hc
2023-12-06 d38611ca164021d018c1b23eee65bbebc09c63e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
# SPDX-License-Identifier: GPL-2.0
#
# Generic algorithms support
#
config XOR_BLOCKS
   tristate
 
#
# async_tx api: hardware offloaded memory transfer/transform support
#
source "crypto/async_tx/Kconfig"
 
#
# Cryptographic API Configuration
#
menuconfig CRYPTO
   tristate "Cryptographic API"
   select LIB_MEMNEQ
   help
     This option provides the core Cryptographic API.
 
if CRYPTO
 
comment "Crypto core or helper"
 
config CRYPTO_FIPS
   bool "FIPS 200 compliance"
   depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
   depends on (MODULE_SIG || !MODULES)
   help
     This option enables the fips boot option which is
     required if you want the system to operate in a FIPS 200
     certification.  You should say no unless you know what
     this is.
 
# CRYPTO_FIPS140 just enables the support in the kernel for loading fips140.ko.
# The module still needs to be built and loaded if you need FIPS 140 compliance.
config CRYPTO_FIPS140
   def_bool y
   depends on MODULES && ARM64 && ARM64_MODULE_PLTS
 
config CRYPTO_FIPS140_MOD
   bool "Enable FIPS 140 cryptographic module"
   depends on LTO_CLANG && CRYPTO_FIPS140
   help
     This option enables building a loadable module fips140.ko, which
     contains various crypto algorithms that are also built into vmlinux.
     At load time, this module overrides the built-in implementations of
     these algorithms with its implementations.  It also runs self-tests on
     these algorithms and verifies the integrity of its code and data.  If
     either of these steps fails, the kernel will panic.
 
     This module is intended to be loaded at early boot time in order to
     meet FIPS 140 and NIAP FPT_TST_EXT.1 requirements.  It shouldn't be
     used if you don't need to meet these requirements.
 
config CRYPTO_FIPS140_MOD_EVAL_TESTING
   bool "Enable evaluation testing features in FIPS 140 module"
   depends on CRYPTO_FIPS140_MOD
   help
     This option adds some features to the FIPS 140 module which are needed
     for lab evaluation testing of the module, e.g. support for injecting
     errors and support for a userspace interface to some of the module's
     services.  This option should not be enabled in production builds.
 
config CRYPTO_ALGAPI
   tristate
   select CRYPTO_ALGAPI2
   help
     This option provides the API for cryptographic algorithms.
 
config CRYPTO_ALGAPI2
   tristate
 
config CRYPTO_AEAD
   tristate
   select CRYPTO_AEAD2
   select CRYPTO_ALGAPI
 
config CRYPTO_AEAD2
   tristate
   select CRYPTO_ALGAPI2
   select CRYPTO_NULL2
   select CRYPTO_RNG2
 
config CRYPTO_SKCIPHER
   tristate
   select CRYPTO_SKCIPHER2
   select CRYPTO_ALGAPI
 
config CRYPTO_SKCIPHER2
   tristate
   select CRYPTO_ALGAPI2
   select CRYPTO_RNG2
 
config CRYPTO_HASH
   tristate
   select CRYPTO_HASH2
   select CRYPTO_ALGAPI
 
config CRYPTO_HASH2
   tristate
   select CRYPTO_ALGAPI2
 
config CRYPTO_RNG
   tristate
   select CRYPTO_RNG2
   select CRYPTO_ALGAPI
 
config CRYPTO_RNG2
   tristate
   select CRYPTO_ALGAPI2
 
config CRYPTO_RNG_DEFAULT
   tristate
   select CRYPTO_DRBG_MENU
 
config CRYPTO_AKCIPHER2
   tristate
   select CRYPTO_ALGAPI2
 
config CRYPTO_AKCIPHER
   tristate
   select CRYPTO_AKCIPHER2
   select CRYPTO_ALGAPI
 
config CRYPTO_KPP2
   tristate
   select CRYPTO_ALGAPI2
 
config CRYPTO_KPP
   tristate
   select CRYPTO_ALGAPI
   select CRYPTO_KPP2
 
config CRYPTO_ACOMP2
   tristate
   select CRYPTO_ALGAPI2
   select SGL_ALLOC
 
config CRYPTO_ACOMP
   tristate
   select CRYPTO_ALGAPI
   select CRYPTO_ACOMP2
 
config CRYPTO_MANAGER
   tristate "Cryptographic algorithm manager"
   select CRYPTO_MANAGER2
   help
     Create default cryptographic template instantiations such as
     cbc(aes).
 
config CRYPTO_MANAGER2
   def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
   select CRYPTO_AEAD2
   select CRYPTO_HASH2
   select CRYPTO_SKCIPHER2
   select CRYPTO_AKCIPHER2
   select CRYPTO_KPP2
   select CRYPTO_ACOMP2
 
config CRYPTO_USER
   tristate "Userspace cryptographic algorithm configuration"
   depends on NET
   select CRYPTO_MANAGER
   help
     Userspace configuration for cryptographic instantiations such as
     cbc(aes).
 
config CRYPTO_MANAGER_DISABLE_TESTS
   bool "Disable run-time self tests"
   default y
   help
     Disable run-time self tests that normally take place at
     algorithm registration.
 
config CRYPTO_MANAGER_EXTRA_TESTS
   bool "Enable extra run-time crypto self tests"
   depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
   help
     Enable extra run-time self tests of registered crypto algorithms,
     including randomized fuzz tests.
 
     This is intended for developer use only, as these tests take much
     longer to run than the normal self tests.
 
config CRYPTO_GF128MUL
   tristate
 
config CRYPTO_NULL
   tristate "Null algorithms"
   select CRYPTO_NULL2
   help
     These are 'Null' algorithms, used by IPsec, which do nothing.
 
config CRYPTO_NULL2
   tristate
   select CRYPTO_ALGAPI2
   select CRYPTO_SKCIPHER2
   select CRYPTO_HASH2
 
config CRYPTO_PCRYPT
   tristate "Parallel crypto engine"
   depends on SMP
   select PADATA
   select CRYPTO_MANAGER
   select CRYPTO_AEAD
   help
     This converts an arbitrary crypto algorithm into a parallel
     algorithm that executes in kernel threads.
 
config CRYPTO_CRYPTD
   tristate "Software async crypto daemon"
   select CRYPTO_SKCIPHER
   select CRYPTO_HASH
   select CRYPTO_MANAGER
   help
     This is a generic software asynchronous crypto daemon that
     converts an arbitrary synchronous software crypto algorithm
     into an asynchronous algorithm that executes in a kernel thread.
 
config CRYPTO_AUTHENC
   tristate "Authenc support"
   select CRYPTO_AEAD
   select CRYPTO_SKCIPHER
   select CRYPTO_MANAGER
   select CRYPTO_HASH
   select CRYPTO_NULL
   help
     Authenc: Combined mode wrapper for IPsec.
     This is required for IPSec.
 
config CRYPTO_TEST
   tristate "Testing module"
   depends on m
   select CRYPTO_MANAGER
   help
     Quick & dirty crypto test module.
 
config CRYPTO_SIMD
   tristate
   select CRYPTO_CRYPTD
 
config CRYPTO_GLUE_HELPER_X86
   tristate
   depends on X86
   select CRYPTO_SKCIPHER
 
config CRYPTO_ENGINE
   tristate
 
comment "Public-key cryptography"
 
config CRYPTO_RSA
   tristate "RSA algorithm"
   select CRYPTO_AKCIPHER
   select CRYPTO_MANAGER
   select MPILIB
   select ASN1
   help
     Generic implementation of the RSA public key algorithm.
 
config CRYPTO_DH
   tristate "Diffie-Hellman algorithm"
   select CRYPTO_KPP
   select MPILIB
   help
     Generic implementation of the Diffie-Hellman algorithm.
 
