - start->tv_sec - 1);
|
ns += 1000000000 - start->tv_nsec + end->tv_nsec;
|
} else {
|
ns += 1000000000 * (end->tv_sec - start->tv_sec);
|
ns += end->tv_nsec - start->tv_nsec;
|
}
|
return ns;
|
}
|
|
static uint64_t run_test_once(void *in, size_t size, int random_in,
|
TEEC_Operation *op)
|
{
|
struct timespec t0 = { };
|
struct timespec t1 = { };
|
TEEC_Result res = TEEC_ERROR_GENERIC;
|
uint32_t ret_origin = 0;
|
|
if (random_in == CRYPTO_USE_RANDOM)
|
read_random(in, size);
|
|
get_current_time(&t0);
|
res = TEEC_InvokeCommand(&sess, TA_SHA_PERF_CMD_PROCESS, op,
|
&ret_origin);
|
check_res(res, "TEEC_InvokeCommand", &ret_origin);
|
get_current_time(&t1);
|
|
return timespec_diff_ns(&t0, &t1);
|
}
|
|
static void prepare_op(int algo)
|
{
|
TEEC_Result res = TEEC_ERROR_GENERIC;
|
uint32_t ret_origin = 0;
|
TEEC_Operation op = TEEC_OPERATION_INITIALIZER;
|
|
op.paramTypes = TEEC_PARAM_TYPES(TEEC_VALUE_INPUT, TEEC_NONE,
|
TEEC_NONE, TEEC_NONE);
|
op.params[0].value.a = algo;
|
res = TEEC_InvokeCommand(&sess, TA_SHA_PERF_CMD_PREPARE_OP, &op,
|
&ret_origin);
|
check_res(res, "TEEC_InvokeCommand", &ret_origin);
|
}
|
|
static void do_warmup(int warmup)
|
{
|
struct timespec t0 = { };
|
struct timespec t = { };
|
int i = 0;
|
|
get_current_time(&t0);
|
do {
|
for (i = 0; i < 100000; i++)
|
;
|
get_current_time(&t);
|
} while (timespec_diff_ns(&t0, &t) < (uint64_t)warmup * 1000000000);
|
}
|
|
static const char *yesno(int v)
|
{
|
return (v ? "yes" : "no");
|
}
|
|
static double mb_per_sec(size_t size, double usec)
|
{
|
return (1000000000/usec)*((double)size/(1024*1024));
|
}
|
|
/* Hash test: buffer of size byte. Run test n times.
|
* Entry point for running SHA benchmark
|
* Params:
|
* algo - Algorithm
|
* size - Buffer size
|
* n - Number of measurements
|
* l - Amount of inner loops
|
* random_in - Get input from /dev/urandom
|
* offset - Buffer offset wrt. alloc-ed address
|
* warmup - Start with a-second busy loop
|
* verbosity - Verbosity level
|
* */
|
extern void sha_perf_run_test(int algo, size_t size, unsigned int n,
|
unsigned int l, int random_in, int offset,
|
int warmup, int verbosity)
|
{
|
uint64_t t = 0;
|
struct statistics stats = { };
|
TEEC_Operation op = TEEC_OPERATION_INITIALIZER;
|
int n0 = n;
|
struct timespec ts = { };
|
double sd = 0;
|
|
vverbose("sha-perf\n");
|
if (clock_getres(CLOCK_MONOTONIC, &ts) < 0) {
|
perror("clock_getres");
|
return;
|
}
|
vverbose("Clock resolution is %jd ns\n",
|
(intmax_t)ts.tv_sec * 1000000000 + ts.tv_nsec);
|
|
open_ta();
|
prepare_op(algo);
|
|
alloc_shm(size, algo, offset);
|
|
if (random_in == CRYPTO_USE_ZEROS)
|
memset((uint8_t *)in_shm.buffer + offset, 0, size);
|
|
op.paramTypes = TEEC_PARAM_TYPES(TEEC_MEMREF_PARTIAL_INPUT,
|
TEEC_MEMREF_PARTIAL_OUTPUT,
|
TEEC_VALUE_INPUT, TEEC_NONE);
|
op.params[0].memref.parent = &in_shm;
|
op.params[0].memref.offset = 0;
|
op.params[0].memref.size = size + offset;
|
op.params[1].memref.parent = &out_shm;
|
op.params[1].memref.offset = 0;
|
op.params[1].memref.size = hash_size(algo);
|
op.params[2].value.a = l;
|
op.params[2].value.b = offset;
|
|
verbose("Starting test: %s, size=%zu bytes, ",
|
algo_str(algo), size);
|
verbose("random=%s, ", yesno(random_in == CRYPTO_USE_RANDOM));
|
verbose("unaligned=%s, ", yesno(offset));
|
verbose("inner loops=%u, loops=%u, warm-up=%u s\n", l, n, warmup);
|
|
if (warmup)
|
do_warmup(warmup);
|
|
while (n-- > 0) {
|
t = run_test_once((uint8_t *)in_shm.buffer + offset, size,
|
random_in, &op);
|
update_stats(&stats, t);
|
if (n % (n0 / 10) == 0)
|
vverbose("#");
|
}
|
vverbose("\n");
|
sd = stddev(&stats);
|
printf("min=%gus max=%gus mean=%gus stddev=%gus (cv %g%%) (%gMiB/s)\n",
|
stats.min / 1000, stats.max / 1000, stats.m / 1000,
|
sd / 1000, 100 * sd / stats.m, mb_per_sec(size, stats.m));