config CRYPTO_ECC
   tristate
   select CRYPTO_RNG_DEFAULT
 
config CRYPTO_ECDH
   tristate "ECDH algorithm"
   select CRYPTO_ECC
   select CRYPTO_KPP
   help
     Generic implementation of the ECDH algorithm
 
config CRYPTO_ECRDSA
   tristate "EC-RDSA (GOST 34.10) algorithm"
   select CRYPTO_ECC
   select CRYPTO_AKCIPHER
   select CRYPTO_STREEBOG
   select OID_REGISTRY
   select ASN1
   help
     Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
     RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
     standard algorithms (called GOST algorithms). Only signature verification
     is implemented.
 
config CRYPTO_SM2
   tristate "SM2 algorithm"
   select CRYPTO_SM3
   select CRYPTO_AKCIPHER
   select CRYPTO_MANAGER
   select MPILIB
   select ASN1
   help
     Generic implementation of the SM2 public key algorithm. It was
     published by State Encryption Management Bureau, China.
     as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
 
     References:
     https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
     http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
     http://www.gmbz.org.cn/main/bzlb.html
 
config CRYPTO_CURVE25519
   tristate "Curve25519 algorithm"
   select CRYPTO_KPP
   select CRYPTO_LIB_CURVE25519_GENERIC
 
config CRYPTO_CURVE25519_X86
   tristate "x86_64 accelerated Curve25519 scalar multiplication library"
   depends on X86 && 64BIT
   select CRYPTO_LIB_CURVE25519_GENERIC
   select CRYPTO_ARCH_HAVE_LIB_CURVE25519
 
comment "Authenticated Encryption with Associated Data"
 
config CRYPTO_CCM
   tristate "CCM support"
   select CRYPTO_CTR
   select CRYPTO_HASH
   select CRYPTO_AEAD
   select CRYPTO_MANAGER
   help
     Support for Counter with CBC MAC. Required for IPsec.
 
config CRYPTO_GCM
   tristate "GCM/GMAC support"
   select CRYPTO_CTR
   select CRYPTO_AEAD
   select CRYPTO_GHASH
   select CRYPTO_NULL
   select CRYPTO_MANAGER
   help
     Support for Galois/Counter Mode (GCM) and Galois Message
     Authentication Code (GMAC). Required for IPSec.
 
config CRYPTO_CHACHA20POLY1305
   tristate "ChaCha20-Poly1305 AEAD support"
   select CRYPTO_CHACHA20
   select CRYPTO_POLY1305
   select CRYPTO_AEAD
   select CRYPTO_MANAGER
   help
     ChaCha20-Poly1305 AEAD support, RFC7539.
 
     Support for the AEAD wrapper using the ChaCha20 stream cipher combined
     with the Poly1305 authenticator. It is defined in RFC7539 for use in
     IETF protocols.
 
config CRYPTO_AEGIS128
   tristate "AEGIS-128 AEAD algorithm"
   select CRYPTO_AEAD
   select CRYPTO_AES  # for AES S-box tables
   help
    Support for the AEGIS-128 dedicated AEAD algorithm.
 
config CRYPTO_AEGIS128_SIMD
   bool "Support SIMD acceleration for AEGIS-128"
   depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
   default y
 
config CRYPTO_AEGIS128_AESNI_SSE2
   tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
   depends on X86 && 64BIT
   select CRYPTO_AEAD
   select CRYPTO_SIMD
   help
    AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
 
config CRYPTO_SEQIV
   tristate "Sequence Number IV Generator"
   select CRYPTO_AEAD
   select CRYPTO_SKCIPHER
   select CRYPTO_NULL
   select CRYPTO_RNG_DEFAULT
   select CRYPTO_MANAGER
   help
     This IV generator generates an IV based on a sequence number by
     xoring it with a salt.  This algorithm is mainly useful for CTR
 
config CRYPTO_ECHAINIV
   tristate "Encrypted Chain IV Generator"
   select CRYPTO_AEAD
   select CRYPTO_NULL
   select CRYPTO_RNG_DEFAULT
   select CRYPTO_MANAGER
   help
     This IV generator generates an IV based on the encryption of
     a sequence number xored with a salt.  This is the default
     algorithm for CBC.
 
comment "Block modes"
 
config CRYPTO_CBC
   tristate "CBC support"
   select CRYPTO_SKCIPHER
   select CRYPTO_MANAGER
   help
     CBC: Cipher Block Chaining mode
     This block cipher algorithm is required for IPSec.
 
config CRYPTO_CFB
   tristate "CFB support"
   select CRYPTO_SKCIPHER
   select CRYPTO_MANAGER
   help
     CFB: Cipher FeedBack mode
     This block cipher algorithm is required for TPM2 Cryptography.
 
config CRYPTO_CTR
   tristate "CTR support"
   select CRYPTO_SKCIPHER
   select CRYPTO_MANAGER
   help
     CTR: Counter mode
     This block cipher algorithm is required for IPSec.
 
config CRYPTO_CTS
   tristate "CTS support"
   select CRYPTO_SKCIPHER
   select CRYPTO_MANAGER
   help
     CTS: Cipher Text Stealing
     This is the Cipher Text Stealing mode as described by
     Section 8 of rfc2040 and referenced by rfc3962
     (rfc3962 includes errata information in its Appendix A) or
     CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
     This mode is required for Kerberos gss mechanism support
     for AES encryption.
 
     See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
 
config CRYPTO_ECB
   tristate "ECB support"
   select CRYPTO_SKCIPHER
   select CRYPTO_MANAGER
   help
     ECB: Electronic CodeBook mode
     This is the simplest block cipher algorithm.  It simply encrypts
     the input block by block.
 
config CRYPTO_LRW
   tristate "LRW support"
   select CRYPTO_SKCIPHER
   select CRYPTO_MANAGER
   select CRYPTO_GF128MUL
   help
     LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
     narrow block cipher mode for dm-crypt.  Use it with cipher
     specification string aes-lrw-benbi, the key must be 256, 320 or 384.
     The first 128, 192 or 256 bits in the key are used for AES and the
     rest is used to tie each cipher block to its logical position.
 
config CRYPTO_OFB
   tristate "OFB support"
   select CRYPTO_SKCIPHER
   select CRYPTO_MANAGER
   help
     OFB: the Output Feedback mode makes a block cipher into a synchronous
     stream cipher. It generates keystream blocks, which are then XORed
     with the plaintext blocks to get the ciphertext. Flipping a bit in the
     ciphertext produces a flipped bit in the plaintext at the same
     location. This property allows many error correcting codes to function
     normally even when applied before encryption.
 
config CRYPTO_PCBC
   tristate "PCBC support"
   select CRYPTO_SKCIPHER
   select CRYPTO_MANAGER
   help
     PCBC: Propagating Cipher Block Chaining mode
     This block cipher algorithm is required for RxRPC.
 
config CRYPTO_XTS
   tristate "XTS support"
   select CRYPTO_SKCIPHER
   select CRYPTO_MANAGER
   select CRYPTO_ECB
   help
     XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
     key size 256, 384 or 512 bits. This implementation currently
     can't handle a sectorsize which is not a multiple of 16 bytes.
 
config CRYPTO_KEYWRAP
   tristate "Key wrapping support"
   select CRYPTO_SKCIPHER
   select CRYPTO_MANAGER
   help
     Support for key wrapping (NIST SP800-38F / RFC3394) without
     padding.
 
config CRYPTO_NHPOLY1305
   tristate
   select CRYPTO_HASH
   select CRYPTO_LIB_POLY1305_GENERIC
 
config CRYPTO_NHPOLY1305_SSE2
   tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
   depends on X86 && 64BIT
   select CRYPTO_NHPOLY1305
   help
     SSE2 optimized implementation of the hash function used by the
     Adiantum encryption mode.
 
config CRYPTO_NHPOLY1305_AVX2
   tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
   depends on X86 && 64BIT
   select CRYPTO_NHPOLY1305
   help
     AVX2 optimized implementation of the hash function used by the
     Adiantum encryption mode.
 
config CRYPTO_ADIANTUM
   tristate "Adiantum support"
   select CRYPTO_CHACHA20
   select CRYPTO_LIB_POLY1305_GENERIC
   select CRYPTO_NHPOLY1305
   select CRYPTO_MANAGER
   help
     Adiantum is a tweakable, length-preserving encryption mode
     designed for fast and secure disk encryption, especially on
     CPUs without dedicated crypto instructions.  It encrypts
     each sector using the XChaCha12 stream cipher, two passes of
     an Îµ-almost-∆-universal hash function, and an invocation of
     the AES-256 block cipher on a single 16-byte block.  On CPUs
     without AES instructions, Adiantum is much faster than
     AES-XTS.
 