|
verbose("2-sigma interval: %g..%gus (%g..%gMiB/s)\n",
|
(stats.m - 2 * sd) / 1000, (stats.m + 2 * sd) / 1000,
|
mb_per_sec(size, stats.m + 2 * sd),
|
mb_per_sec(size, stats.m - 2 * sd));
|
free_shm();
|
}
|
|
static void usage(const char *progname,
|
/* Default params */
|
int algo, size_t size, int warmup, int l, int n)
|
{
|
fprintf(stderr, "Usage: %s [-h]\n", progname);
|
fprintf(stderr, "Usage: %s [-a ALGO] [-l LOOP] [-n LOOP] [-r] [-s SIZE]", progname);
|
fprintf(stderr, " [-v [-v]] [-w SEC]\n");
|
fprintf(stderr, "SHA performance testing tool for OP-TEE\n");
|
fprintf(stderr, "\n");
|
fprintf(stderr, "Options:\n");
|
fprintf(stderr, " -a ALGO Algorithm (SHA1, SHA224, SHA256, SHA384, SHA512) [%s]\n", algo_str(algo));
|
fprintf(stderr, " -h|--help Print this help and exit\n");
|
fprintf(stderr, " -l LOOP Inner loop iterations (TA calls TEE_DigestDoFinal() <x> times) [%u]\n", l);
|
fprintf(stderr, " -n LOOP Outer test loop iterations [%u]\n", n);
|
fprintf(stderr, " -r|--random Get input data from /dev/urandom (default: all-zeros)\n");
|
fprintf(stderr, " -s SIZE Test buffer size in bytes [%zu]\n", size);
|
fprintf(stderr, " -u|--unalign Use unaligned buffer (odd address)\n");
|
fprintf(stderr, " -v Be verbose (use twice for greater effect)\n");
|
fprintf(stderr, " -w|--warmup SEC Warm-up time in seconds: execute a busy loop before\n");
|
fprintf(stderr, " the test to mitigate the effects of cpufreq etc. [%u]\n", warmup);
|
}
|
|
#define NEXT_ARG(i) \
|
do { \
|
if (++i == argc) { \
|
fprintf(stderr, "%s: %s: missing argument\n", \
|
argv[0], argv[i - 1]); \
|
return 1; \
|
} \
|
} while (0);
|
|
|
|
extern int sha_perf_runner_cmd_parser(int argc, char *argv[])
|
{
|
int i = 0;
|
/* Command line params */
|
size_t size = 1024; /* Buffer size (-s) */
|
unsigned int n = CRYPTO_DEF_COUNT;/* Number of measurements (-n)*/
|
unsigned int l = CRYPTO_DEF_LOOPS; /* Inner loops (-l) */
|
int verbosity = CRYPTO_DEF_VERBOSITY; /* Verbosity (-v) */
|
int algo = TA_SHA_SHA1; /* Algorithm (-a) */
|
/* Get input data from /dev/urandom (-r) */
|
int random_in = CRYPTO_USE_ZEROS;
|
/* Start with a 2-second busy loop (-w) */
|
int warmup = CRYPTO_DEF_WARMUP;
|
int offset = 0; /* Buffer offset wrt. alloc'ed address (-u) */
|
|
/* Parse command line */
|
for (i = 1; i < argc; i++) {
|
if (!strcmp(argv[i], "-h") || !strcmp(argv[i], "--help")) {
|
usage(argv[0], algo, size, warmup, l, n);
|
return 0;
|
}
|
}
|
for (i = 1; i < argc; i++) {
|
if (!strcmp(argv[i], "-l")) {
|
NEXT_ARG(i);
|
l = atoi(argv[i]);
|
} else if (!strcmp(argv[i], "-a")) {
|
NEXT_ARG(i);
|
if (!strcasecmp(argv[i], "SHA1"))
|
algo = TA_SHA_SHA1;
|
else if (!strcasecmp(argv[i], "SHA224"))
|
algo = TA_SHA_SHA224;
|
else if (!strcasecmp(argv[i], "SHA256"))
|
algo = TA_SHA_SHA256;
|
else if (!strcasecmp(argv[i], "SHA384"))
|
algo = TA_SHA_SHA384;
|
else if (!strcasecmp(argv[i], "SHA512"))
|
algo = TA_SHA_SHA512;
|
else {
|
fprintf(stderr, "%s, invalid algorithm\n",
|
argv[0]);
|
usage(argv[0], algo, size, warmup, l, n);
|
return 1;
|
}
|
} else if (!strcmp(argv[i], "-n")) {
|
NEXT_ARG(i);
|
n = atoi(argv[i]);
|
} else if (!strcmp(argv[i], "--random") ||
|
!strcmp(argv[i], "-r")) {
|
random_in = CRYPTO_USE_RANDOM;
|
} else if (!strcmp(argv[i], "-s")) {
|
NEXT_ARG(i);
|
size = atoi(argv[i]);
|
} else if (!strcmp(argv[i], "--unalign") ||
|
!strcmp(argv[i], "-u")) {
|
offset = 1;
|
} else if (!strcmp(argv[i], "-v")) {
|
verbosity++;
|
} else if (!strcmp(argv[i], "--warmup") ||
|
!strcmp(argv[i], "-w")) {
|
NEXT_ARG(i);
|
warmup = atoi(argv[i]);
|
} else {
|
fprintf(stderr, "%s: invalid argument: %s\n",
|
argv[0], argv[i]);
|
usage(argv[0], algo, size, warmup, l, n);
|
return 1;
|
}
|
}
|
|
sha_perf_run_test(algo, size, n, l, random_in, offset, warmup, verbosity);
|
|
return 0;
|
}
|