     Adiantum's security is provably reducible to that of its
     underlying stream and block ciphers, subject to a security
     bound.  Unlike XTS, Adiantum is a true wide-block encryption
     mode, so it actually provides an even stronger notion of
     security than XTS, subject to the security bound.
 
     If unsure, say N.
 
config CRYPTO_ESSIV
   tristate "ESSIV support for block encryption"
   select CRYPTO_AUTHENC
   help
     Encrypted salt-sector initialization vector (ESSIV) is an IV
     generation method that is used in some cases by fscrypt and/or
     dm-crypt. It uses the hash of the block encryption key as the
     symmetric key for a block encryption pass applied to the input
     IV, making low entropy IV sources more suitable for block
     encryption.
 
     This driver implements a crypto API template that can be
     instantiated either as an skcipher or as an AEAD (depending on the
     type of the first template argument), and which defers encryption
     and decryption requests to the encapsulated cipher after applying
     ESSIV to the input IV. Note that in the AEAD case, it is assumed
     that the keys are presented in the same format used by the authenc
     template, and that the IV appears at the end of the authenticated
     associated data (AAD) region (which is how dm-crypt uses it.)
 
     Note that the use of ESSIV is not recommended for new deployments,
     and so this only needs to be enabled when interoperability with
     existing encrypted volumes of filesystems is required, or when
     building for a particular system that requires it (e.g., when
     the SoC in question has accelerated CBC but not XTS, making CBC
     combined with ESSIV the only feasible mode for h/w accelerated
     block encryption)
 
comment "Hash modes"
 
config CRYPTO_CMAC
   tristate "CMAC support"
   select CRYPTO_HASH
   select CRYPTO_MANAGER
   help
     Cipher-based Message Authentication Code (CMAC) specified by
     The National Institute of Standards and Technology (NIST).
 
     https://tools.ietf.org/html/rfc4493
     http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 
config CRYPTO_HMAC
   tristate "HMAC support"
   select CRYPTO_HASH
   select CRYPTO_MANAGER
   help
     HMAC: Keyed-Hashing for Message Authentication (RFC2104).
     This is required for IPSec.
 
config CRYPTO_XCBC
   tristate "XCBC support"
   select CRYPTO_HASH
   select CRYPTO_MANAGER
   help
     XCBC: Keyed-Hashing with encryption algorithm
       https://www.ietf.org/rfc/rfc3566.txt
       http://csrc.nist.gov/encryption/modes/proposedmodes/
        xcbc-mac/xcbc-mac-spec.pdf
 
config CRYPTO_VMAC
   tristate "VMAC support"
   select CRYPTO_HASH
   select CRYPTO_MANAGER
   help
     VMAC is a message authentication algorithm designed for
     very high speed on 64-bit architectures.
 
     See also:
     <https://fastcrypto.org/vmac>
 
comment "Digest"
 
config CRYPTO_CRC32C
   tristate "CRC32c CRC algorithm"
   select CRYPTO_HASH
   select CRC32
   help
     Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
     by iSCSI for header and data digests and by others.
     See Castagnoli93.  Module will be crc32c.
 
config CRYPTO_CRC32C_INTEL
   tristate "CRC32c INTEL hardware acceleration"
   depends on X86
   select CRYPTO_HASH
   help
     In Intel processor with SSE4.2 supported, the processor will
     support CRC32C implementation using hardware accelerated CRC32
     instruction. This option will create 'crc32c-intel' module,
     which will enable any routine to use the CRC32 instruction to
     gain performance compared with software implementation.
     Module will be crc32c-intel.
 
config CRYPTO_CRC32C_VPMSUM
   tristate "CRC32c CRC algorithm (powerpc64)"
   depends on PPC64 && ALTIVEC
   select CRYPTO_HASH
   select CRC32
   help
     CRC32c algorithm implemented using vector polynomial multiply-sum
     (vpmsum) instructions, introduced in POWER8. Enable on POWER8
     and newer processors for improved performance.
 
 
config CRYPTO_CRC32C_SPARC64
   tristate "CRC32c CRC algorithm (SPARC64)"
   depends on SPARC64
   select CRYPTO_HASH
   select CRC32
   help
     CRC32c CRC algorithm implemented using sparc64 crypto instructions,
     when available.
 
config CRYPTO_CRC32
   tristate "CRC32 CRC algorithm"
   select CRYPTO_HASH
   select CRC32
   help
     CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
     Shash crypto api wrappers to crc32_le function.
 
config CRYPTO_CRC32_PCLMUL
   tristate "CRC32 PCLMULQDQ hardware acceleration"
   depends on X86
   select CRYPTO_HASH
   select CRC32
   help
     From Intel Westmere and AMD Bulldozer processor with SSE4.2
     and PCLMULQDQ supported, the processor will support
     CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
     instruction. This option will create 'crc32-pclmul' module,
     which will enable any routine to use the CRC-32-IEEE 802.3 checksum
     and gain better performance as compared with the table implementation.
 
config CRYPTO_CRC32_MIPS
   tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
   depends on MIPS_CRC_SUPPORT
   select CRYPTO_HASH
   help
     CRC32c and CRC32 CRC algorithms implemented using mips crypto
     instructions, when available.
 
 
config CRYPTO_XXHASH
   tristate "xxHash hash algorithm"
   select CRYPTO_HASH
   select XXHASH
   help
     xxHash non-cryptographic hash algorithm. Extremely fast, working at
     speeds close to RAM limits.
 
config CRYPTO_BLAKE2B
   tristate "BLAKE2b digest algorithm"
   select CRYPTO_HASH
   help
     Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
     optimized for 64bit platforms and can produce digests of any size
     between 1 to 64.  The keyed hash is also implemented.
 
     This module provides the following algorithms:
 
     - blake2b-160
     - blake2b-256
     - blake2b-384
     - blake2b-512
 
     See https://blake2.net for further information.
 
config CRYPTO_BLAKE2S
   tristate "BLAKE2s digest algorithm"
   select CRYPTO_LIB_BLAKE2S_GENERIC
   select CRYPTO_HASH
   help
     Implementation of cryptographic hash function BLAKE2s
     optimized for 8-32bit platforms and can produce digests of any size
     between 1 to 32.  The keyed hash is also implemented.
 
     This module provides the following algorithms:
 
     - blake2s-128
     - blake2s-160
     - blake2s-224
     - blake2s-256
 
     See https://blake2.net for further information.
 
config CRYPTO_BLAKE2S_X86
   tristate "BLAKE2s digest algorithm (x86 accelerated version)"
   depends on X86 && 64BIT
   select CRYPTO_LIB_BLAKE2S_GENERIC
   select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
 
config CRYPTO_CRCT10DIF
   tristate "CRCT10DIF algorithm"
   select CRYPTO_HASH
   help
     CRC T10 Data Integrity Field computation is being cast as
     a crypto transform.  This allows for faster crc t10 diff
     transforms to be used if they are available.
 
config CRYPTO_CRCT10DIF_PCLMUL
   tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
   depends on X86 && 64BIT && CRC_T10DIF
   select CRYPTO_HASH
   help
     For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
     CRC T10 DIF PCLMULQDQ computation can be hardware
     accelerated PCLMULQDQ instruction. This option will create
     'crct10dif-pclmul' module, which is faster when computing the
     crct10dif checksum as compared with the generic table implementation.
 
config CRYPTO_CRCT10DIF_VPMSUM
   tristate "CRC32T10DIF powerpc64 hardware acceleration"
   depends on PPC64 && ALTIVEC && CRC_T10DIF
   select CRYPTO_HASH
   help
     CRC10T10DIF algorithm implemented using vector polynomial
     multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
     POWER8 and newer processors for improved performance.
 
config CRYPTO_VPMSUM_TESTER
   tristate "Powerpc64 vpmsum hardware acceleration tester"
   depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
   help
     Stress test for CRC32c and CRC-T10DIF algorithms implemented with
     POWER8 vpmsum instructions.
     Unless you are testing these algorithms, you don't need this.
 
config CRYPTO_GHASH
   tristate "GHASH hash function"
   select CRYPTO_GF128MUL
   select CRYPTO_HASH
   help
     GHASH is the hash function used in GCM (Galois/Counter Mode).
     It is not a general-purpose cryptographic hash function.
 
config CRYPTO_POLY1305
   tristate "Poly1305 authenticator algorithm"
   select CRYPTO_HASH
   select CRYPTO_LIB_POLY1305_GENERIC
   help
     Poly1305 authenticator algorithm, RFC7539.
 
     Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
     It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
     in IETF protocols. This is the portable C implementation of Poly1305.
 
config CRYPTO_POLY1305_X86_64
   tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
   depends on X86 && 64BIT
   select CRYPTO_LIB_POLY1305_GENERIC
   select CRYPTO_ARCH_HAVE_LIB_POLY1305
   help
     Poly1305 authenticator algorithm, RFC7539.
 
     Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
     It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
     in IETF protocols. This is the x86_64 assembler implementation using SIMD
     instructions.
 
config CRYPTO_POLY1305_MIPS
   tristate "Poly1305 authenticator algorithm (MIPS optimized)"
   depends on MIPS
   select CRYPTO_ARCH_HAVE_LIB_POLY1305
 
config CRYPTO_MD4
   tristate "MD4 digest algorithm"
   select CRYPTO_HASH
   help
     MD4 message digest algorithm (RFC1320).
 
config CRYPTO_MD5
   tristate "MD5 digest algorithm"
   select CRYPTO_HASH
   help
     MD5 message digest algorithm (RFC1321).
 
config CRYPTO_MD5_OCTEON
   tristate "MD5 digest algorithm (OCTEON)"
   depends on CPU_CAVIUM_OCTEON
   select CRYPTO_MD5
   select CRYPTO_HASH
   help
     MD5 message digest algorithm (RFC1321) implemented
     using OCTEON crypto instructions, when available.
 
config CRYPTO_MD5_PPC
   tristate "MD5 digest algorithm (PPC)"
   depends on PPC
   select CRYPTO_HASH
   help
     MD5 message digest algorithm (RFC1321) implemented
     in PPC assembler.
 
config CRYPTO_MD5_SPARC64
   tristate "MD5 digest algorithm (SPARC64)"
   depends on SPARC64
   select CRYPTO_MD5
   select CRYPTO_HASH
   help
     MD5 message digest algorithm (RFC1321) implemented
     using sparc64 crypto instructions, when available.
 
config CRYPTO_MICHAEL_MIC
   tristate "Michael MIC keyed digest algorithm"
   select CRYPTO_HASH
   help
     Michael MIC is used for message integrity protection in TKIP
     (IEEE 802.11i). This algorithm is required for TKIP, but it
     should not be used for other purposes because of the weakness
     of the algorithm.
 
config CRYPTO_RMD128
   tristate "RIPEMD-128 digest algorithm"
   select CRYPTO_HASH
   help
     RIPEMD-128 (ISO/IEC 10118-3:2004).
 
     RIPEMD-128 is a 128-bit cryptographic hash function. It should only
     be used as a secure replacement for RIPEMD. For other use cases,
     RIPEMD-160 should be used.
 
     Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
     See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 
config CRYPTO_RMD160
   tristate "RIPEMD-160 digest algorithm"
   select CRYPTO_HASH
   help
     RIPEMD-160 (ISO/IEC 10118-3:2004).
 
     RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
     to be used as a secure replacement for the 128-bit hash functions
     MD4, MD5 and it's predecessor RIPEMD
     (not to be confused with RIPEMD-128).
 
     It's speed is comparable to SHA1 and there are no known attacks
     against RIPEMD-160.
 
     Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
     See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 
config CRYPTO_RMD256
   tristate "RIPEMD-256 digest algorithm"
   select CRYPTO_HASH
   help
     RIPEMD-256 is an optional extension of RIPEMD-128 with a
     256 bit hash. It is intended for applications that require
     longer hash-results, without needing a larger security level
     (than RIPEMD-128).
 
     Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
     See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 
config CRYPTO_RMD320
   tristate "RIPEMD-320 digest algorithm"
   select CRYPTO_HASH
   help
     RIPEMD-320 is an optional extension of RIPEMD-160 with a
     320 bit hash. It is intended for applications that require
     longer hash-results, without needing a larger security level
     (than RIPEMD-160).
 
     Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
     See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 
config CRYPTO_SHA1
   tristate "SHA1 digest algorithm"
   select CRYPTO_HASH
   help
     SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 
config CRYPTO_SHA1_SSSE3
   tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
   depends on X86 && 64BIT
   select CRYPTO_SHA1
   select CRYPTO_HASH
   help
     SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
     using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
     Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
     when available.
 
config CRYPTO_SHA256_SSSE3
   tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
   depends on X86 && 64BIT
   select CRYPTO_SHA256
   select CRYPTO_HASH
   help
     SHA-256 secure hash standard (DFIPS 180-2) implemented
     using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
     Extensions version 1 (AVX1), or Advanced Vector Extensions
     version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
     Instructions) when available.
 
config CRYPTO_SHA512_SSSE3
   tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
   depends on X86 && 64BIT
   select CRYPTO_SHA512
   select CRYPTO_HASH
   help
     SHA-512 secure hash standard (DFIPS 180-2) implemented
     using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
     Extensions version 1 (AVX1), or Advanced Vector Extensions
     version 2 (AVX2) instructions, when available.
 
config CRYPTO_SHA1_OCTEON
   tristate "SHA1 digest algorithm (OCTEON)"
   depends on CPU_CAVIUM_OCTEON
   select CRYPTO_SHA1
   select CRYPTO_HASH
   help
     SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
     using OCTEON crypto instructions, when available.
 
config CRYPTO_SHA1_SPARC64
   tristate "SHA1 digest algorithm (SPARC64)"
   depends on SPARC64
   select CRYPTO_SHA1
   select CRYPTO_HASH
   help
     SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
     using sparc64 crypto instructions, when available.
 
config CRYPTO_SHA1_PPC
   tristate "SHA1 digest algorithm (powerpc)"
   depends on PPC
   help
     This is the powerpc hardware accelerated implementation of the
     SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 
config CRYPTO_SHA1_PPC_SPE
   tristate "SHA1 digest algorithm (PPC SPE)"
   depends on PPC && SPE
   help
     SHA-1 secure hash standard (DFIPS 180-4) implemented
     using powerpc SPE SIMD instruction set.
 
config CRYPTO_SHA256
   tristate "SHA224 and SHA256 digest algorithm"
   select CRYPTO_HASH
   select CRYPTO_LIB_SHA256
   help
     SHA256 secure hash standard (DFIPS 180-2).
 
     This version of SHA implements a 256 bit hash with 128 bits of
     security against collision attacks.
 
     This code also includes SHA-224, a 224 bit hash with 112 bits
     of security against collision attacks.
 
config CRYPTO_SHA256_PPC_SPE
   tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
   depends on PPC && SPE
   select CRYPTO_SHA256
   select CRYPTO_HASH
   help
     SHA224 and SHA256 secure hash standard (DFIPS 180-2)
     implemented using powerpc SPE SIMD instruction set.
 
config CRYPTO_SHA256_OCTEON
   tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
   depends on CPU_CAVIUM_OCTEON
   select CRYPTO_SHA256
   select CRYPTO_HASH
   help
     SHA-256 secure hash standard (DFIPS 180-2) implemented
     using OCTEON crypto instructions, when available.
 
config CRYPTO_SHA256_SPARC64
   tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
   depends on SPARC64
   select CRYPTO_SHA256
   select CRYPTO_HASH
   help
     SHA-256 secure hash standard (DFIPS 180-2) implemented
     using sparc64 crypto instructions, when available.
 
config CRYPTO_SHA512
   tristate "SHA384 and SHA512 digest algorithms"
   select CRYPTO_HASH
   help
     SHA512 secure hash standard (DFIPS 180-2).
 
     This version of SHA implements a 512 bit hash with 256 bits of
     security against collision attacks.
 
     This code also includes SHA-384, a 384 bit hash with 192 bits
     of security against collision attacks.
 
config CRYPTO_SHA512_OCTEON
   tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
   depends on CPU_CAVIUM_OCTEON
   select CRYPTO_SHA512
   select CRYPTO_HASH
   help
     SHA-512 secure hash standard (DFIPS 180-2) implemented
     using OCTEON crypto instructions, when available.
 
config CRYPTO_SHA512_SPARC64
   tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
   depends on SPARC64
   select CRYPTO_SHA512
   select CRYPTO_HASH
   help
     SHA-512 secure hash standard (DFIPS 180-2) implemented
     using sparc64 crypto instructions, when available.
 
config CRYPTO_SHA3
   tristate "SHA3 digest algorithm"
   select CRYPTO_HASH
   help
     SHA-3 secure hash standard (DFIPS 202). It's based on
     cryptographic sponge function family called Keccak.
 
     References:
     http://keccak.noekeon.org/
 
config CRYPTO_SM3
   tristate "SM3 digest algorithm"
   select CRYPTO_HASH
   help
     SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
     It is part of the Chinese Commercial Cryptography suite.
 
     References:
     http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
     https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
 
config CRYPTO_STREEBOG
   tristate "Streebog Hash Function"
   select CRYPTO_HASH
   help
     Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
     cryptographic standard algorithms (called GOST algorithms).
     This setting enables two hash algorithms with 256 and 512 bits output.
 
     References:
     https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
     https://tools.ietf.org/html/rfc6986
 
config CRYPTO_TGR192
   tristate "Tiger digest algorithms"
   select CRYPTO_HASH
   help
     Tiger hash algorithm 192, 160 and 128-bit hashes
 
     Tiger is a hash function optimized for 64-bit processors while
     still having decent performance on 32-bit processors.
     Tiger was developed by Ross Anderson and Eli Biham.
 
     See also:
     <https://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
 
config CRYPTO_WP512
   tristate "Whirlpool digest algorithms"
   select CRYPTO_HASH
   help
     Whirlpool hash algorithm 512, 384 and 256-bit hashes
 
     Whirlpool-512 is part of the NESSIE cryptographic primitives.
     Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
 
     See also:
     <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
 
config CRYPTO_GHASH_CLMUL_NI_INTEL
   tristate "GHASH hash function (CLMUL-NI accelerated)"
   depends on X86 && 64BIT
   select CRYPTO_CRYPTD
   help
     This is the x86_64 CLMUL-NI accelerated implementation of
     GHASH, the hash function used in GCM (Galois/Counter mode).
 
comment "Ciphers"
 
config CRYPTO_AES
   tristate "AES cipher algorithms"
   select CRYPTO_ALGAPI
   select CRYPTO_LIB_AES
   help
     AES cipher algorithms (FIPS-197). AES uses the Rijndael
     algorithm.
 
     Rijndael appears to be consistently a very good performer in
     both hardware and software across a wide range of computing
     environments regardless of its use in feedback or non-feedback
     modes. Its key setup time is excellent, and its key agility is
     good. Rijndael's very low memory requirements make it very well
     suited for restricted-space environments, in which it also
     demonstrates excellent performance. Rijndael's operations are
     among the easiest to defend against power and timing attacks.
 
     The AES specifies three key sizes: 128, 192 and 256 bits
 
     See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
 
config CRYPTO_AES_TI
   tristate "Fixed time AES cipher"
   select CRYPTO_ALGAPI
   select CRYPTO_LIB_AES
   help
     This is a generic implementation of AES that attempts to eliminate
     data dependent latencies as much as possible without affecting
     performance too much. It is intended for use by the generic CCM
     and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
     solely on encryption (although decryption is supported as well, but
     with a more dramatic performance hit)
 
     Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
     8 for decryption), this implementation only uses just two S-boxes of
     256 bytes each, and attempts to eliminate data dependent latencies by
     prefetching the entire table into the cache at the start of each
     block. Interrupts are also disabled to avoid races where cachelines
     are evicted when the CPU is interrupted to do something else.
 
config CRYPTO_AES_NI_INTEL
   tristate "AES cipher algorithms (AES-NI)"
   depends on X86
   select CRYPTO_AEAD
   select CRYPTO_LIB_AES
   select CRYPTO_ALGAPI
   select CRYPTO_SKCIPHER
   select CRYPTO_GLUE_HELPER_X86 if 64BIT
   select CRYPTO_SIMD
   help
     Use Intel AES-NI instructions for AES algorithm.
 
     AES cipher algorithms (FIPS-197). AES uses the Rijndael
     algorithm.
 
     Rijndael appears to be consistently a very good performer in
     both hardware and software across a wide range of computing
     environments regardless of its use in feedback or non-feedback
     modes. Its key setup time is excellent, and its key agility is
     good. Rijndael's very low memory requirements make it very well
     suited for restricted-space environments, in which it also
     demonstrates excellent performance. Rijndael's operations are
     among the easiest to defend against power and timing attacks.
 
     The AES specifies three key sizes: 128, 192 and 256 bits
 
     See <http://csrc.nist.gov/encryption/aes/> for more information.
 
     In addition to AES cipher algorithm support, the acceleration
     for some popular block cipher mode is supported too, including
     ECB, CBC, LRW, XTS. The 64 bit version has additional
     acceleration for CTR.
 
config CRYPTO_AES_SPARC64
   tristate "AES cipher algorithms (SPARC64)"
   depends on SPARC64
   select CRYPTO_SKCIPHER
   help
     Use SPARC64 crypto opcodes for AES algorithm.
 
     AES cipher algorithms (FIPS-197). AES uses the Rijndael
     algorithm.
 
     Rijndael appears to be consistently a very good performer in
     both hardware and software across a wide range of computing
     environments regardless of its use in feedback or non-feedback
     modes. Its key setup time is excellent, and its key agility is
     good. Rijndael's very low memory requirements make it very well
     suited for restricted-space environments, in which it also
     demonstrates excellent performance. Rijndael's operations are
     among the easiest to defend against power and timing attacks.
 
     The AES specifies three key sizes: 128, 192 and 256 bits
 
     See <http://csrc.nist.gov/encryption/aes/> for more information.
 
     In addition to AES cipher algorithm support, the acceleration
     for some popular block cipher mode is supported too, including
     ECB and CBC.
 
config CRYPTO_AES_PPC_SPE
   tristate "AES cipher algorithms (PPC SPE)"
   depends on PPC && SPE
   select CRYPTO_SKCIPHER
   help
     AES cipher algorithms (FIPS-197). Additionally the acceleration
     for popular block cipher modes ECB, CBC, CTR and XTS is supported.
     This module should only be used for low power (router) devices
     without hardware AES acceleration (e.g. caam crypto). It reduces the
     size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
     timining attacks. Nevertheless it might be not as secure as other
     architecture specific assembler implementations that work on 1KB
     tables or 256 bytes S-boxes.
 
config CRYPTO_ANUBIS
   tristate "Anubis cipher algorithm"
   depends on CRYPTO_USER_API_ENABLE_OBSOLETE
   select CRYPTO_ALGAPI
   help
     Anubis cipher algorithm.
 
     Anubis is a variable key length cipher which can use keys from
     128 bits to 320 bits in length.  It was evaluated as a entrant
     in the NESSIE competition.
 
     See also:
     <https://www.cosic.esat.kuleuven.be/nessie/reports/>
     <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
 
config CRYPTO_ARC4
   tristate "ARC4 cipher algorithm"
   depends on CRYPTO_USER_API_ENABLE_OBSOLETE
   select CRYPTO_SKCIPHER
   select CRYPTO_LIB_ARC4
   help
     ARC4 cipher algorithm.
 
     ARC4 is a stream cipher using keys ranging from 8 bits to 2048
     bits in length.  This algorithm is required for driver-based
     WEP, but it should not be for other purposes because of the
     weakness of the algorithm.
 
config CRYPTO_BLOWFISH
   tristate "Blowfish cipher algorithm"
   select CRYPTO_ALGAPI
   select CRYPTO_BLOWFISH_COMMON
   help
     Blowfish cipher algorithm, by Bruce Schneier.
 
     This is a variable key length cipher which can use keys from 32
     bits to 448 bits in length.  It's fast, simple and specifically
     designed for use on "large microprocessors".
 
     See also:
     <https://www.schneier.com/blowfish.html>
 
config CRYPTO_BLOWFISH_COMMON
   tristate
   help
     Common parts of the Blowfish cipher algorithm shared by the
     generic c and the assembler implementations.
 
     See also:
     <https://www.schneier.com/blowfish.html>
 
config CRYPTO_BLOWFISH_X86_64
   tristate "Blowfish cipher algorithm (x86_64)"
   depends on X86 && 64BIT
   select CRYPTO_SKCIPHER
   select CRYPTO_BLOWFISH_COMMON
   help
     Blowfish cipher algorithm (x86_64), by Bruce Schneier.
 
     This is a variable key length cipher which can use keys from 32
     bits to 448 bits in length.  It's fast, simple and specifically
     designed for use on "large microprocessors".
 
     See also:
     <https://www.schneier.com/blowfish.html>
 
config CRYPTO_CAMELLIA
   tristate "Camellia cipher algorithms"
   depends on CRYPTO
   select CRYPTO_ALGAPI
   help
     Camellia cipher algorithms module.
 
     Camellia is a symmetric key block cipher developed jointly
     at NTT and Mitsubishi Electric Corporation.
 
     The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
     See also:
     <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 
config CRYPTO_CAMELLIA_X86_64
   tristate "Camellia cipher algorithm (x86_64)"
   depends on X86 && 64BIT
   depends on CRYPTO
   select CRYPTO_SKCIPHER
   select CRYPTO_GLUE_HELPER_X86
   help
     Camellia cipher algorithm module (x86_64).
 
     Camellia is a symmetric key block cipher developed jointly
     at NTT and Mitsubishi Electric Corporation.
 
     The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
     See also:
     <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 
config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
   tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
   depends on X86 && 64BIT
   depends on CRYPTO
   select CRYPTO_SKCIPHER
   select CRYPTO_CAMELLIA_X86_64
   select CRYPTO_GLUE_HELPER_X86
   select CRYPTO_SIMD
   select CRYPTO_XTS
   help
     Camellia cipher algorithm module (x86_64/AES-NI/AVX).
 
     Camellia is a symmetric key block cipher developed jointly
     at NTT and Mitsubishi Electric Corporation.
 
     The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
     See also:
     <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
   tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
   depends on X86 && 64BIT
   depends on CRYPTO
   select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
   help
     Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
 
     Camellia is a symmetric key block cipher developed jointly
     at NTT and Mitsubishi Electric Corporation.
 
     The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
     See also:
     <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 
config CRYPTO_CAMELLIA_SPARC64
   tristate "Camellia cipher algorithm (SPARC64)"
   depends on SPARC64
   depends on CRYPTO
   select CRYPTO_ALGAPI
   select CRYPTO_SKCIPHER
   help
     Camellia cipher algorithm module (SPARC64).
 
     Camellia is a symmetric key block cipher developed jointly
     at NTT and Mitsubishi Electric Corporation.
 
     The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
     See also:
     <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
 
config CRYPTO_CAST_COMMON
   tristate
   help
     Common parts of the CAST cipher algorithms shared by the
     generic c and the assembler implementations.
 
config CRYPTO_CAST5
   tristate "CAST5 (CAST-128) cipher algorithm"
   select CRYPTO_ALGAPI
   select CRYPTO_CAST_COMMON
   help
     The CAST5 encryption algorithm (synonymous with CAST-128) is
     described in RFC2144.
 
config CRYPTO_CAST5_AVX_X86_64
   tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
   depends on X86 && 64BIT
   select CRYPTO_SKCIPHER
   select CRYPTO_CAST5
   select CRYPTO_CAST_COMMON
   select CRYPTO_SIMD
   help
     The CAST5 encryption algorithm (synonymous with CAST-128) is
     described in RFC2144.
 
     This module provides the Cast5 cipher algorithm that processes
     sixteen blocks parallel using the AVX instruction set.
 
config CRYPTO_CAST6
   tristate "CAST6 (CAST-256) cipher algorithm"
   select CRYPTO_ALGAPI
   select CRYPTO_CAST_COMMON
   help
     The CAST6 encryption algorithm (synonymous with CAST-256) is
     described in RFC2612.
 
config CRYPTO_CAST6_AVX_X86_64
   tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
   depends on X86 && 64BIT
   select CRYPTO_SKCIPHER
   select CRYPTO_CAST6
   select CRYPTO_CAST_COMMON
   select CRYPTO_GLUE_HELPER_X86
   select CRYPTO_SIMD
   select CRYPTO_XTS
   help
     The CAST6 encryption algorithm (synonymous with CAST-256) is
     described in RFC2612.
 
     This module provides the Cast6 cipher algorithm that processes
     eight blocks parallel using the AVX instruction set.
 
config CRYPTO_DES
   tristate "DES and Triple DES EDE cipher algorithms"
   select CRYPTO_ALGAPI
   select CRYPTO_LIB_DES
   help
     DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
 
config CRYPTO_DES_SPARC64
   tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
   depends on SPARC64
   select CRYPTO_ALGAPI
   select CRYPTO_LIB_DES
   select CRYPTO_SKCIPHER
   help
     DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
     optimized using SPARC64 crypto opcodes.
 
config CRYPTO_DES3_EDE_X86_64
   tristate "Triple DES EDE cipher algorithm (x86-64)"
   depends on X86 && 64BIT
   select CRYPTO_SKCIPHER
   select CRYPTO_LIB_DES
   help
     Triple DES EDE (FIPS 46-3) algorithm.
 
     This module provides implementation of the Triple DES EDE cipher
     algorithm that is optimized for x86-64 processors. Two versions of
     algorithm are provided; regular processing one input block and
     one that processes three blocks parallel.
 
config CRYPTO_FCRYPT
   tristate "FCrypt cipher algorithm"
   select CRYPTO_ALGAPI
   select CRYPTO_SKCIPHER
   help
     FCrypt algorithm used by RxRPC.
 
config CRYPTO_KHAZAD
   tristate "Khazad cipher algorithm"
   depends on CRYPTO_USER_API_ENABLE_OBSOLETE
   select CRYPTO_ALGAPI
   help
     Khazad cipher algorithm.
 
     Khazad was a finalist in the initial NESSIE competition.  It is
     an algorithm optimized for 64-bit processors with good performance
     on 32-bit processors.  Khazad uses an 128 bit key size.
 
     See also:
     <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
 
config CRYPTO_SALSA20
   tristate "Salsa20 stream cipher algorithm"
   select CRYPTO_SKCIPHER
   help
     Salsa20 stream cipher algorithm.
 
     Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
     Stream Cipher Project. See <https://www.ecrypt.eu.org/stream/>
 
     The Salsa20 stream cipher algorithm is designed by Daniel J.
     Bernstein <djb@cr.yp.to>. See <https://cr.yp.to/snuffle.html>
 
config CRYPTO_CHACHA20
   tristate "ChaCha stream cipher algorithms"
   select CRYPTO_LIB_CHACHA_GENERIC
   select CRYPTO_SKCIPHER
   help
     The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
 
     ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
     Bernstein and further specified in RFC7539 for use in IETF protocols.
     This is the portable C implementation of ChaCha20.  See also:
     <https://cr.yp.to/chacha/chacha-20080128.pdf>
 
     XChaCha20 is the application of the XSalsa20 construction to ChaCha20
     rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
     from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
     while provably retaining ChaCha20's security.  See also:
     <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
 
     XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
     reduced security margin but increased performance.  It can be needed
     in some performance-sensitive scenarios.
 
config CRYPTO_CHACHA20_X86_64
   tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
   depends on X86 && 64BIT
   select CRYPTO_SKCIPHER
   select CRYPTO_LIB_CHACHA_GENERIC
   select CRYPTO_ARCH_HAVE_LIB_CHACHA
   help
     SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
     XChaCha20, and XChaCha12 stream ciphers.
 
config CRYPTO_CHACHA_MIPS
   tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
   depends on CPU_MIPS32_R2
   select CRYPTO_SKCIPHER
   select CRYPTO_ARCH_HAVE_LIB_CHACHA
 
config CRYPTO_SEED
   tristate "SEED cipher algorithm"
   depends on CRYPTO_USER_API_ENABLE_OBSOLETE
   select CRYPTO_ALGAPI
   help
     SEED cipher algorithm (RFC4269).
 
     SEED is a 128-bit symmetric key block cipher that has been
     developed by KISA (Korea Information Security Agency) as a
     national standard encryption algorithm of the Republic of Korea.
     It is a 16 round block cipher with the key size of 128 bit.
 
     See also:
     <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
 
config CRYPTO_SERPENT
   tristate "Serpent cipher algorithm"
   select CRYPTO_ALGAPI
   help
     Serpent cipher algorithm, by Anderson, Biham & Knudsen.
 
     Keys are allowed to be from 0 to 256 bits in length, in steps
     of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
     variant of Serpent for compatibility with old kerneli.org code.
 
     See also:
     <https://www.cl.cam.ac.uk/~rja14/serpent.html>
 
config CRYPTO_SERPENT_SSE2_X86_64
   tristate "Serpent cipher algorithm (x86_64/SSE2)"
   depends on X86 && 64BIT
   select CRYPTO_SKCIPHER
   select CRYPTO_GLUE_HELPER_X86
   select CRYPTO_SERPENT
   select CRYPTO_SIMD
   help
     Serpent cipher algorithm, by Anderson, Biham & Knudsen.
 
     Keys are allowed to be from 0 to 256 bits in length, in steps
     of 8 bits.
 
     This module provides Serpent cipher algorithm that processes eight
     blocks parallel using SSE2 instruction set.
 
     See also:
     <https://www.cl.cam.ac.uk/~rja14/serpent.html>
 
config CRYPTO_SERPENT_SSE2_586
   tristate "Serpent cipher algorithm (i586/SSE2)"
   depends on X86 && !64BIT
   select CRYPTO_SKCIPHER
   select CRYPTO_GLUE_HELPER_X86
   select CRYPTO_SERPENT
   select CRYPTO_SIMD
   help
     Serpent cipher algorithm, by Anderson, Biham & Knudsen.
 
     Keys are allowed to be from 0 to 256 bits in length, in steps
     of 8 bits.
 
     This module provides Serpent cipher algorithm that processes four
     blocks parallel using SSE2 instruction set.
 
     See also:
     <https://www.cl.cam.ac.uk/~rja14/serpent.html>
 
config CRYPTO_SERPENT_AVX_X86_64
   tristate "Serpent cipher algorithm (x86_64/AVX)"
   depends on X86 && 64BIT
   select CRYPTO_SKCIPHER
   select CRYPTO_GLUE_HELPER_X86
   select CRYPTO_SERPENT
   select CRYPTO_SIMD
   select CRYPTO_XTS
   help
     Serpent cipher algorithm, by Anderson, Biham & Knudsen.
 
     Keys are allowed to be from 0 to 256 bits in length, in steps
     of 8 bits.
 
     This module provides the Serpent cipher algorithm that processes
     eight blocks parallel using the AVX instruction set.
 
     See also:
     <https://www.cl.cam.ac.uk/~rja14/serpent.html>
 
config CRYPTO_SERPENT_AVX2_X86_64
   tristate "Serpent cipher algorithm (x86_64/AVX2)"
   depends on X86 && 64BIT
   select CRYPTO_SERPENT_AVX_X86_64
   help
     Serpent cipher algorithm, by Anderson, Biham & Knudsen.
 
     Keys are allowed to be from 0 to 256 bits in length, in steps
     of 8 bits.
 
     This module provides Serpent cipher algorithm that processes 16
     blocks parallel using AVX2 instruction set.
 
     See also:
     <https://www.cl.cam.ac.uk/~rja14/serpent.html>
 
config CRYPTO_SM4
   tristate "SM4 cipher algorithm"
   select CRYPTO_ALGAPI
   help
     SM4 cipher algorithms (OSCCA GB/T 32907-2016).
 
     SM4 (GBT.32907-2016) is a cryptographic standard issued by the
     Organization of State Commercial Administration of China (OSCCA)
     as an authorized cryptographic algorithms for the use within China.
 
     SMS4 was originally created for use in protecting wireless
     networks, and is mandated in the Chinese National Standard for
     Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
     (GB.15629.11-2003).
 
     The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
     standardized through TC 260 of the Standardization Administration
     of the People's Republic of China (SAC).
 
     The input, output, and key of SMS4 are each 128 bits.
 
     See also: <https://eprint.iacr.org/2008/329.pdf>
 
     If unsure, say N.
 
config CRYPTO_TEA
   tristate "TEA, XTEA and XETA cipher algorithms"
   depends on CRYPTO_USER_API_ENABLE_OBSOLETE
   select CRYPTO_ALGAPI
   help
     TEA cipher algorithm.
 
     Tiny Encryption Algorithm is a simple cipher that uses
     many rounds for security.  It is very fast and uses
     little memory.
 
     Xtendend Tiny Encryption Algorithm is a modification to
     the TEA algorithm to address a potential key weakness
     in the TEA algorithm.
 
     Xtendend Encryption Tiny Algorithm is a mis-implementation
     of the XTEA algorithm for compatibility purposes.
 
config CRYPTO_TWOFISH
   tristate "Twofish cipher algorithm"
   select CRYPTO_ALGAPI
   select CRYPTO_TWOFISH_COMMON
   help
     Twofish cipher algorithm.
 
     Twofish was submitted as an AES (Advanced Encryption Standard)
     candidate cipher by researchers at CounterPane Systems.  It is a
     16 round block cipher supporting key sizes of 128, 192, and 256
     bits.
 
     See also:
     <https://www.schneier.com/twofish.html>
 
config CRYPTO_TWOFISH_COMMON
   tristate
   help
     Common parts of the Twofish cipher algorithm shared by the
     generic c and the assembler implementations.
 
config CRYPTO_TWOFISH_586
   tristate "Twofish cipher algorithms (i586)"
   depends on (X86 || UML_X86) && !64BIT
   select CRYPTO_ALGAPI
   select CRYPTO_TWOFISH_COMMON
   help
     Twofish cipher algorithm.
 
     Twofish was submitted as an AES (Advanced Encryption Standard)
     candidate cipher by researchers at CounterPane Systems.  It is a
     16 round block cipher supporting key sizes of 128, 192, and 256
     bits.
 
     See also:
     <https://www.schneier.com/twofish.html>
 
config CRYPTO_TWOFISH_X86_64
   tristate "Twofish cipher algorithm (x86_64)"
   depends on (X86 || UML_X86) && 64BIT
   select CRYPTO_ALGAPI
   select CRYPTO_TWOFISH_COMMON
   help
     Twofish cipher algorithm (x86_64).
 
     Twofish was submitted as an AES (Advanced Encryption Standard)
     candidate cipher by researchers at CounterPane Systems.  It is a
     16 round block cipher supporting key sizes of 128, 192, and 256
     bits.
 
     See also:
     <https://www.schneier.com/twofish.html>
 
config CRYPTO_TWOFISH_X86_64_3WAY
   tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
   depends on X86 && 64BIT
   select CRYPTO_SKCIPHER
   select CRYPTO_TWOFISH_COMMON
   select CRYPTO_TWOFISH_X86_64
   select CRYPTO_GLUE_HELPER_X86
   help
     Twofish cipher algorithm (x86_64, 3-way parallel).
 
     Twofish was submitted as an AES (Advanced Encryption Standard)
     candidate cipher by researchers at CounterPane Systems.  It is a
     16 round block cipher supporting key sizes of 128, 192, and 256
     bits.
 
     This module provides Twofish cipher algorithm that processes three
     blocks parallel, utilizing resources of out-of-order CPUs better.
 
     See also:
     <https://www.schneier.com/twofish.html>
 
config CRYPTO_TWOFISH_AVX_X86_64
   tristate "Twofish cipher algorithm (x86_64/AVX)"
   depends on X86 && 64BIT
   select CRYPTO_SKCIPHER
   select CRYPTO_GLUE_HELPER_X86
   select CRYPTO_SIMD
   select CRYPTO_TWOFISH_COMMON
   select CRYPTO_TWOFISH_X86_64
   select CRYPTO_TWOFISH_X86_64_3WAY
   help
     Twofish cipher algorithm (x86_64/AVX).
 
     Twofish was submitted as an AES (Advanced Encryption Standard)
     candidate cipher by researchers at CounterPane Systems.  It is a
     16 round block cipher supporting key sizes of 128, 192, and 256
     bits.
 
     This module provides the Twofish cipher algorithm that processes
     eight blocks parallel using the AVX Instruction Set.
 
     See also:
     <https://www.schneier.com/twofish.html>
 
comment "Compression"
 
config CRYPTO_DEFLATE
   tristate "Deflate compression algorithm"
   select CRYPTO_ALGAPI
   select CRYPTO_ACOMP2
   select ZLIB_INFLATE
   select ZLIB_DEFLATE
   help
     This is the Deflate algorithm (RFC1951), specified for use in
     IPSec with the IPCOMP protocol (RFC3173, RFC2394).
 
     You will most probably want this if using IPSec.
 
config CRYPTO_LZO
   tristate "LZO compression algorithm"
   select CRYPTO_ALGAPI
   select CRYPTO_ACOMP2
   select LZO_COMPRESS
   select LZO_DECOMPRESS
   help
     This is the LZO algorithm.
 
config CRYPTO_842
   tristate "842 compression algorithm"
   select CRYPTO_ALGAPI
   select CRYPTO_ACOMP2
   select 842_COMPRESS
   select 842_DECOMPRESS
   help
     This is the 842 algorithm.
 
config CRYPTO_LZ4
   tristate "LZ4 compression algorithm"
   select CRYPTO_ALGAPI
   select CRYPTO_ACOMP2
   select LZ4_COMPRESS
   select LZ4_DECOMPRESS
   help
     This is the LZ4 algorithm.
 
config CRYPTO_LZ4HC
   tristate "LZ4HC compression algorithm"
   select CRYPTO_ALGAPI
   select CRYPTO_ACOMP2
   select LZ4HC_COMPRESS
   select LZ4_DECOMPRESS
   help
     This is the LZ4 high compression mode algorithm.
 
config CRYPTO_ZSTD
   tristate "Zstd compression algorithm"
   select CRYPTO_ALGAPI
   select CRYPTO_ACOMP2
   select ZSTD_COMPRESS
   select ZSTD_DECOMPRESS
   help
     This is the zstd algorithm.
 
comment "Random Number Generation"
 
config CRYPTO_ANSI_CPRNG
   tristate "Pseudo Random Number Generation for Cryptographic modules"
   select CRYPTO_AES
   select CRYPTO_RNG
   help
     This option enables the generic pseudo random number generator
     for cryptographic modules.  Uses the Algorithm specified in
     ANSI X9.31 A.2.4. Note that this option must be enabled if
     CRYPTO_FIPS is selected
 
menuconfig CRYPTO_DRBG_MENU
   tristate "NIST SP800-90A DRBG"
   help
     NIST SP800-90A compliant DRBG. In the following submenu, one or
     more of the DRBG types must be selected.
 
if CRYPTO_DRBG_MENU
 
config CRYPTO_DRBG_HMAC
   bool
   default y
   select CRYPTO_HMAC
   select CRYPTO_SHA256
 
config CRYPTO_DRBG_HASH
   bool "Enable Hash DRBG"
   select CRYPTO_SHA256
   help
     Enable the Hash DRBG variant as defined in NIST SP800-90A.
 
config CRYPTO_DRBG_CTR
   bool "Enable CTR DRBG"
   select CRYPTO_AES
   select CRYPTO_CTR
   help
     Enable the CTR DRBG variant as defined in NIST SP800-90A.
 
config CRYPTO_DRBG
   tristate
   default CRYPTO_DRBG_MENU
   select CRYPTO_RNG
   select CRYPTO_JITTERENTROPY
 
endif    # if CRYPTO_DRBG_MENU
 
config CRYPTO_JITTERENTROPY
   tristate "Jitterentropy Non-Deterministic Random Number Generator"
   select CRYPTO_RNG
   help
     The Jitterentropy RNG is a noise that is intended
     to provide seed to another RNG. The RNG does not
     perform any cryptographic whitening of the generated
     random numbers. This Jitterentropy RNG registers with
     the kernel crypto API and can be used by any caller.
 
config CRYPTO_USER_API
   tristate
 
config CRYPTO_USER_API_HASH
   tristate "User-space interface for hash algorithms"
   depends on NET
   select CRYPTO_HASH
   select CRYPTO_USER_API
   help
     This option enables the user-spaces interface for hash
     algorithms.
 
config CRYPTO_USER_API_SKCIPHER
   tristate "User-space interface for symmetric key cipher algorithms"
   depends on NET
   select CRYPTO_SKCIPHER
   select CRYPTO_USER_API
   help
     This option enables the user-spaces interface for symmetric
     key cipher algorithms.
 
config CRYPTO_USER_API_RNG
   tristate "User-space interface for random number generator algorithms"
   depends on NET
   select CRYPTO_RNG
   select CRYPTO_USER_API
   help
     This option enables the user-spaces interface for random
     number generator algorithms.
 
config CRYPTO_USER_API_RNG_CAVP
   bool "Enable CAVP testing of DRBG"
   depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
   help
     This option enables extra API for CAVP testing via the user-space
     interface: resetting of DRBG entropy, and providing Additional Data.
     This should only be enabled for CAVP testing. You should say
     no unless you know what this is.
 
config CRYPTO_USER_API_AEAD
   tristate "User-space interface for AEAD cipher algorithms"
   depends on NET
   select CRYPTO_AEAD
   select CRYPTO_SKCIPHER
   select CRYPTO_NULL
   select CRYPTO_USER_API
   help
     This option enables the user-spaces interface for AEAD
     cipher algorithms.
 
config CRYPTO_USER_API_ENABLE_OBSOLETE
   bool "Enable obsolete cryptographic algorithms for userspace"
   depends on CRYPTO_USER_API
   default y
   help
     Allow obsolete cryptographic algorithms to be selected that have
     already been phased out from internal use by the kernel, and are
     only useful for userspace clients that still rely on them.
 
config CRYPTO_STATS
   bool "Crypto usage statistics for User-space"
   depends on CRYPTO_USER
   help
     This option enables the gathering of crypto stats.
     This will collect:
     - encrypt/decrypt size and numbers of symmeric operations
     - compress/decompress size and numbers of compress operations
     - size and numbers of hash operations
     - encrypt/decrypt/sign/verify numbers for asymmetric operations
     - generate/seed numbers for rng operations
 
config CRYPTO_HASH_INFO
   bool
 
source "drivers/crypto/Kconfig"
source "crypto/asymmetric_keys/Kconfig"
source "certs/Kconfig"
 
endif    # if CRYPTO